
a 
 

*Corresponding Author Email: ecoagricultiral@gmail.com 

PRINT ISSN 1119-8362 

Electronic ISSN 2659-1502 

J. Appl. Sci. Environ. Manage.  

Vol. 27 (8) 1617-1626 August 2023 

 

Full-text Available Online at 

https://www.ajol.info/index.php/jasem 

http://www.bioline.org.br/ja 

  

Optimization of Artificial Neural Network Transfer Function for Hydrological 

Modelling: A Review 

 
1ORJI, FN; 1AHANEKU, IE; 1NDUKWU, MC; 1UGWU, E; *2AWU, JI; 

3JOSEPH, IU; 
4HELEN, I 

 
1Michael Okpara University of Agriculture Umudike, Abia State, Nigeria 

*2National Centre for Agricultural Mechanization, Ilorin, Kwara State, Nieria 
3Nnamdi Azikiwe University Awka, Anambra State, Nigeria 

4Federal Polytechnic, Oko, Anambra State, Nigeria 

 
*Corresponding Author Email: ecoagricultiral@gmail.com 

 

ABSTRACT: Hydrological modeling is crucial for understanding and predicting water-related processes. Artificial 

Neural Networks (ANN) have emerged as powerful tools for this purpose, utilizing the structure and functions of the 
biological brain to model complex patterns and forecast hydrological issues. Hence, this study reviews the optimization 

of artificial neural networks for hydrological modeling. Data obtained reveals that the choice of transfer function 

significantly impacts the performance of hydrological models, and optimizing it can improve accuracy, precision, and 
reliability. More so, an optimized transfer function provides interpretability, aligning with the physical understanding 

of the hydrological system and making the model outputs more meaningful. By optimizing artificial neural network 

transfer functions and employing other optimization strategies, hydrological models can better simulate and predict 
water-related processes. This advancement can lead to more effective water resource management and decision-

making. 
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Hydrological modeling plays a crucial role in 

understanding and predicting water-related processes. 

Artificial Neural Networks (ANN) is a data modelling 

tool that is based on the structure and functions of 

biological brain to model complicated patterns and 

forecast issues. In recent years, the field of system 

investigation has experienced a resurgence with the 

adoption of artificial intelligence techniques such as 

Artificial Neural Networks (ANN) in hydrological 

modeling (Minns and Hall, 1996). Artificial neural 

networks possess distinct features that set them apart 

from other models. They exhibit flexibility in handling 

data and can effectively solve problems where 

obtaining primary data is nearly impossible (Ouenes, 

2000; Zio, 1997). They can also handle the added 

complexity of groundwater chemistry (Gumrah et al., 

2000) and address highly nonlinear and 

spatially/temporally variant processes (Islam and 

Kothari, 2000). Furthermore, artificial neural 

networks can handle incomplete, noisy, and 

ambiguous data (Maier and Dandy, 1998). They are 

often more cost-effective and simpler to implement in 

terms of data requirements and model structure 

compared to physically based models (Campolo et al., 

1999). ANNs are well-suited for dynamic problems, 

efficiently store information within the trained model, 

and excel at time series pattern matching 

(Thirumalaiah and Deo, 1998).  Hence, artificial 

neural networks (ANNs) have emerged as powerful 

tools for hydrological modeling due to their ability to 
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capture complex nonlinear relationships. However, the 

performance of ANNs depends on their optimization, 

which involves selecting appropriate network 

architectures and optimizing model parameters. The 

objective of this study is to review the artificial neural 

networks optimization for hydrological modelling. 

Artificial neural network transfer function play a vital 

role on the model network output. The transfer 

function is a fundamental component of an ANN that 

determines the output of each neuron based on the 

weighted sum of inputs. Choosing an appropriate 

transfer function is critical for achieving accurate and 

reliable hydrological modeling results. Therefore, the 

optimization of the transfer function for hydrological 

modeling can be justified for several reasons. 

