
a

*Corresponding Author Email: ecoagricultiral@gmail.com

PRINT ISSN 1119-8362

Electronic ISSN 2659-1502

J. Appl. Sci. Environ. Manage.

Vol. 27 (8) 1617-1626 August 2023

Full-text Available Online at

https://www.ajol.info/index.php/jasem

http://www.bioline.org.br/ja

Optimization of Artificial Neural Network Transfer Function for Hydrological

Modelling: A Review

1ORJI, FN; 1AHANEKU, IE; 1NDUKWU, MC; 1UGWU, E; *2AWU, JI;

3JOSEPH, IU;
4HELEN, I

1Michael Okpara University of Agriculture Umudike, Abia State, Nigeria

*2National Centre for Agricultural Mechanization, Ilorin, Kwara State, Nieria
3Nnamdi Azikiwe University Awka, Anambra State, Nigeria

4Federal Polytechnic, Oko, Anambra State, Nigeria

*Corresponding Author Email: ecoagricultiral@gmail.com

ABSTRACT: Hydrological modeling is crucial for understanding and predicting water-related processes. Artificial

Neural Networks (ANN) have emerged as powerful tools for this purpose, utilizing the structure and functions of the
biological brain to model complex patterns and forecast hydrological issues. Hence, this study reviews the optimization

of artificial neural networks for hydrological modeling. Data obtained reveals that the choice of transfer function

significantly impacts the performance of hydrological models, and optimizing it can improve accuracy, precision, and
reliability. More so, an optimized transfer function provides interpretability, aligning with the physical understanding

of the hydrological system and making the model outputs more meaningful. By optimizing artificial neural network

transfer functions and employing other optimization strategies, hydrological models can better simulate and predict
water-related processes. This advancement can lead to more effective water resource management and decision-

making.

DOI: https://dx.doi.org/10.4314/jasem.v27i8.2

Open Access Policy: All articles published by JASEM are open-access articles under PKP powered by AJOL.
The articles are made immediately available worldwide after publication. No special permission is required to

reuse all or part of the article published by JASEM, including plates, figures and tables.

Copyright Policy: © 2023 by the Authors. This article is an open-access article distributed under the terms and

conditions of the Creative Commons Attribution 4.0 International (CC-BY- 4.0) license. Any part of the

article may be reused without permission provided that the original article is cited.

Cite this paper as: ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

(2023). Optimization of Artificial Neural Network Transfer Function for Hydrological Modelling: A Review. J.

Appl. Sci. Environ. Manage. 27 (8) 1617-1626

Dates: Received: 12 June 2023; Revised: 21 July 2023; Accepted: 04 August 2023 Published: 30 August 2023

Keywords: artificial neural network; transfer function; optimization; modelling

Hydrological modeling plays a crucial role in

understanding and predicting water-related processes.

Artificial Neural Networks (ANN) is a data modelling

tool that is based on the structure and functions of

biological brain to model complicated patterns and

forecast issues. In recent years, the field of system

investigation has experienced a resurgence with the

adoption of artificial intelligence techniques such as

Artificial Neural Networks (ANN) in hydrological

modeling (Minns and Hall, 1996). Artificial neural

networks possess distinct features that set them apart

from other models. They exhibit flexibility in handling

data and can effectively solve problems where

obtaining primary data is nearly impossible (Ouenes,

2000; Zio, 1997). They can also handle the added

complexity of groundwater chemistry (Gumrah et al.,

2000) and address highly nonlinear and

spatially/temporally variant processes (Islam and

Kothari, 2000). Furthermore, artificial neural

networks can handle incomplete, noisy, and

ambiguous data (Maier and Dandy, 1998). They are

often more cost-effective and simpler to implement in

terms of data requirements and model structure

compared to physically based models (Campolo et al.,

1999). ANNs are well-suited for dynamic problems,

efficiently store information within the trained model,

and excel at time series pattern matching

(Thirumalaiah and Deo, 1998). Hence, artificial

neural networks (ANNs) have emerged as powerful

tools for hydrological modeling due to their ability to

mailto:ecoagricultiral@gmail.com
https://mouau.edu.ng/
https://mouau.edu.ng/
mailto:ecoagricultiral@gmail.com
https://dx.doi.org/10.4314/jasem.v27i8.2
https://www.ajol.info/index.php/jasem
https://pkp.sfu.ca/ojs/
https://www.ajol.info/index.php/ajol
https://www.ajol.info/index.php/jasem
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

Optimization of Artificial Neural Network Transfer Function….. 1618

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

capture complex nonlinear relationships. However, the

performance of ANNs depends on their optimization,

which involves selecting appropriate network

architectures and optimizing model parameters. The

objective of this study is to review the artificial neural

networks optimization for hydrological modelling.

