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of distributions. The expressions for its densities, basic statistical properties and parameters estimation using the 

method of Maximum Likelihood were derived and established. An application of the Exponentiated Complementary 

Kumaraswamy Exponential Poisson (ECKEP) distribution to a real lifetime dataset clearly reveals its suitability and 
flexibility in fitting real life dataset. 
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In many applied areas like lifetime analysis, there is a 

clear need for new distributions which are more 

flexible to model real data that present a high degree 

of skewness and kurtosis. Recent developments focus 

on new techniques by compounding of distributions 

and adding parameters to existing distributions 

thereby building classes of more flexible distributions. 

Complementary risk motivation has led to the 

development of several compound models which have 

been applied in several areas, Louzada-Neto et al 

(2011). Problems in reliability have been solved by the 

wide application of the exponential distribution to 

statistical distribution, Nadarajah and Kotz (2006). 

But, the memory-less property with a constant failure 

rate exhibited by the distribution makes it unsuitable 

for real life problems. As a result, a vital problem is 

created in statistical modeling and applications. To 

address this problem, several researchers have 

proposed different extensions of the exponential 

distribution and some of these recent studies 

focusedon the generalization of exponential 

distribution. Adamidis and Loukas (1998) proposed a 

variation of the Exponential distribution, with 

decreasing hazard function called the Exponential 

Geometric (EG) distribution. Lemonte et al (2013) 

proposed the exponentiated Kumaraswamy 

distribution and its log-transform. The Exponentiated 

Kumaraswamy Dagum distribution was proposed by 

Shujiao and Broderick (2014). Rodrigues and Silva 

(2015) introduced the exponentiated Kumaraswamy 

exponential distribution using Kumaraswamy 

distribution as a baseline distribution. Aryal and 

Yousof (2017) proposed the exponentiated 

Generalized-G Poisson family of distributions. Eissa 

(2017) introduced the exponentiated Kumaraswamy-

Weibull distribution with application to real data. The 

exponential inverse exponential distribution with 

applications to lifetime data was introduced by 

mailto:friday.ewere@uniben.edu
https://www.ajol.info/index.php/jasem
http://www.bioline.org.br/ja
https://www.ajol.info/index.php/jasem
mailto:friday.ewere@uniben.edu
mailto:ieraikhuemen@biu.edu.ng
mailto:julian.mbegbu@uniben.edu
https://dx.doi.org/10.4314/jasem.v26i12.5
https://www.ajol.info/index.php/jasem
https://pkp.sfu.ca/ojs/
https://www.ajol.info/index.php/ajol
https://www.ajol.info/index.php/jasem
http://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0/


Exponentiated Complementary Kumaraswamy-G Power Series….                                                               1916 

EWERE, F; ERAIKHUEMEN, I. B; MBEGBU, J. I. 

Oguntunde et al (2017). Ibrahim and Khaleel (2018) 

proposed the exponentiated Kumaraswamy 

exponentiated Weibull distribution that extends the 

exponentiated Weibull distribution. Ieren and Kuhe 

(2018) proposed the Lomax-exponential distribution. 

Abdullahi and Ieren (2018) proposed the transmuted 

Exponential Lomax distribution and Eraikhuemen et 

al (2020a) proposed the complementary 

Kumaraswamy Weibull Poisson distribution. This 

paper proposed a new lifetime family of distributions 

called the Exponentiated Complementary 

Kumaraswamy-G Power (ECK-GP) Series obtained 

by compounding the Kumaraswamy-G family and 

power series family of distributions. 

 

MATERIALS AND METHODS 
The cumulative distribution function (cdf) and 

probability density function (pdf) of the exponential 

distribution are given by 

 

( ) 1 exp( )G x x     (1) 

and 

( ) exp( ), , 0g x x x     (2) 

respectively, where   is the scale parameter. 