Hydrological systems often exhibit non-linear 

behaviors due to the complex interactions between 

various hydrological processes such as precipitation, 

evapotranspiration, infiltration, and runoff (Sivakumar 

et al., 2007). ANNs with appropriate transfer functions 

can effectively capture and model these non-linear 

relationships, enabling more accurate simulations and 

predictions (ASCE, 2000). Likewise, an optimized 

transfer function enhances the generalization 

capability of the hydrological model. Generalization 

refers to the ability of the model to accurately predict 

outcomes for unseen data. By selecting an appropriate 

transfer function, overfitting (when a model becomes 

too specialized for the training data) can be minimized, 

and the model can better capture the underlying 

patterns and dynamics of the hydrological system (Zhu 

et al, 2000). However, ANNs offer a wide range of 

transfer functions to choose from, including sigmoid, 

hyperbolic tangent, radial basis function, and rectified 

linear unit (ReLU) (Haykin, 1999). Each transfer 

function has its strengths and limitations, and the 

optimization process helps identify the most suitable 

transfer function for a specific hydrological modeling 

task (Moghaddam and Sorooshian, 2001). This 

flexibility allows for a better representation of the 

underlying hydrological processes (Duan et al., 1998). 

Moghaddam and Sorooshian (2001), in their study on 

a review of artificial neural networks in hydrology, 

reveal that the choice of the transfer function can 

significantly impact the performance of the 

hydrological model. By optimizing the transfer 

function, the model's accuracy, precision, and 

reliability can be improved. This optimization process 

involves fine-tuning the parameters of the transfer 

function or exploring different transfer functions to 

find the optimal configuration that minimizes errors 

and maximizes model performance. Some transfer 

functions have inherent interpretability, which can 

provide insights into the hydrological processes being 

modelled (Moghaddam and Sorooshian (2001). For 

example, sigmoid functions can represent the 

saturation and attenuation behaviour of certain 

hydrological phenomena. By optimizing the transfer 

function, it is possible to select a function that aligns 

with the physical understanding of the hydrological 

system, making the model outputs more interpretable. 

Hence, the optimization of the artificial neural 

network transfer function for hydrological modelling 

holds significant potential to advance the accuracy of 

hydrological models, enhance our understanding of 

hydrological processes, capture non-linear behaviours, 

improve model flexibility and generalization, enhance 

model performance, and provide interpretability. By 

selecting the most suitable transfer function, 

hydrological models can better simulate and predict 

various water-related processes, leading to more 

effective water resource management and decision-

making. 

 

ANNs Optimization Strategies: When optimizing 

artificial neural networks (ANNs) for hydrologic 

modelling, there are several approaches that are 

considered. ANNs optimization plays a crucial role in 

capturing the non-linear relationships between input 

variables and output variables in ANNs. Here are some 

optimization strategies that can be employed for 

ANNs hydrological modelling. 

 

Network Architecture Optimization: Network 

architecture optimization is a critical process in the 

field of deep learning, aimed at designing and refining 

the structure of neural networks to improve their 

performance and efficiency. The goal is to create 

models that can effectively learn and extract 

meaningful information from complex data. The study 

of Goodfellow et al. (2016), reveals that choosing an 

appropriate model architecture is the first step to 

having good prediction. This involves selecting from 

a wide range of neural network types, such as 

convolutional neural networks (CNNs) for image data, 

recurrent neural networks (RNNs) for sequential data, 

or transformer models for natural language processing 

tasks. Once the type of model is determined, the next 

step is to design the layers of the network. This 

includes deciding the number of layers, the type of 

activation functions, and the connections between 

layers (e.g., fully connected, convolutional, etc.). 

Careful consideration is given to strike a balance 

between model complexity and expressiveness. The 

choice of network architecture significantly impacts 

the performance of hydrological models Moghaddam 

and Sorooshian (2017). Several studies have focused 

on optimizing the architecture of ANNs for 

hydrological modelling, including the number of 

hidden layers, the number of neurons per layer, and the 

activation functions used. Example of an artificial 

neural network architecture is shown in Figure 1 
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Fig 1: Schematic diagram of Artificial Neural Network Architecture 

 

Transfer Function Optimization: Transfer function 

selection is another crucial aspect optimizing 

designing neural networks. Transfer function 

introduces non-linearity to the network, enabling it to 

learn complex relationships between inputs and 

outputs. The choice of Transfer function can have a 

significant impact on the model's learning capacity, 

convergence speed, and ability to handle different 

types of data. 