Artificial neural network transfer function play a vital

role on the model network output. The transfer

function is a fundamental component of an ANN that

determines the output of each neuron based on the

weighted sum of inputs. Choosing an appropriate

transfer function is critical for achieving accurate and

reliable hydrological modeling results. Therefore, the

optimization of the transfer function for hydrological

modeling can be justified for several reasons.

Hydrological systems often exhibit non-linear

behaviors due to the complex interactions between

various hydrological processes such as precipitation,

evapotranspiration, infiltration, and runoff (Sivakumar

et al., 2007). ANNs with appropriate transfer functions

can effectively capture and model these non-linear

relationships, enabling more accurate simulations and

predictions (ASCE, 2000). Likewise, an optimized

transfer function enhances the generalization

capability of the hydrological model. Generalization

refers to the ability of the model to accurately predict

outcomes for unseen data. By selecting an appropriate

transfer function, overfitting (when a model becomes

too specialized for the training data) can be minimized,

and the model can better capture the underlying

patterns and dynamics of the hydrological system (Zhu

et al, 2000). However, ANNs offer a wide range of

transfer functions to choose from, including sigmoid,

hyperbolic tangent, radial basis function, and rectified

linear unit (ReLU) (Haykin, 1999). Each transfer

function has its strengths and limitations, and the

optimization process helps identify the most suitable

transfer function for a specific hydrological modeling

task (Moghaddam and Sorooshian, 2001). This

flexibility allows for a better representation of the

underlying hydrological processes (Duan et al., 1998).

Moghaddam and Sorooshian (2001), in their study on

a review of artificial neural networks in hydrology,

reveal that the choice of the transfer function can

significantly impact the performance of the

hydrological model. By optimizing the transfer

function, the model's accuracy, precision, and

reliability can be improved. This optimization process

involves fine-tuning the parameters of the transfer

function or exploring different transfer functions to

find the optimal configuration that minimizes errors

and maximizes model performance. Some transfer

functions have inherent interpretability, which can

provide insights into the hydrological processes being

modelled (Moghaddam and Sorooshian (2001). For

example, sigmoid functions can represent the

saturation and attenuation behaviour of certain

hydrological phenomena. By optimizing the transfer

function, it is possible to select a function that aligns

with the physical understanding of the hydrological

system, making the model outputs more interpretable.

Hence, the optimization of the artificial neural

network transfer function for hydrological modelling

holds significant potential to advance the accuracy of

hydrological models, enhance our understanding of

hydrological processes, capture non-linear behaviours,

improve model flexibility and generalization, enhance

model performance, and provide interpretability. By

selecting the most suitable transfer function,

hydrological models can better simulate and predict

various water-related processes, leading to more

effective water resource management and decision-

making.

ANNs Optimization Strategies: When optimizing

artificial neural networks (ANNs) for hydrologic

modelling, there are several approaches that are

considered. ANNs optimization plays a crucial role in

capturing the non-linear relationships between input

variables and output variables in ANNs. Here are some

optimization strategies that can be employed for

ANNs hydrological modelling.

Network Architecture Optimization: Network

architecture optimization is a critical process in the

field of deep learning, aimed at designing and refining

the structure of neural networks to improve their

performance and efficiency. The goal is to create

models that can effectively learn and extract

meaningful information from complex data. The study

of Goodfellow et al. (2016), reveals that choosing an

appropriate model architecture is the first step to

having good prediction. This involves selecting from

a wide range of neural network types, such as

convolutional neural networks (CNNs) for image data,

recurrent neural networks (RNNs) for sequential data,

or transformer models for natural language processing

tasks. Once the type of model is determined, the next

step is to design the layers of the network. This

includes deciding the number of layers, the type of

activation functions, and the connections between

layers (e.g., fully connected, convolutional, etc.).

Careful consideration is given to strike a balance

between model complexity and expressiveness. The

choice of network architecture significantly impacts

the performance of hydrological models Moghaddam

and Sorooshian (2017). Several studies have focused

on optimizing the architecture of ANNs for

hydrological modelling, including the number of

hidden layers, the number of neurons per layer, and the

activation functions used. Example of an artificial

neural network architecture is shown in Figure 1

Optimization of Artificial Neural Network Transfer Function….. 1619

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

Fig 1: Schematic diagram of Artificial Neural Network Architecture

Transfer Function Optimization: Transfer function

selection is another crucial aspect optimizing

designing neural networks. Transfer function

introduces non-linearity to the network, enabling it to

learn complex relationships between inputs and

outputs. The choice of Transfer function can have a

significant impact on the model's learning capacity,

convergence speed, and ability to handle different

types of data.