 

Cordeiro and de Castro (2011) proposed a generalized 

class of distribution called the Kumaraswamy 

generated (K-G) distribution whose cumulative 

distribution function (cdf) is given by 

 

, ( ) [1 ( ) ] , , , 0a b

a bQ x G x x a b   (3) 

and the corresponding probability density function 

(pdf) given by 

 

(4) 

Where a and b are additional shape parameters and 

g(x) is the first derivative of G(x). 

Substituting equations1 and 2 into equations 3 and 

4gives respectively the cdf and pdf of the 

Kumaraswamy Exponential distribution. 

 

   ( ) 1 1 exp
b

a

F x x     
 (5) 

and 

       
1

1

( ) exp 1 exp 1 1 exp
b

aa

f x ab x x x   



           

 (6) 

 

By the compounding procedure pioneered by Marshall 

and Olkin (1997), let N be a discrete random variable 

having a power series distribution with probability 

mass function (pmf) given as 

 

( ) , 1,2,...
( )

m

mc
P M m m

D




    (7) 

 

Where 0mC     depends only onm, 

1

( ) m

m

m

D C 




  

and   0    is such that D(𝜃) is finite and its first, 

second and third derivatives exist and are defined by 

𝐷′(𝜃), 𝐷′′(𝜃) and 𝐷′′′(𝜃),(Noack,1950). The various 

properties of the power series family of distributions 

were explored by Patil, (1961; 1962). 

 

In Table 1, the Power Series family of distributions 

defined by equation 7 is shown with their 

respective 𝑐𝑚,  𝐷(𝜃),  𝐷′(𝜃),𝐷′′(𝜃) and 𝐷′′′(𝜃), 

where m is the number of trials and n is the number of 

successes in a sequence of m trials, Kosambi (1949) 

and Noack (1950). 

 
Table 1:Useful Quantities for Some Power Series Distribution 

 
 

The Exponentiated Complementary Kumaraswamy-G 

Power Series Distribution: Now, let M be a discrete 

random variable with pmf defined by equation 7. Let

1 2, ,. . ., MX X X be M independent and identically 

distributed (iid) random variables with cdf given by 

equation 3 and let 
( ) 1max{ } M

m i iX x  . The 

conditional cumulative distribution of  

( ) /MX M m   is given as 

 

 
( ) / ,( ) 1 ( )
M M m

m

X a bT x Q x


  (8) 

 

Equation 8 has the exponentiated form of the general 

class as given in equation 3.Thus, we obtain 
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 ( ) ,( , ) 1 ( ) , 0, 0
( )

m
m

m
m a b

c
P X x M m Q x x m

D




     

(9) 

The complementary class of distributions is defined by 

the marginal cdf of  
( )MX as 

 ,

, ,

1 ( )
( ) , , , , 0

( )

a b

a b

D Q x
F x x a b

D







    (10) 

and the pdf is given by 

  ,

, , ,

D' 1 ( )
( ) ( ) , , , , 0

( )

a b

a b a b

Q x
f x q x x a b

D



 




  (11) 

where
1 1

, ( ) ( ) ( ) [1 ( ) ]a a b

a bq x ab g x G x G x     

 

The cdf and pdf of the ECK-GPS class of distribution 

are  

 ,

, ,

1 ( )
( ) , , , , , 0

( )

a b

a b

D Q x
F x x a b

D






 



    
  
  

(12) 

and 

  
1

,

, , ,

D' 1 ( )
( ) ( ) , , , , , , 0

( )

a b

a b a b

Q x
f x q x x a b

D






  





  
  

  

(13) 

respectively, where a,b,   are shape parameters. 