 

The commonly used Transfer function are:  

Sigmoid Function: The sigmoid transfer function, also 

known as the logistic function, is a mathematical 

function commonly used in machine learning and 

neural networks. It maps an input value to a value 

between 0 and 1, which can be interpreted as a 

probability. 

 

The sigmoid function has an S-shaped curve and is 

symmetric around the point (0, 0.5). When the input 

value x is positive, the output of the sigmoid function 

approaches 1. As x becomes increasingly negative, the 

output approaches 0. 

 

The sigmoid function is useful for tasks such as binary 

classification, where the goal is to predict one of two 

classes. The output of the sigmoid function can be 

interpreted as the probability of belonging to one of 

the classes. For example, if the output is 0.8, it can be 

interpreted as an 80% probability of belonging to one 

class and a 20% probability of belonging to the other 

class. The sigmoidal transfer function is expressed as 

shown in equation 1. 

 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
                 (1) 

 

Where: σ(x) represents the output value of the sigmoid 

function for the input value x; e is the base of the 

natural logarithm, approximately equal to 2.71828. 

 

The advantage of the sigmoid transfer function is that 

it is smooth, interpretable as a probability, good for 

binary classification tasks but the disadvantage is that 

it saturates at high or low values, prone to vanishing 

gradients, not suitable for deep networks (Rumelhart 

et al., 1986). 

 

Rectified Linear Unit (ReLU): The Rectified Linear 

Unit (ReLU) is a commonly used activation function 

in deep learning neural networks. It is a piecewise 

linear function that returns zero for negative input 

values and the input value itself for non-negative 

values. 

 

Mathematically, the ReLU function is expressed 

shown in equation 2: 

 

𝐹(𝑥) = 𝑀𝑎𝑥 (0,∞)                   (2) 
 

Where x is the input to the function and f(x) is the 

output. If the input x is negative, the ReLU function 

returns 0. Otherwise, it returns the input value x. 

 

The ReLU function is preferred over other activation 

functions like sigmoid and hyperbolic tangent because 

it helps alleviate the vanishing gradient problem, 

which can occur during the training of deep neural 

networks. The vanishing gradient problem refers to the 

issue where the gradients become extremely small as 

they propagate backward through the network, leading 

to slow convergence or even the complete inability of 

the network to learn. 

 

By setting negative inputs to zero, the ReLU function 

introduces sparsity in the network, allowing only a 

subset of neurons to be activated. This sparsity helps 

in better representation learning and can contribute to 

improved network performance. 
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The ReLU function is simple to compute and has a 

computationally efficient gradient computation. 

However, one drawback of ReLU is that it can cause 

dead neurons (also known as "dying ReLU") where 

neurons become non-responsive to any input and 

always output zero. This can happen if the weights 

associated with a neuron are updated in such a way that 

the neuron never activates during training. Several 

variations of ReLU, such as Leaky ReLU and 

Parametric ReLU, have been proposed to address this 

issue. 

 

The Rectified Linear Unit advantages are that is 

Simple, computationally efficient, overcomes the 

vanishing gradient problem, effective for deep 

networks whiles its disadvantages are is not centered 

around zero (can cause dead neurons), and may lead to 

a "dying ReLU" problem (Nair and Hinton, 2010). 

 

Hyperbolic Tangent (Tanh): The hyperbolic tangent 

(tanh) transfer function is a commonly used activation 

function in neural networks. It is a non-linear function 

that squashes the input values between -1 and 1, 

making it useful for normalizing and scaling data. 

