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ABSTRACT: The trace (A), maximum average prediction variance (G), and integrated average prediction variance 

(V) criteria are experimental design evaluation criteria, which are based on precision of estimates of parameters and 
responses. Central Composite Designs (CCD) conducted within a split-plot structure (split-plot CCDs) consists of factorial 

(𝑓), whole-plot axial (𝛼), subplot axial (𝛽), and center (𝑐) points, each of which play different role in model estimation. 

This work studies relative A-, G- and V-efficiency losses due to missing pairs of observations in split-plot CCDs under 

different ratios (d) of whole-plot and sub-plot error variances. Three candidate designs of different sizes were considered 

and for each of the criteria, relative efficiency functions were formulated and used to investigate the efficiency of each of 

the designs when some observations were missing relative to the full one. Maximum A-efficiency losses of 19.1, 10.6, and 

15.7% were observed at 𝑑 = 0.5, due to missing pairs 𝑓𝑓, 𝛽𝛽, and 𝑓𝛽, respectively, indicating a negative effect on the 

precision of estimates of model parameters of these designs. However, missing observations of the pairs- 

𝑐𝑐, 𝛼𝛼, 𝛼𝑐, 𝑓𝑐, and 𝑓𝛼 did not exhibit any negative effect on these designs' relative A-efficiency. Maximum G- and V-

efficiency losses of 10.1,16.1,0.1% and 0.1, 1.1, 0.2%, were observed, respectively, at 𝑑 = 0.5, when the pairs- 

𝑓𝑓, 𝛽𝛽, 𝑐𝑐, were missing, indicating a significant increase in the designs' maximum and average variances of prediction. 

In all, the efficiency losses become insignificant as d increases. Thus, the study has identified the positive impact of 

correlated observations on efficiency of experimental designs. 
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Industrial, manufacturing, and engineering and 

physical sciences research projects require 

experimentation to uncover relationships that exist 

between design variables and the responses of interest. 

Problems in response surface methodology (RSM) 

involves modeling and investigating an appropriate 

relationship between input and output variables of a 

process and identifying optimal operating conditions 

for a system under study. The assumption of a 

completely randomized or randomized block error 

control structure in statistically-designed experiments 

has been widely accepted in RSM research and 

applications. Unfortunately, while this assumption 

simplifies analysis and research, it may not be feasible 

in industrial experimental situations, which are often 

split-plot in nature. In such situations, some factors 

have levels that are difficult to change or control 

(termed hard-to-change (HTC) factors) due to time or 

cost constraints, and some with levels that are easy to 

control (easy-to-change (ETC) factors). For further 

details see Letsinger, et al., (1996), Vining, et al., 

(2005), Kowalski et al (2006), etc. One of the most 

popular response surface experimental design is the 

central composite design (CCD). A CCD with a split-

plot structure consists of four different categories of 

points each of which plays different role in model 

estimation. These include the nf equally-spaced 

factorial points that contribute to the estimation of 

linear and interaction terms in the model, na axial 

points (whole-plot(𝛼) and subplot(𝛽)), which consists 

of points lying on the coordinate axis of each input 

variable, and allow for efficient estimation of pure 

quadratic terms in the model, and center (c) points, 

which provide an internal estimate of error (i.e., the 

pure error), and efficiently provide information about 

the existence of curvature in the system. The 

generalized least squares (GLS) model for a split-plot 

response surface design is  

 

𝒚 = 𝑿𝜷 + 𝒁𝜸 + 𝝐  (1) 

 

where 𝐲 is the N x 1 vector of responses, 𝑿  is the N x 

p overall model matrix, 𝜷 is the p x 1 vector of 

regression coefficients, 𝒁 is an N x b incidence matrix 

assigning observations to each of the b whole plots; γ 
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is the N x 1 vector of whole-plot error terms, 𝜀 is the N 

x 1 vector of subplot error terms. It is assumed that  

𝛾𝑖~𝑁(0, 𝜎𝛾
2),     𝜖𝑖𝑗~𝑁(0, 𝜎𝜖

2),   𝑐𝑜𝑣(𝛾𝑖 , 𝜖𝑖𝑗) = 0. The 

four commonly-used optimality criteria are A-, D-, G-

, and V- optimality criteria (See Kiefer and Wolfowitz 

(1959), Kiefer (1959), Box and Hunter (1957)), with 

the following respective goals: 

 

D-criterion maximizes |𝑀| = |𝑋′𝑉−1𝑋|, or 

equivalently, minimizes |(𝑋′𝑉−1𝑋)−1|. 
A-criterion minimizes 𝑡𝑟𝑎𝑐𝑒(𝑋′𝑉−1𝑋)−1  

 

𝐺→ Min
𝜁

[max
𝜁

𝑁𝑓(𝑧, 𝑥)′(𝑋′𝑉−1𝑋)−1𝑓(𝑧, 𝑥)]. 