The commonly used Transfer function are:

Sigmoid Function: The sigmoid transfer function, also

known as the logistic function, is a mathematical

function commonly used in machine learning and

neural networks. It maps an input value to a value

between 0 and 1, which can be interpreted as a

probability.

The sigmoid function has an S-shaped curve and is

symmetric around the point (0, 0.5). When the input

value x is positive, the output of the sigmoid function

approaches 1. As x becomes increasingly negative, the

output approaches 0.

The sigmoid function is useful for tasks such as binary

classification, where the goal is to predict one of two

classes. The output of the sigmoid function can be

interpreted as the probability of belonging to one of

the classes. For example, if the output is 0.8, it can be

interpreted as an 80% probability of belonging to one

class and a 20% probability of belonging to the other

class. The sigmoidal transfer function is expressed as

shown in equation 1.

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (1)

Where: σ(x) represents the output value of the sigmoid

function for the input value x; e is the base of the

natural logarithm, approximately equal to 2.71828.

The advantage of the sigmoid transfer function is that

it is smooth, interpretable as a probability, good for

binary classification tasks but the disadvantage is that

it saturates at high or low values, prone to vanishing

gradients, not suitable for deep networks (Rumelhart

et al., 1986).

Rectified Linear Unit (ReLU): The Rectified Linear

Unit (ReLU) is a commonly used activation function

in deep learning neural networks. It is a piecewise

linear function that returns zero for negative input

values and the input value itself for non-negative

values.

Mathematically, the ReLU function is expressed

shown in equation 2:

𝐹(𝑥) = 𝑀𝑎𝑥 (0,∞) (2)

Where x is the input to the function and f(x) is the

output. If the input x is negative, the ReLU function

returns 0. Otherwise, it returns the input value x.

The ReLU function is preferred over other activation

functions like sigmoid and hyperbolic tangent because

it helps alleviate the vanishing gradient problem,

which can occur during the training of deep neural

networks. The vanishing gradient problem refers to the

issue where the gradients become extremely small as

they propagate backward through the network, leading

to slow convergence or even the complete inability of

the network to learn.

By setting negative inputs to zero, the ReLU function

introduces sparsity in the network, allowing only a

subset of neurons to be activated. This sparsity helps

in better representation learning and can contribute to

improved network performance.

Optimization of Artificial Neural Network Transfer Function….. 1620

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

The ReLU function is simple to compute and has a

computationally efficient gradient computation.

However, one drawback of ReLU is that it can cause

dead neurons (also known as "dying ReLU") where

neurons become non-responsive to any input and

always output zero. This can happen if the weights

associated with a neuron are updated in such a way that

the neuron never activates during training. Several

variations of ReLU, such as Leaky ReLU and

Parametric ReLU, have been proposed to address this

issue.

The Rectified Linear Unit advantages are that is

Simple, computationally efficient, overcomes the

vanishing gradient problem, effective for deep

networks whiles its disadvantages are is not centered

around zero (can cause dead neurons), and may lead to

a "dying ReLU" problem (Nair and Hinton, 2010).

Hyperbolic Tangent (Tanh): The hyperbolic tangent

(tanh) transfer function is a commonly used activation

function in neural networks. It is a non-linear function

that squashes the input values between -1 and 1,

making it useful for normalizing and scaling data.

The mathematical expression for the hyperbolic

tangent function given in equation 3:

𝑇𝑎𝑛ℎ(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥) (3)

Where e is the base of the natural logarithm

(approximately 2.71828) and x is the input value. The

tanh function has the range, symmetry and non-linear

properties, respectively. The range property ensures

that the output of the tanh function is bounded between

-1 and 1. As x approaches positive infinity, tanh(x)

approaches 1, and as x approaches negative infinity,

tanh(x) approaches -1. However, the symmetry

property shows that the tanh function is an odd

function, which means tanh(-x) = -tanh(x). This

property is useful in certain contexts, such as when

dealing with balanced positive and negative inputs.

The non-linear property makes the tanh function to be

non-linear, enabling neural networks to learn complex

relationships between inputs and outputs. The tanh

function is commonly used in the hidden layers of

neural networks, as it helps introduce non-linearities

and capture more complex patterns in the data. It can

also be used as an alternative to the sigmoid function

when the output range of -1 to 1 is desired.

The advantages of the tanh function are; it is smooth,

zero-centered, retains non-linearity, suitable for

recurrent neural networks (RNNs), however, the

disadvantages is similar to the sigmoid function,

suffers from vanishing gradients (Bengio et al., 1994).