 

The mathematical expression for the hyperbolic 

tangent function given in equation 3: 

 

𝑇𝑎𝑛ℎ(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥)   (3) 
 

Where e is the base of the natural logarithm 

(approximately 2.71828) and x is the input value. The 

tanh function has the range, symmetry and non-linear 

properties, respectively. The range property ensures 

that the output of the tanh function is bounded between 

-1 and 1. As x approaches positive infinity, tanh(x) 

approaches 1, and as x approaches negative infinity, 

tanh(x) approaches -1. However, the symmetry 

property shows that the tanh function is an odd 

function, which means tanh(-x) = -tanh(x). This 

property is useful in certain contexts, such as when 

dealing with balanced positive and negative inputs. 

The non-linear property makes the tanh function to be 

non-linear, enabling neural networks to learn complex 

relationships between inputs and outputs. The tanh 

function is commonly used in the hidden layers of 

neural networks, as it helps introduce non-linearities 

and capture more complex patterns in the data. It can 

also be used as an alternative to the sigmoid function 

when the output range of -1 to 1 is desired. 

 

The advantages of the tanh function are; it is smooth, 

zero-centered, retains non-linearity, suitable for 

recurrent neural networks (RNNs), however, the 

disadvantages is similar to the sigmoid function, 

suffers from vanishing gradients (Bengio et al., 1994). 

 

Leaky ReLU: The Leaky ReLU (Rectified Linear Unit) 

is a variant of the ReLU activation function commonly 

used in neural networks. It addresses one of the 

drawbacks of the traditional ReLU function, which 

causes certain neurons to become "dead" and 

unresponsive if their input falls below zero. 

 

The Leaky ReLU function is expressed using equation 

4: 

 

𝑓(𝑥) = max(𝛼𝑥, 𝑥)                4 

 

Where x is the input to the function, and a is a small 

constant typically set to a small positive value (e.g., 

0.01 or 0.001), α is a small constant (<1). When x is 

positive, the function behaves like the standard ReLU 

and returns x. However, when x is negative, it returns 

a scaled version of x. 

 

The purpose of introducing the small slope for 

negative inputs is to allow the flow of a small gradient, 

preventing neurons from completely "dying" during 

training. This ensures that even if a neuron's output is 

negative, there is still a small gradient that can 

propagate backward and update the weights during 

backpropagation. 

 

The Leaky ReLU function can be used as an activation 

function in neural networks, typically in the hidden 

layers. It has been observed to alleviate the dying 

ReLU problem and improve the learning capability of 

deep neural networks, especially in scenarios where 

there is a high proportion of negative inputs. Its 

advantages are it overcomes the "dying ReLU" 

problem, prevents dead neurons, maintains non-

linearity while the disadvantages is that it requires 

tuning the α parameter (Maas et al., 2013). More so, 

there are many other activation functions available, 

such as softmax, exponential linear units (ELUs), and 

scaled exponential linear units (SELUs), each with 

their own advantages and use cases (Table 1). The 

choice of activation function depends on the specific 

task, network architecture, and experimental results. 

Experiment with different activation functions to 

identify the one that best represents the underlying 

hydrologic processes. 



Optimization of Artificial Neural Network Transfer Function…..                                                                    1621 

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I. 

Table 1: Comparisons of the properties of some transfer functions (Source: Bergstra et al., 2009). 

Name Plot Equation Derivatives with respect to x Range 

Identity 

 

𝑓(𝑥) = 𝑥 𝑓′(𝑥) = 1 

(−∞,∞) 

Binary step 

 

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 𝑓′(𝑥) = {
0 𝑓𝑜𝑟 𝑥 ≠ 0
? 𝑓𝑜𝑟 𝑥 = 0

 

(0, 1) 

Logistic or 

sigmoid 

(a.k.a. Soft 

step) 
 

𝑓 (𝑥) =
1

1 + 𝑒−𝑥
 𝑓′(𝑥)𝑓(𝑥)(1 − 𝑓(𝑥)) 

(0, 1) 

Tanh 

 

𝑓(𝑥) = tanh(𝑥) =
2

1 + 𝑒−2𝑥
− 1 𝑓′(𝑥) = 1 − 𝑓(𝑥2) 