 

Sub - Models of the ECKGPS Distribution: Here, we 

present four sub-models of the ECKGPS family of 

distributions. These are as follows: 

(1) With ( ) 1D e  
 
the ECK-GPS distributions 

reduces to the Exponentiated Complementary 

Kumaraswamy-G Poisson (ECK-GP) distribution 

with cdf 

  

 
( ; , , , )

1 1 ( ) 1

( ) , , , , , 0
1

x a b

b
a

e G x

F x x a b
e

 








 

   
        

 


(14) 

(2) With  
1

( ) 1D   


 
 

the ECK-GPS 

distributions reduces to the Exponentiated 

Complementary Kumaraswamy-G Geometry (ECK-

GG) distribution with cdf 

  

  

1

( ; , , , )
1

1 1 1 ( )

( ) , , , , , 0

1

b
a

x a b

G x

F x x a b



  

 

 

 





    
         

 



(15) 

(3)  With ( ) (1 ) 1mD      the ECK-GPS 

distributions reduces to the Exponentiated 

Complementary Kumaraswamy-G Binomial (ECK-

GB) distribution with cdf 

  

 
( ; , , , )

1 1 1 ( ) 1

( ) , , , , , 0
(1 ) 1

m
b

a

x a b
m

G x

F x x a b



  



 


    
           

 

(16) 

(4) With ( ) (1 )D In     the ECK-GPS 

distributions reduces to the Exponentiated 

Complementary Kumaraswamy-G Logarithmic 

(ECK-GL) distribution with cdf 

  

 
( ; , , , )

1 1 1 ( )

( ) , , , , 0, 0 1
(1 )

b
a

x a b

In G x

F x x a b
In



  



 


   
            

 

(17) 

Other sub-models considered are as follows: 

 

1. If  ( ) 1 exp( )G x x  
 

is Exponential 

distribution, equation 14 reduces to the Exponentiated 

Complementary Kumaraswamy Exponential Poisson 

(ECKEP) distribution with cdf and pdf given 

respectively as 

  

 

1 1 1 exp( ) 1

( ) , , , , , 0
1

ECKEP

b
a

e x

F x x a b
e










 

   
          

 


(18) 

and 

       
1

1
1

exp( ) 1 exp( ) 1 1 exp( ) 1 1 1 exp( )

( )
(e 1)

, , , , , 0

b b
a aa

ECKEP

ab x x x e x

f x

x a b





 

    

  




    
               





(19) 

 
Fig 1: The plot of the ECKEP density function for some parameter 

values 

 

Figure 1 illustrates the PDF of the ECKEP distribution 

for different values of the parameters 

2. If  ( ) 1 exp( )G x x   is Exponential 

distribution, equation 15 reduces to the Exponentiated 

Complementary Kumaraswamy Exponential 

Geometric (ECKEG) distribution with cdf 

 

  
 

1

( ; , , , ) 1

1 1 1 1 exp( )

( ) , , , , , 0
1

b
a

x a b

x

F x x a b



 

  

 
 





   
          

  
 

  

(20) 
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3. If  ( ) 1 exp( )G x x   is Exponential 

distribution, equation 16 reduces to the Exponentiated 

Complementary Kumaraswamy Exponential 

Binomial (ECKEB) distribution with cdf 

  
( ; , , , )

1 1 1 1 exp( ) 1

( ) , , , , , 0
(1 ) 1

m
b

a

x a b m

x

F x x a b



 

 

 


   
           

  
  

  

(21) 

4. If  ( ) 1 exp( )G x x    is Exponential 

distribution, equation 17 reduces to the Exponentiated 

Complementary Kumaraswamy Exponential 

Logarithmic (ECKEL) distribution with cdf 

  
( ; , , , )

1 1 1 1 exp( )

( ) , , , , 0, 0 1
(1 )

b
a

x a b

In x

F x x a b
In



 

 

 


   
               

  
  

(22) 

Also, given that  ( ) 1 exp( )G x x    is 

Exponential distribution and 1a b  , then: 

5. If ( ) 1D e  
 

the ECK-GPS family of 

distributions reduces to the Exponentiated 

Complementary Exponential Poisson (ECEP) 

distribution. 

6. If 
1( ) (1 )D     

 
the ECK-GPS family of 

distributions reduces to the Exponentiated 

Complementary ExponentialGeometric (ECEG) 

distribution. 