Leaky ReLU: The Leaky ReLU (Rectified Linear Unit)

is a variant of the ReLU activation function commonly

used in neural networks. It addresses one of the

drawbacks of the traditional ReLU function, which

causes certain neurons to become "dead" and

unresponsive if their input falls below zero.

The Leaky ReLU function is expressed using equation

4:

𝑓(𝑥) = max(𝛼𝑥, 𝑥) 4

Where x is the input to the function, and a is a small

constant typically set to a small positive value (e.g.,

0.01 or 0.001), α is a small constant (<1). When x is

positive, the function behaves like the standard ReLU

and returns x. However, when x is negative, it returns

a scaled version of x.

The purpose of introducing the small slope for

negative inputs is to allow the flow of a small gradient,

preventing neurons from completely "dying" during

training. This ensures that even if a neuron's output is

negative, there is still a small gradient that can

propagate backward and update the weights during

backpropagation.

The Leaky ReLU function can be used as an activation

function in neural networks, typically in the hidden

layers. It has been observed to alleviate the dying

ReLU problem and improve the learning capability of

deep neural networks, especially in scenarios where

there is a high proportion of negative inputs. Its

advantages are it overcomes the "dying ReLU"

problem, prevents dead neurons, maintains non-

linearity while the disadvantages is that it requires

tuning the α parameter (Maas et al., 2013). More so,

there are many other activation functions available,

such as softmax, exponential linear units (ELUs), and

scaled exponential linear units (SELUs), each with

their own advantages and use cases (Table 1). The

choice of activation function depends on the specific

task, network architecture, and experimental results.

Experiment with different activation functions to

identify the one that best represents the underlying

hydrologic processes.

Optimization of Artificial Neural Network Transfer Function….. 1621

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

Table 1: Comparisons of the properties of some transfer functions (Source: Bergstra et al., 2009).

Name Plot Equation Derivatives with respect to x Range

Identity

𝑓(𝑥) = 𝑥 𝑓′(𝑥) = 1

(−∞,∞)

Binary step

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 𝑓′(𝑥) = {
0 𝑓𝑜𝑟 𝑥 ≠ 0
? 𝑓𝑜𝑟 𝑥 = 0

(0, 1)

Logistic or

sigmoid

(a.k.a. Soft

step)

𝑓 (𝑥) =
1

1 + 𝑒−𝑥
 𝑓′(𝑥)𝑓(𝑥)(1 − 𝑓(𝑥))

(0, 1)

Tanh

𝑓(𝑥) = tanh(𝑥) =
2

1 + 𝑒−2𝑥
− 1 𝑓′(𝑥) = 1 − 𝑓(𝑥2)

(−1, 1)

ArcTan

𝑓(𝑥) = 𝑡𝑎𝑛−1(𝑥) 𝑓′(𝑥) =
1

𝑥2 + 1

(−
𝜋

2
,
𝜋

2
)

Softsign

𝑓(𝑥) =
𝑥

1 + |𝑥|

𝑓′(𝑥) =
1

(1 + |𝑥|)2

(−1, 1)

Rectified

linear unit

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 𝑓′(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

(0,∞)

Leaky

rectified

linear unit

𝑓(𝑥) = {
0.01 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 𝑓′(𝑥) = {
0.01 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

(−∞,∞)

https://en.wikipedia.org/wiki/File:Activation_identity.svg
https://en.wikipedia.org/wiki/File:Activation_binary_step.svg
https://en.wikipedia.org/wiki/File:Activation_logistic.svg
https://en.wikipedia.org/wiki/File:Activation_tanh.svg
https://en.wikipedia.org/wiki/File:Activation_arctan.svg
https://en.wikipedia.org/wiki/File:Activation_softsign.png
https://en.wikipedia.org/wiki/File:Activation_rectified_linear.svg
https://en.wikipedia.org/wiki/File:Activation_prelu.svg

Optimization of Artificial Neural Network Transfer Function….. 1622

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

Parametric

rectified

linear unit

𝑓(∝, 𝑥) = {
∝ 𝑥 𝑓𝑜𝑟 𝑥 < 0
 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓′(∝, 𝑥)

= {
∝ 𝑓𝑜𝑟 𝑥 < 0
 1 𝑓𝑜𝑟 𝑥 ≥ 0

(−∞,∞)

Randomized

leaky

rectified

linear unit

𝑓(∝, 𝑥) = {
∝ 𝑥 𝑓𝑜𝑟 𝑥 < 0
 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 𝑓′(∝, 𝑥) = {
∝ 𝑓𝑜𝑟 𝑥 < 0
 1 𝑓𝑜𝑟 𝑥 ≥ 0