(−1, 1) 

ArcTan 

 

𝑓(𝑥) = 𝑡𝑎𝑛−1(𝑥) 𝑓′(𝑥) =
1

𝑥2 + 1
 

(−
𝜋

2
,
𝜋

2
) 

Softsign  

 

𝑓(𝑥) =
𝑥

1 + |𝑥|
 

𝑓′(𝑥) =
1

(1 + |𝑥|)2
 

 

(−1, 1) 

Rectified 

linear unit 

 

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 𝑓′(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 

(0,∞) 

Leaky 

rectified 

linear unit  
 

𝑓(𝑥) = {
0.01 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 𝑓′(𝑥) = {
0.01 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 

(−∞,∞) 

https://en.wikipedia.org/wiki/File:Activation_identity.svg
https://en.wikipedia.org/wiki/File:Activation_binary_step.svg
https://en.wikipedia.org/wiki/File:Activation_logistic.svg
https://en.wikipedia.org/wiki/File:Activation_tanh.svg
https://en.wikipedia.org/wiki/File:Activation_arctan.svg
https://en.wikipedia.org/wiki/File:Activation_softsign.png
https://en.wikipedia.org/wiki/File:Activation_rectified_linear.svg
https://en.wikipedia.org/wiki/File:Activation_prelu.svg
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Parametric 

rectified 

linear unit 
 

𝑓(∝, 𝑥) = {
∝ 𝑥  𝑓𝑜𝑟 𝑥 < 0
        𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 

𝑓′(∝, 𝑥)

= {
∝   𝑓𝑜𝑟 𝑥 < 0
        1 𝑓𝑜𝑟 𝑥 ≥ 0

 

(−∞,∞) 

Randomized 

leaky 

rectified 

linear unit  
 

𝑓(∝, 𝑥) = {
∝ 𝑥 𝑓𝑜𝑟 𝑥 < 0
 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 𝑓′(∝, 𝑥) = {
∝  𝑓𝑜𝑟 𝑥 < 0
 1 𝑓𝑜𝑟 𝑥 ≥ 0

 

(−∞,∞) 

Exponential 

linear unit  

 

𝑓(∝, 𝑥)

= {
∝ (𝑒𝑥 − 1) 𝑓𝑜𝑟 𝑥 < 0
                    𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 

𝑓′(∝, 𝑥)

= {
𝑓(𝑥)+∝  𝑓𝑜𝑟 𝑥 < 0
                    𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 

(−∝,∞) 

SoftPlus 

 

𝑓(𝑥) = 𝐼𝑛(1 + 𝑒𝑥) 𝑓′(𝑥) =
1

1 + 𝑒−𝑥
 

(0,∞) 

Bent identity 

 

𝑓(𝑥) =
√𝑥2 + 1 − 1

2
+ 𝑥 𝑓′(𝑥) =

𝑥

2√𝑥2 + 1
+ 1 

(−∞,∞) 

Soft 

Exponential  

 

𝑓(𝑥)

=

{
 
 

 
 −

𝐼𝑛(1−∝ (𝑥+∝))

∝
 𝑓𝑜𝑟 ∝ < 0

                                    𝑥 𝑓𝑜𝑟 ∝ = 0

                 
𝑒∝𝑥 − 1

∝
+ 𝑓𝑜𝑟 ∝ ≥ 0

 

𝑓′(∝, 𝑥)

= {

1

1−∝ (∝ +𝑥)
 𝑓𝑜𝑟 𝑥 < 0

                    𝑒∝𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 

(−∞,∞) 

Sinusoid 

 

𝑓(𝑥) = sin (𝑥) 𝑓′(𝑥) = cos (𝑥) 

(−1, 1) 

Sinc 

 

𝑓(𝑥) = {

              1 𝑓𝑜𝑟 𝑥 = 0
sin (𝑥)

𝑥
 𝑓𝑜𝑟 𝑥 ≠ 0

 

𝑓′(𝑥)

= {

0  𝑓𝑜𝑟 𝑥 = 0

                    
cos (𝑥)