→ 
−−

R
zfXVXzfMinV x)dzdx,()'()'x,(

K

N 11



. 

 

Where X is the design matrix, x is any point in the 

design region R, N is the design size, and 𝑓(𝑧, 𝑥) =

[𝑓1(𝑧, 𝑥) … 𝑓𝑝(𝑧, 𝑥)] is a vector of p real-valued 

functions based on the p model parameters while 

=
R

dzdxK is the volume of the region. The 

variance - covariance matrix for the observation vector 

y is  

𝑉𝑎𝑟(𝑦) = 𝑉 = 𝜎𝜖
2𝐼𝑛 + 𝜎𝛾

2𝑍𝑍′ = 𝜎𝜖
2(𝐼𝑛 + 𝑑𝑍𝑍′)

 where 𝑑 =
𝜎𝛾

2

𝜎𝜖
2  gives the ratio of the two 

variance components. The matrix 𝒁𝒁’ is a block 

diagonal matrix with diagonal matrices of  Jn1, 𝐽𝑛2, …, 

𝐽𝑛𝑧, where 𝐽𝑛𝑖 is an 𝑛𝑖 x 𝑛𝑖 matrix of 1’s and 𝑛𝑖 is the 

number of observations in the ith whole-plot. Under 

the assumption of normal errors, the maximum 

likelihood estimate (MLE) of the parameters of this 

model is obtained through the generalized least 

squares (GLS) estimation equation 𝛽̂ =
(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑦  With variance 𝑉𝑎𝑟(𝛽̂) =
(𝑋′𝑉−1𝑋)−1 

 

Even in a carefully- planned experiments, some 

observations may be lost during the process of data 

collection due to reasons that are beyond 

experimenter’s control. Loss of experimental 

observations destroy desirable properties of the 

experiment such as orthogonality property, which 

enables separate and independent estimation of all 

model parameters. There could be a large increase in 

variances of predicted responses and also in the 

generalized variance of parameter estimates of the 

experiment as a result of missing observations. Thus, 

proper knowledge of the expected loss in efficiency of 

these designs when some observations are missing is 

highly essential so as to exercise extra caution in 

handling the experiment. Most published research on 

impact of missing observations on efficiency of 

response surface designs focused on the completely 

randomized designs, see for example, Andrews and 

Herzberg (1979), Ghosh (1978), Herzberg and 

Andrews (1975, 1976), Ahmad and Gilmour (2010), 

Akhtar and Prescott (1986), Akram (2002), and Yisa, 

et al. (2014). However, Angela, et al. (2013) and, 

Yakubu and Chukwu (2018) studied the robustness of 

split-plot CCDs to missing observations, while Angela 

and Yisa (2012) compared the optimality criteria of 

reduced models for split-plot response surface designs. 

Throughout RSM literature, little or no attention has 

been given to the effect of missing observations on 

efficiency of split-plot response surface designs. Thus, 

in this work, loss in A-, G-, and V-efficiency of split-

plot central composite designs (CCDs) due to missing 

pairs of observations were investigated and compared. 

 

MATERIALS AND METHODS 
Three split-plot CCDs of different sizes were used in 

this study. The first design is a three –factor (one 

whole-plot factor and two sub-plot factors) design. 

The second design consists of four factors (one whole-

plot factor and three sub-plot factors), while the third 

design is also a four-factor (two whole-plot factors and 

two sub-plot factors) design. These CCDs are given in 

TABLE 1 with k, w, and s denoting, respectively, 

numbers of design factors, whole-plot factors, and 

subplot factors. 

