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ABSTRACT: This article proposes a simple energy-based criterion developed to characterize four commonly 

identified responses, namely: linear, weakly nonlinear, moderately nonlinear and strongly nonlinear regimes. The response 
of the nonlinear simple pendulum was used for benchmarking the boundary conditions for each of the four response 

regimes and the test criterion was demonstrated using relevant examples. The test presented in this article is important for 

clarifying the obscurity surrounding the accuracy and range of validity of recent approximate analytical schemes used to 
investigate strong nonlinear oscillators. Furthermore, it is meant to create awareness of the need to develop more robust 

testing criteria. 
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The study of nonlinear oscillations is important to 

engineers, physicists and applied mathematicians. In 

the last three decades, a lot of attention has been 

devoted to the formulation of accurate schemes for the 

solution of nonlinear oscillators. To this end, a 'flood' 

of approximate analytical methods for the periodic 

solution of nonlinear oscillators have appeared in the 

literature (see the publications by He (2006), 

Esmailzadeh et al (2019) and Big-Alabo and Ossia 

(2020) for discussions on various recent methods). All 

of these methods claim to address some or all of the 

following limitations: (i) Lack of physical insight into 

the dynamic response of oscillating systems, which is 

mainly a limitation of the numerical methods. (ii) 

Algebraic complexity, which is a limitation of 

methods requiring high-order approximations. (iii) 

Inaccurate solution for strong nonlinear and large-

amplitude oscillations, which is a limitation of 

traditional perturbation methods. (iv) Use of artificial 

parameters that have no physical meaning, which is a 

limitation of traditional and recent perturbation 

methods. (v) Use of truncated Taylor's series to 

represent non-polynomial restoring force, which is a 

limitation of series expansion methods including all 

perturbation methods.  A good proportion of these 

methods address limitations 1, 2, 4 and 5 to various 

degrees, but the problem lies in limitation 3 where a 

disturbing trend seems to occur. The issue is that many 

studies apply approximate analytical methods to 

nonlinear oscillators aimed at providing solutions for 

the strong nonlinear response, but the results presented 

seem to be carefully chosen so as to portray the 

analytical solutions as accurate. A close scrutiny of the 

results usually reveal that the analytical solutions were 

only tested for linear or weakly to moderately 

nonlinear cases (Sanchez, 2005); whereas if the 

solutions were tested for strong nonlinear cases, they 

produced large errors and failed to capture essential 

nonlinear behaviour (Sanchez, 2005; Big-Alabo, 

2018a). This article therefore presents a simple 

energy-based criterion that can be used to test the 

nonlinear strength of an oscillator based on its 

amplitude and system parameters. The criterion was 

calibrated using the simple pendulum and tested for 

some strong nonlinear oscillators commonly found in 

the literature. 

 

MATERIALS AND METHOD 
Nonlinear conservative oscillators can be represented 

in general form as (Big-Alabo, 2018a): 

 

𝑢̈ + 𝑔(𝑢) = 0         1 

 

Where 𝑔(𝑢) is a nonlinear restoring force, the initial 

conditions are 𝑢(0) = 𝐴 and 𝑢̇(0) = 0, and 𝐴 is the 
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amplitude of oscillation. The maximum potential 

energy is then given as: 

 

𝑉 = ∫ 𝑔(𝑢)
𝐴

0
𝑑𝑢         2 

 

The present criterion is based on comparing equation 

(2) with the energy of an equivalent linear oscillator 

given as: 

𝑢̈ + 𝐾𝑒𝑞𝑢 = 0         3 

where 𝐾𝑒𝑞 = 𝑔(𝐴)/𝐴 was obtained as illustrated in 

Figure 1 and the initial conditions are the same as in 

equation (1). Therefore, 

 

𝑉𝑒𝑞 =
1

2
𝐾𝑒𝑞𝐴2 =

1

2
𝐴𝑔(𝐴)         4 

 

Since 𝑉𝑒𝑞  is an approximation, its relative error can be 

calculated as: 

 

𝜖𝑟 = |1 −
𝑉𝑒𝑞

𝑉
| × 100% = |1 −

𝐴𝑔(𝐴)

2 ∫ 𝑔(𝑢)
𝐴

0
𝑑𝑢

| × 100% 5 

 

 
Fig 1: Restoring force of a typical nonlinear oscillator with 

equivalent linear force showing error of linearization (shaded 
portion) 

 

To develop the test criterion, four response regimes 

with various degrees of nonlinear strength were 

considered, namely: (a) linear (b) weakly nonlinear (c) 

moderately nonlinear and (d) strong nonlinear. 