𝑥
−
sin (𝑥)

𝑒2
 𝑓𝑜𝑟 𝑥 ≠ 0

 

(
≈ −.217234, 1) 

Gaussian 

 

𝑓(𝑥) = 𝑒−𝑥
2
 𝑓′(𝑥) = −2𝑥𝑒−𝑥

2
 

(0, 1) 

https://en.wikipedia.org/wiki/File:Activation_prelu.svg
https://en.wikipedia.org/wiki/File:Activation_prelu.svg
https://en.wikipedia.org/wiki/File:Activation_elu.svg
https://en.wikipedia.org/wiki/File:Activation_softplus.svg
https://en.wikipedia.org/wiki/File:Activation_bent_identity.svg
https://en.wikipedia.org/wiki/File:Activation_soft_exponential.svg
https://en.wikipedia.org/wiki/File:Activation_sinusoid.svg
https://en.wikipedia.org/wiki/File:Activation_sinc.svg
https://en.wikipedia.org/wiki/File:Activation_gaussian.svg
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Parameter Initialization / Optimization: Parameter 

initialization plays a crucial role in training neural 

networks. Initializing model parameters properly can 

significantly impact the convergence speed, 

optimization process, and overall performance of the 

network. Improper initialization can lead to 

convergence issues or suboptimal solutions. 

Techniques like Xavier initialization or He 

initialization can help in achieving better convergence 

and performance. Glorot and Bengio (2010) discuss 

the importance of proper initialization for deep neural 

networks. Their study revealed that using randomly 

initialized weights can lead to slow convergence and 

poor performance. They propose a method for 

initializing weights that helps to improve convergence 

and performance. He et al., (2015) introduce the 

rectifier linear unit (ReLU) activation function. The 

ReLU function is a simple but effective activation 

function that can help to improve the performance of 

deep neural networks. Likewise, Kingma and Ba 

(2014) introduces the Adam optimizer. The Adam 

optimizer is a more efficient version of the stochastic 

gradient descent (SGD) algorithm. The Adam 

optimizer can help to improve the convergence speed 

and performance of deep neural networks. The 

commonly used parameter initialization methods are 

zero initialization, random initialization, 

Xavier/Glorot Initialization, He Initialization, and 

Orthogonal Initialization, respectively. It's important 

to note that the choice of parameter initialization 

method depends on the specific network architecture, 

activation functions used, and the nature of the task. 

Additionally, modern deep learning frameworks often 

provide default initialization methods that have been 

shown to work well in practice (Glorot and Bengio 

2010; He et al., 2015 and Saxe et al., 2013). 

 

Hyperparameter Tuning Optimization: 

Hyperparameter tuning is a crucial step in optimizing 

the performance of machine learning models. 

Hyperparameters are configuration settings that 

determine the behavior and performance of the model, 

such as learning rate, batch size, regularization 

strength, and the number of layers or units in a neural 

network. Effective tuning of these hyperparameters 

can greatly impact the model's performance and 

generalization ability. Bergstra and Bengio (2012) 

introduce the random search algorithm for 

hyperparameter optimization. Their study showed that 

random search can be an effective way to find good 

hyperparameters for a variety of machine learning 

models. Grids and Bergstra (2017), likewise, establish 

the HyperOpt library for hyperparameter optimization. 

The library provides a simple and easy-to-use interface 

for implementing random search and other 

hyperparameter optimization algorithms. However, 

the study of Shahriari et al. (2015) worked with the 

Bayesian optimization algorithm for hyperparameter 

optimization and reveal revealed that the Bayesian 

optimization can be more effective than random search 

for finding good hyperparameters. Literature has 

shown that techniques such as grid search or random 

search are used to explore the hyperparameter space 

and find the best combination for your specific 

hydrologic modeling problem. From literature, 

hyperparameter tuning of artificial neural network for 

hydrological modelling can be achieve in several ways 

such as Manual Search, Grid Search, Genetic 

Algorithms and Automated approaches respectively ( 

Bergstra and Bengio, 2012; Snoek et al., 2012; Real et 

al., 2019; and Hutter et al., 2019). 