 
Table 1. Candidate Split-plot CCDs 

Number of design 

factors (k) 

Number of whole 

plot factors (w) 

Number of subplot 

factors (s) 

3 1 2 

4 1 3 

2 2 

For each of these designs, there are ten possible groups 

of pairs that are formed from factorial (f), whole-plot 

axial (α), subplot axial (β), and center points (c). These 

groups are ff, αα, ββ, cc,  fα, fβ, fc, αβ, αc, and βc. Then, 

A-, G-, and V-efficiency functions were formulated as 

given below. But A-, G-, and V criterion values for the 

full and corresponding reduced split-plot CCDs due to 

missing observations of these pairs of points were first 

computed using the criteria equations given above 

under specific values of d = 0.5, 1.0, 1.5, 2.0, and 2.5, 

which represent the situations that the whole plot 

variance is half, same, one and a half, two, and, two 

and a half, times the subplot variance, respectively. 

These computed values were then tabulated and the 

relative efficiency values were then computed using 

the formulated functions in equations 2, 3, and 4.  
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Then, relative A-, G-, and V-efficiency functions were 

formulated as 

 

𝑅𝐸𝐴 =
𝑇𝑟𝑎𝑐𝑒[(𝑋′𝑉−1𝑋)

−1
]

𝑇𝑟𝑎𝑐𝑒[(𝑋′𝑉−1𝑋)−1]𝑟𝑒𝑑𝑢𝑐𝑒𝑑
  (2) 

 

 

where Trace[(X′V−1X)−1] and 

Trace[(X′V−1X)−1]reduced are respectively the A-

criterion for the full and reduced designs due to a pair 

of missing observations.  

 

𝑅𝐸𝐺 =
𝑀𝐴𝑋𝑍,𝑋𝜖𝑅[𝑣(𝑧,𝑥)]

𝑀𝐴𝑋𝑍,𝑋𝜖𝑅𝑣(𝑧,𝑥)𝑟𝑒𝑑𝑢𝑐𝑒𝑑
  (3) 

 

( ) 
( ) reduced

V

BXVXraceT

BXVXTrace
RE

11

11

'

'
−−

−−

=
 

 (4)
 

 

where v(z, x) is the scaled prediction variance, 

(X′𝑉−1𝑋)−1 is the covariance matrix and









=  dzdxxzfxzf

K
B ),(),(

1 '
 is the moment 

matrix for a given split-plot response surface design;  

𝐟(𝐳, 𝐱)is the 1 x p model vector for the selected design 

point.  

 

These efficiency functions were used to investigate the 

relative A-, G-, and V-efficiency of each of the 

candidate split-plot central composite designs in Table 

1 when some (observations) of their design points 

(𝑓, 𝛼, 𝛽, and 𝑐) are missing relative to their 

corresponding full ones. The loss in efficiency was 

then computed as 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐿𝑜𝑠𝑠 = 1 − 𝑅𝐸  

 (5) 

 

For each design, the whole-plot and subplot axial 

points were fixed at equal distance of 1 (i.e., α = β = 

1). The computed relative A-, G-, and V- efficiencies 

for each of the candidate designs were then plotted 

against their corresponding ratios of error variances 

and given in the corresponding figures. From the 

formulated relative efficiencies in 2, 3, and 4, it is 

worth noting that: A relative A-, G-, or V-efficiency 

larger than one indicates that the reduced deign is 

better than the full design in terms of the trace, 

maximum, or integrated average prediction variance 

respectively. This implies that the missing 

observations have little or no adverse effect on the 

design in terms of the criterion. A relative efficiency 

less than one indicates that the full design is better than 

the reduced deign in terms of the given criterion, which 

implies that the missing observations have large 

adverse effect on the design.  

 

RESULTS AND DISCUSSIONS 

The computed criterion values due to missing 

observations of any of the ten possible pairs of points 

were given in the Tables shown for the different ratios 

of error variances (d) while the corresponding relative 

efficiencies generated using the formulated functions 

in equations 2, 3, and 4 were plotted and the efficiency 

curves are given in the corresponding figures. 

 

Relative A-efficiency: (1) Three-Factor D (1,2) Split-

plot CCD: The trace due to each of the possible pairs 

of missing observations was given in Table 2 while, 

using equation 1, the corresponding relative A-

efficiency plots were in Figure 1 for the respective 

ratios of error variances (d). This figure shows that for 

all d values, A-efficiency was robust to the missing αα. 