7. If ( ) ( 1) 1mD    
 
the ECK-GPS family of 

distributions reduces to the Exponentiated 

Complementary Exponential Binomial (ECEB) 

distribution. 

8. If ( ) (1 )D In   
 
the ECK-GPS family of 

distributions reduces to the Exponentiated 

Complementary Exponential Logarithmic (ECEL) 

distribution. 

Again, given that  ( ) 1 exp( )G x x    is 

Exponential distribution and 1, 1a b   
,
 

9. For ( ) 1D e  
,
the ECK-GPS family of 

distributions reduces to the Complementary 

Exponential Poisson (CEP) distribution.  

10. For 
1( ) (1 )D     

, 
the ECK-GPS family of 

distributions reduces to the Complementary 

Exponential Geometric (CEG) distribution. 

11. For ( ) ( 1) 1mD     the ECK-GPS family of 

distributions reduces to the Complementary 

Exponential Binomial (CEB) distribution.  

12. For ( ) (1 )D In    the ECK-GPS family of 

distributions reduces to the Complementary 

Exponential Logarithmic (CEL) distribution. 

 

Statistical Properties of ECKEPD: In what follows, 

we give a detail discussion of the statistical properties 

of the ECKEP distribution. 

 

Expansion of the Density Function of the ECKEP 

distribution: Here, the expansion of the pdf of the 

ECKEP distribution is presented. For 0   any 

real non-integer, we use the power series 

representation 

1

0

( 1) ( )
(1 ) , 0, 1

( ) !

j j

j

z
z z

j j

 









 
     

 


(23) 

Using the power series in equation 23 on equation 9, 

we can express the pdf for real non-integer 

 , , , ,a b     as 

 

0 0 0

( 1) ( ) [ ( 1)] [ ( 1)]exp[ ( 1) ][ 1]
( ; , , , , )

( ) [ ( 1) ] [ ( 1) ] ! ! !

j k l

j k l

b j a k l x e
f x a b ab

j b j k a k l j k l

  
   



    

  

        


       


(24)  

 

Reliability Function: For a continuous distribution function with pdf  f(x) and cdf  F(x), the survival function of 

the ECKEP distribution is given by 

   

 

e 1 1 1 exp( ) 1

( ) , , , , , , 0
e 1

b
a

ECKEP

e x

S x x a b



 



 

  

                         
 



(25) 

Hazard Rate Function: For a continuous distribution function with pdf f(x) and cdf F(x), the hazard rate function 

of the ECKEP distribution is given by 

       

   

1
1

exp( ) 1 exp( ) 1 1 exp( ) 1 1 1 exp( ) 1

( )

e 1 1 1 exp( ) 1

k
b b

a aa

ECKEP k
b

a

ab k x x x e x

h x

e x



 

     

 


    

                
                         

(26) 
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Fig 2: Plot of the ECKEP Distribution Hazard Rate Functions for Some Parameter Values 

 

Figure 2 illustrates the behavior of the hazard function of ECKEP distribution for selected values of the parameters

, , ,a and b   . 

 

Moments: Now, we discuss the 
thr  moment of a random variable X following the ECKEP distribution. Moments 

are necessary and important in any statistical analysis, especially in applications.  

Using equation24, we write  
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(27) 

Applying the transformation: 
1 1( 1) , [ ( 1)] , ( 1) , [ ( 1)]u l x x u l du l dx dx l du              and the gamma function 

1

0
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
      (28) 

we obtain the 
thr  moment of ECKEP distribution given as 
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The first moment about the origin (the mean) of the ECKEP distribution is obtained by setting r = 1 in equation 

29 to get 
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The moment generating function of the ECKEP distribution is given as 
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If ( 1)u l 
,
 the corresponding characteristic function is given as 
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where 1i    

The variance of the ECKEP distribution is given as 
2 2

2 1( ) ' ( ' )Var X        

3
0 0 0

2

( 1) ( ) [ ( 1)] [ ( 1)]2[ 1]

( ) [ ( 1) ] [ ( 1) ][ ( 1)] ! ! !