 

Regularization Techniques or Optimization: 

Regularization techniques or optimization are 

commonly used in neural network optimization to 

prevent overfitting, improve generalization, and 

enhance the model's performance. These 

regularization techniques can be used individually or 

in combination to improve the performance and 

generalization ability of neural networks. The specific 

choice and combination of regularization techniques 

depend on the characteristics of the problem, the 

network architecture, and the available data. Some 

popular regularization techniques used in neural 

network optimization include: L1 and L2 

Regularization (Weight Decay): L1 and L2 

regularization, also known as weight decay, involve 

adding a penalty term to the loss function during 

training. This penalty term encourages the neural 

network to have smaller weights. L1 regularization 

adds the absolute values of the weights to the loss 

function, promoting sparsity and feature selection. L2 

regularization adds the squared values of the weights, 

which encourages smaller but non-zero weights. The 

regularization term controls the trade-off between 

fitting the training data and keeping the weights small, 

thus preventing over-fitting. 

 

Dropout: Dropout is a widely used regularization 

technique that randomly deactivates a fraction of 

neurons during each training iteration. By doing so, 

dropout prevents co-adaptation of neurons and 

encourages the network to learn more robust and 

generalizable features. Dropout effectively reduces 

over-fitting by introducing noise and increasing the 

diversity of the network's activations.  

 

Early Stopping: Early stopping is a simple yet 

effective regularization technique. It involves 

monitoring the model's performance on a validation 

set during training and stopping the training process 

when the validation loss starts to increase. By stopping 
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the training before overfitting occurs, early stopping 

prevents the model from memorizing the training data 

and improves its generalization ability.  

 

Data Augmentation: Data augmentation is a technique 

where additional training data is generated by applying 

various transformations to the existing training 

samples, such as rotations, translations, flips, or 

distortions. By increasing the diversity of the training 

data, data augmentation helps the neural network 

generalize better and reduces overfitting. 

 

Batch Normalization: Batch normalization is a 

technique that normalizes the inputs to each layer of 

the neural network using the mean and variance of the 

current mini-batch during training. It helps in 

stabilizing the training process, reducing the internal 

covariate shift, and accelerating the convergence of 

the network. Batch normalization acts as a form of 

regularization by introducing noise in the computation 

of each layer, thereby reducing overfitting. 

 

Dropout Regularization: In addition to the dropout 

technique mentioned earlier, dropout regularization 

can be applied by adding dropout layers to the network 

architecture. Dropout layers randomly deactivate a 

fraction of the neurons during training, forcing the 

network to learn more robust features and reducing 

overfitting. 

 

Cross-Validation Optimization: When optimizing 

neural networks, cross-validation methods are 

commonly used to assess and improve the model's 

performance. Cross-validation involves dividing the 

available dataset into multiple subsets and using them 

for training and evaluation purposes. Some commonly 

used cross-validation methods for neural network 

optimization include:  

 

k-Fold Cross-Validation: In k-fold cross-validation, 

the dataset is divided into k equally-sized subsets or 

folds. The neural network model is trained and 

evaluated k times, each time using a different fold as 

the validation set and the remaining folds as the 

training set. The results from each iteration are 

averaged to obtain an overall assessment of the 

model's performance. 

 

Stratified k-Fold Cross-Validation: Stratified k-fold 

cross-validation is useful when dealing with 

imbalanced datasets, where the distribution of classes 

is uneven. It ensures that each fold maintains the same 

class distribution as the original dataset, thus 

preserving the representative nature of the subsets 

used for training and evaluation. Leave-One-Out 

Cross-Validation (LOOCV): LOOCV is a special case 

of k-fold cross-validation where k is equal to the 

number of samples in the dataset. In each iteration, the 

model is trained on all but one sample and evaluated 

on the left-out sample. This process is repeated for 

each sample in the dataset. LOOCV provides an 

unbiased estimate of the model's performance but can 

be computationally expensive for large datasets. 