However, at d = 0.5, missing pairs of factorial and 

subplot point observations (𝑓𝛽) has the largest effect 

on A-efficiency with efficiency loss of about 24.1%, 

followed by missing pairs of factorial (ff) point 

observations with about 18.8% loss in efficiency. Also 

at this value of d, efficiency losses of 5.41% and 5.52% 

were observed for the missing αc and cc respectively. 

However, these efficiency losses continue to reduce 

sharply as d increases beyond 0.5, and at about d = 2.5, 

the efficiency curve due to missing ff and that due to 

missing 𝑓𝛽 intersect each other. 

 

(2) Four-Factor D(1,3) Split-plot CCD: The trace due 

to each of the possible pairs of missing observations 

was given in Table 2 while the corresponding relative 

A-efficiency plots were given in Figure 2. From this 

figure, it was observed that efficiency curves due to 

missing 𝑓𝛼 and 𝛽𝑐 overlap each other and the same 

thing applies to those due to missing cc and αβ. It was 

also observed that A-efficiency was quite robust to the 

missing pairs of the whole plot axial points (𝛼𝛼) for 

the whole range of d, and slightly robust to the missing 

ac. At d= 0.5, A-efficiency loss of 11.49%, 8.2% and 

6.4% were observed, respectively, for missing pairs of 

observations of 𝑓𝑓, 𝑓𝛽, and𝛽𝛽. However, each of 

these efficiency losses continues to diminish 

drastically as d increases beyond 0.5. This result is in 

line with the findings of Goos and Vandebroek (2004).  

 

(3) Four -Factor D (2,2) Split-plot CCD: The 

computed 𝐴 − criterion values (trace) due to missing 

observations of any of the ten possible pairs of points 

in this design were given in Table 3 for the different 

error variance ratios (d). Figure 3 gives the 

corresponding relative A-efficiency plots from which 

it was observed that this design was adversely affected 

by each of the missing pairs of observations especially 
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at low values of d. However, A-efficiency continues to 

improve as d increases. Furthermore, the efficiency 

curves form distinct groups and the curves due to the 

missing pairs: cc, αc, and αα  were slightly robust to 

the changes in d. Efficiency loss of less than 1.5% was 

observed at low values of d only when cc is missing, 

which continues to diminish as d increases. Among all 

the pairs, missing ββ caused the highest efficiency loss 

of about 21.1% at d = 0.5 followed by the missing fβ 

with about 14.15% loss in efficiency, and then the 

missing ff with about 9.4% efficiency loss. Thus the 

most influential pairs in this design were the 

ββ, fβ, αβ, βc, and ff. However, as d increases, the 

efficiency losses continue to reduce. 

 

Relative G and V-efficiency: The scaled prediction 

variances (SPV), 𝐺-criterion location as well as the V-

criterion values for the full and reduced designs were 

computed and presented in tables based on the given 

values of d. It can be observed from each of the Tables 

that the location of the maximum prediction variance 

(G) varies with the value of d and the category of 

points in the pairs. The relative G- and V-efficiencies 

were then obtained and presented in charts as given in 

the corresponding figures. 

 

(1) Three-Factor D(1,2) CCD: TABLE 4 gives the 

scaled prediction variance (v(z,x)) properties,G-

criterion location and V-criterion values for this 

design. The relative G and V-efficiency plots were 

given respectively in Figures 4 and 5. From Figure 4, 

it can be observed that missing pairs of each of 𝑓𝑓  and 

𝛽𝛽 has the highest effect on G-efficiency for d = 0.5. 

As d increases, the losses continue to reduce 

drastically. Losing a pair of center point observations 

adversely affects the design efficiency for values of 

𝑑 ≤ 3.52. This design was observed to be quite robust 

to missing whole plot axial point observations (𝛼𝛼) for 

the whole range of d in terms of G-criterion. From 

Figure 5, the design was observed to be quite robust to 

the missing pairs (𝛽𝛽) and (𝛼𝛼)of the subplot and 

wholeplot axial point observations for the whole range 

of d in terms of the V-efficiency. However, this 

criterion was highly affected by the missing pairs (ff) 

and (cc) respectively, of factorial and center point 

observations at low values of d, and as d goes beyond 

3.0, the design becomes robust to these missing pairs. 

This agrees, to some extent, with the findings of Goos 

and Vandebroek (2004).  