(−∞,∞)

Exponential

linear unit

𝑓(∝, 𝑥)

= {
∝ (𝑒𝑥 − 1) 𝑓𝑜𝑟 𝑥 < 0
 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓′(∝, 𝑥)

= {
𝑓(𝑥)+∝ 𝑓𝑜𝑟 𝑥 < 0
 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

(−∝,∞)

SoftPlus

𝑓(𝑥) = 𝐼𝑛(1 + 𝑒𝑥) 𝑓′(𝑥) =
1

1 + 𝑒−𝑥

(0,∞)

Bent identity

𝑓(𝑥) =
√𝑥2 + 1 − 1

2
+ 𝑥 𝑓′(𝑥) =

𝑥

2√𝑥2 + 1
+ 1

(−∞,∞)

Soft

Exponential

𝑓(𝑥)

=

{

 −

𝐼𝑛(1−∝ (𝑥+∝))

∝
 𝑓𝑜𝑟 ∝ < 0

 𝑥 𝑓𝑜𝑟 ∝ = 0

𝑒∝𝑥 − 1

∝
+ 𝑓𝑜𝑟 ∝ ≥ 0

𝑓′(∝, 𝑥)

= {

1

1−∝ (∝ +𝑥)
 𝑓𝑜𝑟 𝑥 < 0

 𝑒∝𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

(−∞,∞)

Sinusoid

𝑓(𝑥) = sin (𝑥) 𝑓′(𝑥) = cos (𝑥)

(−1, 1)

Sinc

𝑓(𝑥) = {

 1 𝑓𝑜𝑟 𝑥 = 0
sin (𝑥)

𝑥
 𝑓𝑜𝑟 𝑥 ≠ 0

𝑓′(𝑥)

= {

0 𝑓𝑜𝑟 𝑥 = 0

cos (𝑥)

𝑥
−
sin (𝑥)

𝑒2
 𝑓𝑜𝑟 𝑥 ≠ 0

(
≈ −.217234, 1)

Gaussian

𝑓(𝑥) = 𝑒−𝑥
2
 𝑓′(𝑥) = −2𝑥𝑒−𝑥

2

(0, 1)

https://en.wikipedia.org/wiki/File:Activation_prelu.svg
https://en.wikipedia.org/wiki/File:Activation_prelu.svg
https://en.wikipedia.org/wiki/File:Activation_elu.svg
https://en.wikipedia.org/wiki/File:Activation_softplus.svg
https://en.wikipedia.org/wiki/File:Activation_bent_identity.svg
https://en.wikipedia.org/wiki/File:Activation_soft_exponential.svg
https://en.wikipedia.org/wiki/File:Activation_sinusoid.svg
https://en.wikipedia.org/wiki/File:Activation_sinc.svg
https://en.wikipedia.org/wiki/File:Activation_gaussian.svg

Optimization of Artificial Neural Network Transfer Function….. 1623

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

Parameter Initialization / Optimization: Parameter

initialization plays a crucial role in training neural

networks. Initializing model parameters properly can

significantly impact the convergence speed,

optimization process, and overall performance of the

network. Improper initialization can lead to

convergence issues or suboptimal solutions.

Techniques like Xavier initialization or He

initialization can help in achieving better convergence

and performance. Glorot and Bengio (2010) discuss

the importance of proper initialization for deep neural

networks. Their study revealed that using randomly

initialized weights can lead to slow convergence and

poor performance. They propose a method for

initializing weights that helps to improve convergence

and performance. He et al., (2015) introduce the

rectifier linear unit (ReLU) activation function. The

ReLU function is a simple but effective activation

function that can help to improve the performance of

deep neural networks. Likewise, Kingma and Ba

(2014) introduces the Adam optimizer. The Adam

optimizer is a more efficient version of the stochastic

gradient descent (SGD) algorithm. The Adam

optimizer can help to improve the convergence speed

and performance of deep neural networks. The

commonly used parameter initialization methods are

zero initialization, random initialization,

Xavier/Glorot Initialization, He Initialization, and

Orthogonal Initialization, respectively. It's important

to note that the choice of parameter initialization

method depends on the specific network architecture,

activation functions used, and the nature of the task.

Additionally, modern deep learning frameworks often

provide default initialization methods that have been

shown to work well in practice (Glorot and Bengio

2010; He et al., 2015 and Saxe et al., 2013).

Hyperparameter Tuning Optimization:

Hyperparameter tuning is a crucial step in optimizing

the performance of machine learning models.