 

Holdout Validation: Holdout validation involves 

splitting the dataset into two sets: a training set and a 

validation set. The model is trained on the training set 

and evaluated on the validation set. This method is 

simple to implement but may lead to high variance in 

the performance estimation due to the limited amount 

of data used for validation. 

 

Repeated Random Subsampling Validation: In this 

method, the dataset is randomly divided into training 

and validation sets multiple times. The model is 

trained on the training set and evaluated on the 

validation set in each iteration. The results are then 

averaged to obtain an overall performance estimate. 

Repeated random subsampling validation is useful 

when computational resources are limited or when the 

dataset is large. These cross-validation methods help 

assess the performance of the neural network model 

and provide insights into its generalization 

capabilities. They also assist in tuning 

hyperparameters, such as learning rate, number of 

hidden layers, and activation functions, to optimize the 

model's performance. By evaluating the model on 

different subsets of data, cross-validation helps 

mitigate overfitting and provides a more reliable 

estimate of the model's performance on unseen data. 

 

Transfer Learning Optimization: Transfer learning is 

a powerful technique in neural network optimization 

that involves leveraging knowledge and learned 

representations from one task or domain to improve 

performance on another related task or domain. Some 

commonly used transfer learning methods in neural 

network optimization include: 

 

Pre-trained models: Pre-trained models are neural 

network models that have been trained on a large 

dataset for a specific task, typically in a different 

domain. Instead of training a model from scratch, 

transfer learning involves using the pre-trained model 

as a starting point and fine-tuning it on a new dataset 

or task. This approach is particularly useful when the 

new dataset is small or when the new task is related to 

the original task the model was trained on. Feature 

extraction: In this transfer learning approach, the pre-

trained model is used as a fixed feature extractor. The 

early layers of the pre-trained model, which capture 

low-level and generic features, are retained while the 
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later layers are replaced with new layers specific to the 

target task. The pre-trained model's learned 

representations serve as informative features for the 

new task, and only the newly added layers are trained 

on the task-specific data. Fine-tuning: Fine-tuning is a 

transfer learning technique that involves starting with 

a pre-trained model and updating the weights of some 

or all of its layers using the new dataset. Fine-tuning 

allows the model to adapt to the specific 

characteristics of the new task while retaining the 

valuable knowledge learned from the original task. 

The extent of fine-tuning can vary, from freezing a 

subset of layers and updating the remaining layers to 

updating all layers of the pre-trained model. 

 

Domain adaptation: Domain adaptation is a transfer 

learning method that addresses the problem of 

differences between the source domain (where the pre-

trained model was trained) and the target domain 

(where the model will be applied). It involves reducing 

the domain shift by aligning the representations of the 

source and target domains. Techniques such as 

adversarial training, which minimizes the discrepancy 

between domains, or instance reweighting, which 

assigns higher weights to samples from the target 

domain, can be used for domain adaptation. 

Multi-task learning: Multi-task learning is a transfer 

learning approach where a single neural network 

model is trained on multiple related tasks 

simultaneously. The shared layers of the network learn 

to extract common representations across tasks, while 

task-specific layers capture task-specific information. 

By jointly learning multiple tasks, the model can 

benefit from the shared knowledge and improve the 

performance on each individual task. These transfer 

learning methods help to address challenges such as 

limited data availability, computational resources, and 

the need for task-specific optimization. By leveraging 

knowledge from pre-trained models or related tasks, 

transfer learning enables more efficient and effective 

neural network optimization, leading to improved 

performance on new tasks or domains. 

 

Conclusion: ANNs offer a wide range of transfer 

functions and each of the transfer function has its 

strengths and limitations. The contribution of artificial 

neural network transfer function optimization to 

knowledge is significant in the field of hydrological 

modeling and beyond because it improved 

hydrological modeling accuracy, enhanced 

generalization capability, improved model flexibility, 

and interpretability and insights. By optimizing 

artificial neural network transfer functions, 

hydrological models can better simulate and predict 

water-related processes.  
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