( 1) ( ) [ ( 1)] [ ( 1)][ 1]

( ) [ ( 1) ] [ ( 1) ][ ( 1)] ! ! !

j k l

j k l

j k l

l

b j a k e
ab

j b j k a k i l j k l

b j a k e
ab

j b j k a k i l j k l

 

 




 




 

    

  

  



       
  

         

      


        



2

0 0 0j k

  

 

 
 
 



  (33) 



Exponentiated Complementary Kumaraswamy-G Power Series….                                                               1920 

EWERE, F; ERAIKHUEMEN, I. B; MBEGBU, J. I. 

The coefficient of skewness and kurtosis of the ECKEP distribution are given as    
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and 
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The Quantile of ECKEPD: The quantile of the ECKEP distribution is the real solution of the equation F(x)=U, 

where F(x) is the cdf of ECKEP distribution.  
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and is given as 
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     (36) 

where U is a uniform random variable on unit interval (0, 1). 

 

The median of the ECKEP distribution is obtained by setting U=0.5 in equation36 to get 
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Order Statistics  

Suppose 
1, 2, 3, ,, , . . . , nX X X X is a random sample from ECKEP distribution.  Let 

1,X  denote the minimum 

time to failure and  
,nX   denote the maximum time to failure. The trials are independent and identically 

distributed. The pdf of the 
thk  order statistics from the ECKEP distribution is given as 
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and using the identity 
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where F(x) and f(x) are the cdf and pdf of the ECKEP distribution, respectively. It follows from equations18 and 

19 that 
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where B (.,.) denote the beta function.  

Hence,  
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Equation 40 is the order statistics of the ECKEP distribution. 

To obtain the smallest order statistic pdf, we substitute i=1 into equation40 to obtain 
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The pdf of the largest order statistics is obtained by substituting i n   into equation40 to give 
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INFERENCE with ECKEPD 

Maximum likelihood estimation 

Let 1 2 3, , ,..., nx x x x  denote a random sample drawn from the ECKEP distribution given by equation19 with 

parameters , , , a and b   .The likelihood function of the ECKEP distribution is given by 
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   (44) 

Let ( , , , , )Ta b    be the unknown parameter vector. The score vector which is the gradient of the log-

likelihood function with respect to the parameters being estimated is given as 
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      (45) 

The components of the score function are the partial derivatives with respect to each of the parameters. The 

maximum likelihood estimate of   can be obtained by solving the non-linear system of equation ( ) 0nU   . 

That is: 
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Solving the non-linear system of equation given in equations 46 through 50numerically produce the maximum 

likelihood estimates of parameters , , , ,a b and   .  

 

RESULTS AND DISCUSSION 
This section presents the application of the ECKEP 

distribution to a real life dataset. For a comparative 

study, the Kumaraswamy Exponential Weibull 

Distribution (KEWD), Kumaraswamy Weibull 

Distribution (KWD), Kumaraswamy Weibull Poisson 

Distribution (KWPD) and Kumaraswamy Modified 

Weibull Distribution (KMWD) are also applied to the 

dataset. In order to evaluate the efficiency of the 

ECKEP distribution, a package named “maxLik” was 

used in R Statistical software environment, with 

method “SANN”. The performance of these 

distributions are evaluated and compared using some 

Model Selection Information Criteria (MSIC) which 

include AIC (Akaike Information Criterion), CAIC 

(Consistent Akaike Information Criterion), BIC 

(Bayesian Information Criterion) and HQIC (Hannan 

Quin Information Criterion). The MSIC are given as 

follows: 

2 2AIC ll k   ,  2 log ,BIC ll k n  

 
2

1
2 kn

n k
CAIC ll

 
   and

 2 2 log logHQIC ll k n      whereƖƖ denotes 

the log-likelihood value evaluated with the maximum 

likelihood estimates, k is the number of model 

parameters and n is the sample size. The model with 

the lowest values of these statistics would be chosen 

as the best model to fit the dataset. 