 

(2) Four-Factor D (1,3) Split-plot CCD: The scaled 

prediction variances, G-criterion locations and the V-

criterion values were given in Table 5. The relative G- 

and V-efficiency plots were given in Figures 6 and 7 

respectively. From Figure 6, we observed that the G-

efficiency was adversely affected by missing pairs of 

observations of ff and 𝛽𝛽 for 𝑑 ≤ 0.92 and 𝑑 ≤ 3.51 

respectively. The effect continues to reduce as d 

increases. We also observed that this criterion was 

robust to missing pairs of whole plot axial and center 

point observations for the whole range of d. Figure 7 

shows that the highest adverse effect on the relative V-

efficiency was due to missing pairs of the subplot axial 

observations (𝛽𝛽) and the center observations (cc) for 

small values of d and the efficiency improves as d 

increases. This criterion was observed to be quite 

robust to the missing pairs of observations of the 

factorial points (ff) and the whole plot axial points (αα) 

for the whole range of d. 

(3) Four-Factor D (2,2) Split-plot CCD: The scaled 

prediction variances, G-criterion locations and V-

criterion values were given in Table 6. The relative G- 

and V-efficiency plots were given in Figures 8 and 9, 

respectively. Figure 8 shows that the G-efficiency was 

adversely affected by missing pairs of observations of 

the subplot axial (𝛽𝛽), factorial (ff), and center (cc) 

points, for 𝑑 ≤ 0.91, 𝑑 ≤ 2.51, and 𝑑 ≤ 4.93 

respectively. However, as d increases beyond these 

values, these effects diminished. The efficiency was 

quite robust to the missing pairs of the whole plot axial 

point observations (αα) for the whole range of d. From 

Figure 9, we observed that the relative V-efficiency 

was adversely affected by missing pairs of center 

points (cc) at values of d below 5.0. However, as d 

increases this effect diminishes. This relative 

efficiency was quite robust to the missing factorial, 

subplot and whole plot axial points: ff, ββ and αα for 

the whole range of d.

 
Table 2. 𝐴 − criterion valuesfor complete design and for reduced designs due to a pair of missing observations in D (1,2) CCD for 

different d values 
 

𝑑 trace((𝑋′𝑉−1𝑋)−1) due to missing  
None ff αα Ββ Cc Fα fβ Fc Αβ αc βc 

0.5 1.799 2.223 1.816 2.016 2.132 2.016 2.267 2.120 1.909 1.916 2.014 

1 2.616 3.094 2.634 2.839 2.949 2.849 3.111 2.953 2.731 2.733 2.836 

5 9.153 9.738 9.171 9.385 9.486 9.408 9.683 9.513 9.275 9.270 9.379 
10 17.32 17.93 17.34 17.55 17.65 17.58 17.86 17.68 17.44 17.44 17.552 
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Fig. 1. Relative A-efficiency curves for the reduced and full split-plot D(1,2) CCDs under different variance ratios of error variances 

(correlation ratio) 

 

Table 2. A − criterion valuefor complete design and for reduced designs due to a pair of missing observations in D (1,3) CCD 

D tr((X′V−1X)−1) due to missing  
None ff αα Ββ Cc Fα fβ Fc Αβ αc βc 

0.5 1.483 1.665 1.486 1.589 1.536 1.559 1.625 1.581 1.537 1.507 1.558 

1 2.219 2.408 2.222 2.328 2.272 2.297 2.364 2.318 2.274 2.243 2.296 
5 8.105 8.303 8.108 8.216 8.158 8.184 8.252 8.205 8.162 8.128 8.183 

10 15.46 15.66 15.46 15.57 15.51 15.54 15.61 15.56 15.52 15.49 15.54 

 

 
Fig. 2. Relative A-efficiency curves for the reduced and full split-plot D(1,3) CCDs under different variance ratios 

 

Table 3: A − criterion values for full design and for reduced designs due to a pair of missing observations in D(2,2) under different d 

D trace(M−1((X′V−1X)−1)) due to missing  
None ff αα Ββ Cc Fα fβ Fc Αβ αc βc 

0.5 2.724 3.016 2.785 3.412 2.743 2.847 3.163 2.832 3.072 2.753 3.058 

1 3.925 4.234 3.989 4.62 3.945 4.05 4.377 4.035 4.284 3.955 4.269 
5 13.53 13.86 13.59 14.23 13.55 13.65 13.99 13.64 13.9 13.56 13.88 

10 25.53 25.87 25.61 26.24 25.56 25.66 26.01 25.65 25.91 25.56 25.89 

 