Hyperparameters are configuration settings that

determine the behavior and performance of the model,

such as learning rate, batch size, regularization

strength, and the number of layers or units in a neural

network. Effective tuning of these hyperparameters

can greatly impact the model's performance and

generalization ability. Bergstra and Bengio (2012)

introduce the random search algorithm for

hyperparameter optimization. Their study showed that

random search can be an effective way to find good

hyperparameters for a variety of machine learning

models. Grids and Bergstra (2017), likewise, establish

the HyperOpt library for hyperparameter optimization.

The library provides a simple and easy-to-use interface

for implementing random search and other

hyperparameter optimization algorithms. However,

the study of Shahriari et al. (2015) worked with the

Bayesian optimization algorithm for hyperparameter

optimization and reveal revealed that the Bayesian

optimization can be more effective than random search

for finding good hyperparameters. Literature has

shown that techniques such as grid search or random

search are used to explore the hyperparameter space

and find the best combination for your specific

hydrologic modeling problem. From literature,

hyperparameter tuning of artificial neural network for

hydrological modelling can be achieve in several ways

such as Manual Search, Grid Search, Genetic

Algorithms and Automated approaches respectively (

Bergstra and Bengio, 2012; Snoek et al., 2012; Real et

al., 2019; and Hutter et al., 2019).

Regularization Techniques or Optimization:

Regularization techniques or optimization are

commonly used in neural network optimization to

prevent overfitting, improve generalization, and

enhance the model's performance. These

regularization techniques can be used individually or

in combination to improve the performance and

generalization ability of neural networks. The specific

choice and combination of regularization techniques

depend on the characteristics of the problem, the

network architecture, and the available data. Some

popular regularization techniques used in neural

network optimization include: L1 and L2

Regularization (Weight Decay): L1 and L2

regularization, also known as weight decay, involve

adding a penalty term to the loss function during

training. This penalty term encourages the neural

network to have smaller weights. L1 regularization

adds the absolute values of the weights to the loss

function, promoting sparsity and feature selection. L2

regularization adds the squared values of the weights,

which encourages smaller but non-zero weights. The

regularization term controls the trade-off between

fitting the training data and keeping the weights small,

thus preventing over-fitting.

Dropout: Dropout is a widely used regularization

technique that randomly deactivates a fraction of

neurons during each training iteration. By doing so,

dropout prevents co-adaptation of neurons and

encourages the network to learn more robust and

generalizable features. Dropout effectively reduces

over-fitting by introducing noise and increasing the

diversity of the network's activations.

Early Stopping: Early stopping is a simple yet

effective regularization technique. It involves

monitoring the model's performance on a validation

set during training and stopping the training process

when the validation loss starts to increase. By stopping

Optimization of Artificial Neural Network Transfer Function….. 1624

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

the training before overfitting occurs, early stopping

prevents the model from memorizing the training data

and improves its generalization ability.

Data Augmentation: Data augmentation is a technique

where additional training data is generated by applying

various transformations to the existing training

samples, such as rotations, translations, flips, or

distortions. By increasing the diversity of the training

data, data augmentation helps the neural network

generalize better and reduces overfitting.

Batch Normalization: Batch normalization is a

technique that normalizes the inputs to each layer of

the neural network using the mean and variance of the

current mini-batch during training. It helps in

stabilizing the training process, reducing the internal

covariate shift, and accelerating the convergence of

the network. Batch normalization acts as a form of

regularization by introducing noise in the computation

of each layer, thereby reducing overfitting.

Dropout Regularization: In addition to the dropout

technique mentioned earlier, dropout regularization

can be applied by adding dropout layers to the network

architecture. Dropout layers randomly deactivate a

fraction of the neurons during training, forcing the

network to learn more robust features and reducing

overfitting.

Cross-Validation Optimization: When optimizing

neural networks, cross-validation methods are

commonly used to assess and improve the model's

performance. Cross-validation involves dividing the

available dataset into multiple subsets and using them

for training and evaluation purposes. Some commonly

used cross-validation methods for neural network

optimization include:

k-Fold Cross-Validation: In k-fold cross-validation,

the dataset is divided into k equally-sized subsets or

folds. The neural network model is trained and

evaluated k times, each time using a different fold as

the validation set and the remaining folds as the

training set. The results from each iteration are

averaged to obtain an overall assessment of the

model's performance.

Stratified k-Fold Cross-Validation: Stratified k-fold

cross-validation is useful when dealing with

imbalanced datasets, where the distribution of classes

is uneven. It ensures that each fold maintains the same

class distribution as the original dataset, thus

preserving the representative nature of the subsets

used for training and evaluation. Leave-One-Out

Cross-Validation (LOOCV): LOOCV is a special case

of k-fold cross-validation where k is equal to the

number of samples in the dataset. In each iteration, the

model is trained on all but one sample and evaluated

on the left-out sample. This process is repeated for

each sample in the dataset. LOOCV provides an

unbiased estimate of the model's performance but can

be computationally expensive for large datasets.