Equation (5) can be used to determine which of the 

four response regimes a nonlinear oscillator would 

exhibit for a given set of input values. In setting the 

boundaries of 𝜖𝑟 for each regime, we calibrate using 

the simple pendulum. The simple pendulum was 

chosen because it can exhibit any of the four response 

regimes and there is a general consensus of what these 

regimes are for the simple pendulum. So, 𝐴 ≤ 10° =
𝜋/18 rad represents the linear response regime, 

10° < 𝐴 ≤ 30° = 𝜋/6 rad represents the weakly 

nonlinear response regime, 30° < 𝐴 ≤ 90° = 𝜋/

2 rad represents the moderately nonlinear response 

regime, and 90° < 𝐴 < 180° = 𝜋 rad represents the 

strong nonlinear response regime. The restoring force 

for the simple pendulum is 𝑔(𝑢) = 𝜔0
2 sin 𝑢 where 

𝜔0 = √𝑔/𝑙, 𝑔 is the local acceleration due to gravity 

and 𝑙 is the length of the pendulum. Hence, from 

equation (5) we get: 

 

𝜖𝑟 = |1 −
𝐴 sin 𝐴

2(1−cos 𝐴)
| × 100%         6 

 

Applying equation (6) and the above amplitude range 

for each response regime, the following are applicable 

to a general nonlinear oscillator: (i) Linear response 

regime: 𝜖𝑟 ≤ 0.25% (ii) Weak nonlinear response 

regime: 0.25% < 𝜖𝑟 ≤ 2.5% (iii) Moderate nonlinear 

response regime: 2.5% < 𝜖𝑟 ≤ 25% (iv) Strong 

nonlinear response regime: 𝜖𝑟 > 25% 

 

The boundaries of 𝜖𝑟 for each response regime are not 

strict and may overlap depending on the case 

considered, but they are meant to provide some 

objective determination of the strength of a nonlinear 

response. Hence, for a given set of system parameters, 

the amplitude that would give a particular 𝜖𝑟 can be 

obtained by solving the following nonlinear equation: 

 

𝐴𝑔(𝐴) + 2(0.01𝜖𝑟 − 1) ∫ 𝑔(𝑢)
𝐴

0
𝑑𝑢 = 0         7 

 

RESULTS AND DISCUSSIONS 
To demonstrate the applicability of the energy-based 

criterion, a number of strong nonlinear oscillators 

capable of exhibiting each of the four response 

regimes were investigated. The selected oscillators 

cover a range of nonlinear oscillators including oddly 

nonlinear oscillators, parameter-dependent systems, 

non-natural systems and asymmetric oscillators. The 

purpose of the investigation is to apply the present test 

criterion to determine the response regimes for a given 

set of input and to evaluate the accuracy of published 

solutions for strong nonlinear responses. 

 

Electrostatically-actuated nanobeam with weak 

interacting forces: The nonlinear vibration of an 

electrostatically-actuated nanobeam with van der 

Waals, Casimir and fringing effects can be modelled 

as (Ghalambaz et al, 2016): 

 

(𝑎2 − 4𝑎4𝑢2 + 6𝑎6𝑢4 − 4𝑎8𝑢6 + 𝑎10𝑢8)𝑢′′ +
(𝐸1𝑢 + 𝐸2𝑢3 + 𝐸3𝑢5 + 𝐸4𝑢7 + 𝐸5𝑢9 + 𝐸6𝑢11) = 0    
8 

where 𝑎2, 𝑎4, 𝑎6, 𝑎8, 𝑎10, 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, and 𝐸6 

are constants depending on the system properties and 

𝑢 is the dimensionless displacement. Comparing 

equations (8) and (1), we can write that: 

 

  

 ( ) 

 ( ) 
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𝑔(𝑢) =
𝐸1𝑢+𝐸2𝑢3+𝐸3𝑢5+𝐸4𝑢7+𝐸5𝑢9+𝐸6𝑢11