 

 

Dataset: The dataset represents the survival times (in 

days) of 72 guinea pigs infected with virulent tubercle 

bacilli reported by Bjerkedal (1960) and used by Umar 

et al (2019) and Eraikhuemen et al (2020b). It is given 

as follows: 10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 

100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 

113, 115, 116,120, 121, 122, 122, 124, 130, 134, 136, 

139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 172, 

176,183, 195, 196, 197, 202, 213, 215, 216, 222, 

230,231, 240, 245, 251, 253, 254, 255, 278, 293, 

327,342, 347, 361, 402, 432, 458, 555.  

 

The descriptive statistics for this data are presented in 

Table 2. 

 
Fig 3: A graphical summary of  the survival times (in days) of 72 

guinea pigs data 



Exponentiated Complementary Kumaraswamy-G Power Series….                                                               1923 

EWERE, F; ERAIKHUEMEN, I. B; MBEGBU, J. I. 

From the descriptive statistics in Table 2 and the 

graphical display shown in Figures 3 above, it is clear 

that the dataset is positively skewed, and therefore 

would be flexible for skewed distributions just like the 

proposed model. Table 3 clearly shows that the 

ECKEP distribution has the smallest values of -ƖƖ, AIC, 

BIC, CAIC and HQIC compared to the other four 

distributions using the real life dataset. The results in 

Table 3 also provide evidence for us to agree that the 

ECKEP distribution fits the real life data better than 

the other four models. The histogram of the data with 

fitted densities and estimated cumulative distribution 

functions displayed in Figure 4 for the dataset also 

support the claim that the ECKEPD performs better 

than the KWPD, KMWD, KWD and the KEWD in 

fitting the dataset. 
 
 

 

Table 2: Descriptive Statistics for the survival times (in days) of 72 guinea pigs data 

No Minimum 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

72 10.00 108.0 149.5 224.0 176.8 555.0 10705.1 1.34128 1.98852 

 
Table 3: Performance Evaluation of the Distributions Using the MSIC Based on the Dataset 

Distributions Parameter 

estimates  

-ƖƖ=(-log-

likelihood 
value) 

AIC CAIC BIC HQIC 

ECKEPD ̂ =0.9724245 

̂ =0.9724251 

̂ =0.9724244 

â =0.9724247 

b̂ =0.9724244 

-3.2417 3.5165 

 

 
 

 

4.4256 14.8999 8.0483 

KWPD  ̂ =0.9527246 

̂ =0.9527250 

̂ =0.9527245 

â =0.9527248 

b̂ =0.9527243 

8.5247 27.0494 27.9585 38.4327 31.5811 

KEWD ̂ =1.5449044 

̂ =4.5867910 

̂ =0.6931186 

â =5.6917160 

b̂ =0.0027483 

7.2857 24.5714 25.4805 35.9548 29.1032 

KMWD ̂ =0.2755403 

̂ =1.4274148 

̂ =0.3175745 

â =0.0043696 

b̂ =0.1260376 

10.6803 31.3606 32.2697 42.7440 35.8924 

KWD  ̂ =8.869616 

̂ =0.002776 

â =0.167300 

b̂ =1.038767 

9.0052 26.0104 26.6074 35.1170 29.6358 

 

Conclusion: In this paper, we have proposed a family 

of distributions called the Exponentiated 

Complementary Kumaraswamy-G Power Series 

(ECK-GPS) family of distributions. In particular, we 

study the statistical properties of the Exponentiated 

Complementary Kumaraswamy Exponential Poisson 

(ECKEP) distribution, a member of the ECK-GPS 

family of distributions. An application of the ECKEP 

distribution to a real life dataset shows that it performs 

better in fitting the given dataset when compared to the 

KWPD, KMWD, KWD and the KEWD.  
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Fig 4: Histogram and plots of the estimated densities (pdfs) and 

cdfs of the ECKEPD, KWD, KMWD, KEWD and KWPD fitted to 

the dataset. 
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