Holdout Validation: Holdout validation involves

splitting the dataset into two sets: a training set and a

validation set. The model is trained on the training set

and evaluated on the validation set. This method is

simple to implement but may lead to high variance in

the performance estimation due to the limited amount

of data used for validation.

Repeated Random Subsampling Validation: In this

method, the dataset is randomly divided into training

and validation sets multiple times. The model is

trained on the training set and evaluated on the

validation set in each iteration. The results are then

averaged to obtain an overall performance estimate.

Repeated random subsampling validation is useful

when computational resources are limited or when the

dataset is large. These cross-validation methods help

assess the performance of the neural network model

and provide insights into its generalization

capabilities. They also assist in tuning

hyperparameters, such as learning rate, number of

hidden layers, and activation functions, to optimize the

model's performance. By evaluating the model on

different subsets of data, cross-validation helps

mitigate overfitting and provides a more reliable

estimate of the model's performance on unseen data.

Transfer Learning Optimization: Transfer learning is

a powerful technique in neural network optimization

that involves leveraging knowledge and learned

representations from one task or domain to improve

performance on another related task or domain. Some

commonly used transfer learning methods in neural

network optimization include:

Pre-trained models: Pre-trained models are neural

network models that have been trained on a large

dataset for a specific task, typically in a different

domain. Instead of training a model from scratch,

transfer learning involves using the pre-trained model

as a starting point and fine-tuning it on a new dataset

or task. This approach is particularly useful when the

new dataset is small or when the new task is related to

the original task the model was trained on. Feature

extraction: In this transfer learning approach, the pre-

trained model is used as a fixed feature extractor. The

early layers of the pre-trained model, which capture

low-level and generic features, are retained while the

Optimization of Artificial Neural Network Transfer Function….. 1625

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

later layers are replaced with new layers specific to the

target task. The pre-trained model's learned

representations serve as informative features for the

new task, and only the newly added layers are trained

on the task-specific data. Fine-tuning: Fine-tuning is a

transfer learning technique that involves starting with

a pre-trained model and updating the weights of some

or all of its layers using the new dataset. Fine-tuning

allows the model to adapt to the specific

characteristics of the new task while retaining the

valuable knowledge learned from the original task.

The extent of fine-tuning can vary, from freezing a

subset of layers and updating the remaining layers to

updating all layers of the pre-trained model.

Domain adaptation: Domain adaptation is a transfer

learning method that addresses the problem of

differences between the source domain (where the pre-

trained model was trained) and the target domain

(where the model will be applied). It involves reducing

the domain shift by aligning the representations of the

source and target domains. Techniques such as

adversarial training, which minimizes the discrepancy

between domains, or instance reweighting, which

assigns higher weights to samples from the target

domain, can be used for domain adaptation.

Multi-task learning: Multi-task learning is a transfer

learning approach where a single neural network

model is trained on multiple related tasks

simultaneously. The shared layers of the network learn

to extract common representations across tasks, while

task-specific layers capture task-specific information.

By jointly learning multiple tasks, the model can

benefit from the shared knowledge and improve the

performance on each individual task. These transfer

learning methods help to address challenges such as

limited data availability, computational resources, and

the need for task-specific optimization. By leveraging

knowledge from pre-trained models or related tasks,

transfer learning enables more efficient and effective

neural network optimization, leading to improved

performance on new tasks or domains.

Conclusion: ANNs offer a wide range of transfer

functions and each of the transfer function has its

strengths and limitations. The contribution of artificial

neural network transfer function optimization to

knowledge is significant in the field of hydrological

modeling and beyond because it improved

hydrological modeling accuracy, enhanced

generalization capability, improved model flexibility,

and interpretability and insights. By optimizing

artificial neural network transfer functions,

hydrological models can better simulate and predict

water-related processes.

REFERENCES
ASCE Task Committee on Artificial Neural Networks

in Water Resources Engineering. (2000). Artificial

neural networks in water resources engineering. J.

Hydraulic Engineer. 126(3), 289-309.

Bengio, Y., Simard, P., and Frasconi, P. (1994).

Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural

Networks, 5(2), 157-166.

Bergstra, J., and Bengio, Y. (2012). Random search

for hyper-parameter optimization. J. Machine

Learning Res. 13(Feb), 281-305.

Campolo, M., Andreussi, P. and A. Soldati (1999).

River flood forecasting with a neural network

model. Wat. Resources Res 35, 1191–97.