𝑎2−4𝑎4𝑢2+6𝑎6𝑢4−4𝑎8𝑢6+𝑎10𝑢8          9 

 

Therefore, using equation (5) gives: 

 

𝜖𝑟 = |1 −
(

𝐸1𝐴2+𝐸2𝐴4+𝐸3𝐴6+𝐸4𝐴8+𝐸5𝐴10+𝐸6𝐴12

𝑎2−4𝑎4𝐴2+6𝑎6𝐴4−4𝑎8𝐴6+𝑎10𝐴8 )

2 ∫ (
𝐸1𝑢+𝐸2𝑢3+𝐸3𝑢5+𝐸4𝑢7+𝐸5𝑢9+𝐸6𝑢11

𝑎2−4𝑎4𝑢2+6𝑎6𝑢4−4𝑎8𝑢6+𝑎10𝑢8 )
𝐴

0 𝑑𝑢
| ×

100%         10 

 

The integral in equation (10) does not have a closed-

form solution and was evaluated numerically. The 

energy profiles of the original and equivalent linear 

models are shown in Figure 2a for the following input 

values: 𝛿 = 0.50; 𝛼𝑐𝑎 = 25.0; 𝛼𝑣𝑑𝑤 = 25.0; 𝛼 =
24.0. ; 𝛽 = 25.0; ϒ = 0.65; 𝑁 = 10.0. The range of 

amplitudes for which the nanobeam can undergo 

oscillations can be obtained by solving 𝑔(𝐴) = 0. For 

the input values used in Figure 2a, the amplitude range 

was calculated as 0 < 𝐴 ≤ 0.585. The error analysis 

of Figure 2b showed that the nanobeam undergoes a 

linear to weakly nonlinear response for 0 < 𝐴 < 0.35, 

while a strong nonlinear response was predicted when 

𝐴 > 0.475. 

 

 

 

 
Fig 2: (a) Energy profile of a nanobeam with weak interacting forces 

and (b) error estimate for the equivalent linear approximation. 

 

Equations (8) was studied by Ghalambaz et al (2016) 

using the energy balance method (EBM) while Ismail 

et al (2019) used the global residue harmonic balance 

method (GRHBM). The EBM solution was simulated 

for 𝐴 = 0.01 while the GRHBM was applied for 𝐴 ≤
0.50. The present criterion shows that 𝐴 = 0.01 is in 

the linear response regime while 𝐴 = 0.50 is in the 

strong nonlinear regime. It was observed that the error 

in the frequency estimate of the GRHBM increased 

with amplitude and exceeded 5.0% relative error at 

𝐴 = 0.40 while the EBM exceeded 5.0% relative error 

at 𝐴 = 0.30. Hence, the EBM and GRHBM solutions 

are not accurate for predicting the strong nonlinear 

oscillations of the electrostatically-actuated nanobeam 

with weak interacting forces. 

 

Relativistic oscillator: The simple harmonic 

relativistic oscillator is a relativistic mass that is 

connected to a linear spring. For non-relativistic 

speeds, the mass exhibits a simple harmonic motion 

with a constant period. For relativistic speeds, the 

mass exhibits a nonlinear response with amplitude-

dependent period and anharmonic oscillation history. 

The nonlinearity in the system is due to the relativistic 

effect. The model for the relativistic oscillator is given 

as (Big-Alabo, 2018b): 

 

𝑢̈ + 𝜔0
2 [1 − (

𝑢̇

𝑐
)

2

]
3/2

𝑢 = 0         11 

 

with initial conditions 𝑢(0) = 0 and 𝑢̇(0) = 𝑉0, 

where 𝑉0 is the initial velocity, 𝑐 = 3 × 108 𝑚/𝑠 is the 

speed of light, 𝜔0 = √𝐾𝐿/𝑚0, 𝐾𝐿 is the stiffness of the 

linear spring and 𝑚0 is the rest mass. Using the non-

dimensional parameters, 𝑈 = 𝑢𝜔0/𝑐 and 𝜏 = 𝜔0𝑡, 

equation (11) can be expressed as: 

 