 
Fig. 3. Relative A-efficiency curves for the reduced and full split-plot D(2,2) CCDs under different correlation ratios 
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Table 4. SPV properties and G-criterion location for the full design and for the design with a pair of missing observations for D(1,2) split-

plot CCD 

D v(z,x) due 

to missing 

Design point G − location V 
±1 α(1.732) β(1.732) 0 

0.5 
     

z1 x1 x2 
 

 
Full 12.786 10.166 14.094 11.999 0.000  1.732  0.000  8.217  
ff 15.338 9.473 15.141 10.999 1.000  1.000  1.000  8.559  
αα 11.782 9.352 12.963 10.999 0.000  0.000  1.732  7.598  
ββ 11.853 9.382 15.097 10.999 0.000  1.732  0.000  8.223  
cc 11.72 9.319 12.92 14.666 0.000  0.000  0.000  9.27  
ff 

        

1 - 11.839 12.708 13.904 14.999 0.000  0.000  0.000  9.517  
αα 13.75 11.792 14.589 13.749 0.000  1.732  0.000  9.606  
ββ 10.9 11.674 12.778 13.749 0.000  0.000  0.000  8.775  
cc 10.961 11.7 14.384 13.749 0.000  0.000  1.732  9.263  
ff 10.852 11.649 12.745 16.499 0.000  0.000  0.000  10.028  
αα 

        

5 - 9.946 13.523 17.791 20.999 0.000  0.000  0.000  12.119  
cc 10.205 16.375 13.127 19.249 0.000  0.000  0.000  11.476  
ff 9.134 16.317 12.407 19.249 0.000  0.000  0.000  11.126  
αα 9.158 16.327 12.945 19.249 0.000  0.000  0.000  11.298  
ββ 9.117 16.308 12.396 20.166 0.000  0.000  0.000  11.543  
cc 

        

10 - 9.516 18.946 13.436 22.363 0.000  0.000  0.000  12.71  
ff 9.331 17.406 12.73 20.499 0.000  0.000  0.000  11.86  
αα 8.732 17.372 12.323 20.499 0.000  0.000  0.000  11.66  
ββ 8.746 17.378 12.616 20.499 0.000  0.000  0.000  11.755  
cc 8.723 17.367 12.316 20.999 0.000  0.000  0.000  11.888 

 

 
Fig. 4. Relative G-efficiency curves of the reduced split-plot CCDs for the full quadratic model in one whole plot and two subplot variables 

under different correlation ratios 

 

 
Fig. 5. Relative V-efficiency curves of the reduced split-plot CCDs for the full quadratic model in one whole plot and two subplot variables 

for various degrees of correlation 
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Table 5. Scaled prediction variance (v(z,x)) properties and G-criterion location for the full design and for the design with a pair of missing 

observations for D (1,3) split-plot CCD 

d v(z,x) due 

to missing 

Design point G − location 
 

  V 

±1 α(2.00) β(2.00) 0 
  

 

0.5 
     

z1 x1 x2 x3    
Full 22.597 16.985 24.934 19.167 0.000 2.000 0.000 0.000 11.837 

ff 
 

27.842 16.327 25.081 18.333 1.000 1.000 1.000 1.000 11.723 

αα 
 

21.640 16.255 23.859 18.333 0.000 2.000 0.000 0.000 11.341 

ββ 
 

21.737 16.276 29.691 18.333 0.000 0.000 2.000 0.000 11.933 
cc 

 
21.615 16.246 23.850 19.555 0.000 0.000 0.000 2.000 11.893           

 

1 - 21.221 22.924 24.289 25.875 0.000 0.000 0.000 0.000 15.099 
ff 

 
25.127 21.991 24.168 24.750 1.000 1.000 1.000 1.000 14.757 

αα 
 

20.317 21.934 23.240 24.750 0.000 0.000 0.000 0.000 14.456 

ββ 
 

20.389 21.952 27.675 24.750 0.000 2.000 0.000 0.000 14.913 
cc 

 
20.298 21.928 23.233 25.666 0.000 0.000 0.000 0.000 14.870           

 