Duan, Q., Sorooshian, S., and Gupta, V. K. (1998).

Artificial neural networks for simulating the

rainfall-runoff process. J. Hydrol. 205(1-4), 407-

429.

Glorot, X., and Bengio, Y. (2010). Understanding the

difficulty of training deep feed forward neural

networks. In Proceedings of the 13th

international conference on artificial intelligence

and statistics (pp. 249-256).

Goodfellow, I., Bengio, Y., and Courville, A. (2016).

Deep Learning. MIT Press.

Grids, D., and Bergstra, J. (2017). HyperOpt: A

Python library for hyperparameter optimization. J.

Machine Learning Res. 18(1), 803-806.

Gumrah, F., Oz, B., Guler, B. and S. Evin (2000). The

application of artificial neural networks for the

prediction of water quality of polluted aquifer.

Water Air and Soil Pollution 119:275–294.

Haykin, S. (1999). Neural networks: A comprehensive

foundation. Macmillan.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving

deep into rectifiers: Surpassing human-level

performance on imagenet classification. In

Proceedings of the IEEE international conference

on computer vision (pp. 710-718).

Hutter, F., Lücke, J., and Schmidt-Thieme, L. (2019).

Beyond Manual Tuning of Hyperparameters:

Lessons Learned in Algorithm Selection and

AutoML. Data Mining

Optimization of Artificial Neural Network Transfer Function….. 1626

ORJI, FN; AHANEKU, IE; NDUKWU, MC; UGWU, E; AWU, JI; JOSEPH, IU; HELEN, I.

Islam, S. and R. Kothari (2000). Artificial neural

networks in remote sensing of hydrologic

processes. Journal of Hydrologic Engineering

5(2):138–144.

Kingma, D. P., and Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:

1412.6980.

Maier, H.R., Dandy, G.C. and M.D. Burch (1998). Use

of artificial neural networks for modelling

cyanobacteria Anabaena spp. in the River Murray,

South Australia. Ecological Modelling 105, 257–

72.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013).

Rectifier nonlinearities improve neural network

acoustic models. In Proceedings of the 30th

International Conference on Machine Learning

(ICML-13) (pp. 3-11).

Minns A.W. and Hall M.J. (1996). Artificial Neural

Network as Rainfall-Runoff Models. Hydrological

Sciences Journal 41(3), Pp 399-417.

Moghaddam, M., and Sorooshian, S. (2001). Artificial

neural networks in hydrology: A review. Journal of

Hydrology, 249(1-4), 3-47.

Moghaddam, S., and Sorooshian, S. (2017). Artificial

neural networks for hydrologic modeling: A

review. Water Resources Research, 53(1), 1–29.

doi:10.1002/wrcr.20538

Nair, V., and Hinton, G. E. (2010). Rectified linear

units improve restricted Boltzmann machines.

Ouenes, A. (2000). Practical application of fuzzy logic

and neural networks to fractures reservoir

characterization. Computers and Geosciences

26(8): 953–962.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V.

(2019). Regularized Evolution for Image Classifier

Architecture Search. Proceedings of the AAAI

Conference on Artificial Intelligence, 33: 4780-

4789.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.

(1986). Learning representations by back-

propagating errors. Nature, 323(6088), 533-536.

Saxe, A. M., McClelland, J. L., and Ganguli, S.

(2013). Exact solutions to the nonlinear dynamics

of learning in deep linear neural networks. In

Proceedings of the 31st International Conference

on Machine Learning (ICML-14) (Vol. 32, pp.

1243-1251).

Shahriari, B.; Kevin, S.; Ziyu W.; Ryan P.A.; Nando

F. (2015). Taking the human out of the loop: A

scalable bayesian optimization approach to

hyperparameter tuning. arXiv preprint

arXiv:1502.02133.

Snoek, J., Larochelle, H., and Adams, R. P. (2012).

Practical bayesian optimization of machine

learning algorithms. In Advances in neural

information processing systems (pp. 2951-2959).

Sivakumar, M., Sivapalan, M., and Wood, E. M.

(2007). Hydrologic system complexity and

nonlinear dynamics. Hydrological Sciences

Journal, 52(1), 1-18.

Thirumalaiah, K. and M.C. Deo (1998). Real-time

flood forecasting using neural networks.

Computer-Aided Civil and Infrastructure

Engineering 13, 101–11.

Zhu, J., Sorooshian, S., and Gupta, V. K. (2000).

Transfer function selection for artificial neural

networks in hydrologic modeling. Wat. Resources

Res. 36(12), 3575-3586.

https://ieeexplore.ieee.org/author/37085659529