5 - 18.464 34.803 22.992 39.291 0.000 0.000 0.000 0.000 21.622 
ff 

 
19.330 33.312 22.309 37.583 0.000 0.000 0.000 0.000 20.792 

αα 
 

17.668 33.292 21.995 37.583 0.000 0.000 0.000 0.000 20.686 

ββ 
 

17.692 33.299 23.496 37.583 0.000 0.000 0.000 0.000 20.844 
cc 

 
17.661 33.290 21.993 37.888 0.000 0.000 0.000 0.000 20.824           

 
10 - 17.837 37.503 22.697 42.340 0.000 0.000 0.000 0.000 23.104 

ff 
 

17.977 35.884 21.883 40.500 0.000 0.000 0.000 0.000 22.160 

αα 
 

17.065 35.873 21.711 40.500 0.000 0.000 0.000 0.000 22.102 
ββ 

 
17.078 35.877 22.532 40.500 0.000 0.000 0.000 0.000 22.189 

cc 
 

17.062 35.872 21.710 40.666 0.000 0.000 0.000 0.000 22.178 

 

 
Fig. 6. Relative G-Efficiency curves of the reduced split-plot CCDs for the full quadratic model in D(1,3) CCD under different variance 

ratios 

 

 
Fig. 7. Relative V-efficiency curves of the reduced split-plot CCDs for the full quadratic model in D(1,3) CCD under different variance 

ratios 
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Table 6. Scaled prediction variance (v(z,x)) properties and G-criterion location for the full design and for the design with a pair of missing 

observations for D(2,2) split-plot CCD 

d v(z,x) due 

to missing 

Design point G − location 
 

  V 

±1 α(2.00) β(2.00) 0 
  

 

0.5 
     

z1 z2 x1 x2    
Full 21.666 16.111 22.222 20.000 0.000 0.000 2.000 0.000 11.796 

ff 
 

26.632 15.467 22.410 19.000 1.000 1.000 1.000 1.000 11.479 

αα 
 

20.656 15.420 21.184 19.000 0.000 0.000 2.000 0.000 11.271 

ββ 
 

20.679 15.401 25.717 19.000 0.000 0.000 0.000 2.000 11.702 
cc 

 
20.583 15.305 21.111 25.333 0.000 0.000 0.000 0.000 14.162           

 

1 - 21.805 20.138 22.222 25.000 0.000 0.000 0.000 0.000 14.337 

ff 
 

25.679 19.270 22.153 19.000 1.000 1.000 1.000 1.000 13.848 

αα 
 

20.771 19.220 21.167 23.750 0.000 0.000 0.000 0.000 13.671 

ββ 
 

20.792 19.209 24.588 23.750 0.000 0.000 2.000 0.000 14.005 
cc 

 
20.715 19.131 21.111 28.500 0.000 0.000 0.000 0.000 15.837           

 

5 - 22.083 28.194 22.222 35.000 0.000 0.000 0.000 0.000 19.421 

ff 
 

22.855 26.839 21.494 33.250 0.000 0.000 0.000 0.000 18.537 

αα 
 

20.998 26.785 21.130 33.250 0.000 0.000 0.000 0.000 18.467 

ββ 
 

21.007 26.813 22.280 33.250 0.000 0.000 0.000 0.000 18.584 
cc 

 
20.979 26.784 21.111 34.833 0.000 0.000 0.000 0.000 19.189           

 
10 - 22.146 30.025 22.222 37.272 0.000 0.000 0.000 0.000 20.576 

ff 
 

22.084 28.554 21.323 19.000 2.000 0.000 0.000 0.000 19.596 

αα 
 

21.049 28.524 21.121 35.409 0.000 0.000 0.000 0.000 19.557 
ββ 

 
21.054 28.539 21.749 35.409 0.000 0.000 0.000 0.000 19.621 

cc 
 

21.039 28.523 21.111 36.272 0.000 0.000 0.000 0.000 19.950 

 

 
Fig. 8. Relative G-efficiency curves of the reduced split-plot CCDs for the full quadratic model D(2,2) CCD under different variance ratios 

 
Fig. 9. Relative V-efficiency curves of the reduced split-plot CCDs for the full quadratic model in two whole plot and two subplot variables 

under different variance ratios 
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Conclusion: This study has established the robustness 

potentials of estimates of the model parameters and the 

predicted responses of split-plot CCDs at low values 

of the ratio (d) of the whole-plot and subplot error 

variances when pairs of observations of the various 

design points (factorial (f), whole-plot axial (𝛼), 

subplot axial (𝛽), and center (c) points) are missing.   
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