𝑈′′ + [1 − (𝑈′)2]3/2𝑈 = 0         12 

where the prime denotes differentiation with respect to 

𝜏 and the initial conditions are 𝑈(0) = 0 and 𝑈′(0) =
𝛽0 = 𝑉0/𝑐. Equation (12) can be expressed in the form 

of equation (1) as shown:  

 

𝑈′′ + [
1

√1−𝛽0
2

−
1

2
𝑈2]

−3

𝑈 = 0         13 

 

where the dimensionless restoring force is: 

 

𝑔(𝑈) = [
1

√1−𝛽0
2

−
1

2
𝑈2]

−3

𝑈         14 
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The initial conditions to equation (13) are the same as 

equation (1) and the dimensionless amplitude is 

calculated as: 

𝐴 = [
2(1−√1−𝛽0

2)

√1−𝛽0
2

]

1/2

         15 

 

Therefore, substituting equations (14) and (15) into 

equation (5) gives, 

𝜖𝑟 = |1 −
2(1−√1−𝛽0

2)

𝛽0
2√1−𝛽0

2
| × 100% = |1 − (

𝐴

𝛽0
)

2

| ×

100%         16 

 
Fig 3: (a) Energy profile of the simple harmonic relativistic 

oscillator and (b) error estimate for the equivalent linear 

approximation. 

 

As seen from Figure 3a, the energy predicted by the 

equivalent linear model is always higher than that of 

the corresponding original model and the error 

estimate in Figure 3b increases rapidly with increase 

in 𝛽0 due to the highly nonlinear nature of the 

oscillator. A linear to weakly nonlinear response 

occurs for 0 < 𝛽0 < 0.185, while a strong nonlinear 

response occurs when 𝛽0 > 0.51. Hence, the studies 

conducted on the relativistic oscillator by Ebaid (2010) 

and Baizar and Hosami (2014) are for weakly 

nonlinear response. 

 

Tapered beam with static and inertia nonlinearity: 

The free vibration of a tapered beam with static and 

inertia nonlinearities has been widely investigated and 

the governing model is given as (Baizar and Hosami, 

2014): 

 

𝑢̈ + 𝑢 + 𝛼𝑢4𝑢̈ + 2𝛼𝑢3𝑢̇2 + 𝛽𝑢5 = 0         17 

 

Equation (17) is a non-natural conservative oscillator 

leading to an exact differential equation and can be 

transformed into the form of equation (1) using the 

procedure in (Big-Alabo, 2020). Hence, 

 

𝑢̈ +
2𝛼𝑢3[(𝐴2−𝑢2)+𝛽(𝐴6−𝑢6)/3]

(1+𝛼𝑢4)2 +
𝑢+𝛽𝑢5

(1+𝛼𝑢4)
= 0         18 

Where 

𝑔(𝑢) =
2𝛼𝑢3[(𝐴2−𝑢2)+𝛽(𝐴6−𝑢6)/3]

(1+𝛼𝑢4)2 +
𝑢+𝛽𝑢5

(1+𝛼𝑢4)
         19 

 

This implies that: 

𝜖𝑟 = |1 −
3(1+𝛽𝐴4)

(3+𝛽𝐴4)(1+𝛼𝐴4)
| × 100%         20 

 
Fig 4: (a) Energy profile of a tapered beam with static and inertia 

nonlinearities and 
 

 
Fig 4: (b) error estimate for the equivalent linear approximation 

(𝛼 = 𝛽 = 1.0). 

0

0.4

0.8

1.2

1.6

2

0 0.2 0.4 0.6 0.8 1

M
a

x
im

u
m

 e
n

e
r

g
y

 

β0 

 Exact

 Linear equivalent

(a) 

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

%
 r

e
la

ti
v

e
 e

r
r

o
r

 

β0 

(b) 

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3

M
a

x
im

u
m

 E
n

e
r

g
y

 

Amplitude 

 Exact

 Linear equivalent

(a) 

0

20

40

60

80

100

0 1 2 3 4 5

%
 r

e
la

ti
v

e
 e

r
r

o
r

 

Amplitude 

(b) 



Energy-Based Criterion for Testing……                                                                                                          229 

AKURO BIG-ALABO 

The energy profile in Figure 4a and the error analysis 

in Figure 4b shows that the system exhibits linear to 

weakly nonlinear response for 𝐴 < 0.53 while a 

strong nonlinear response was observed for 𝐴 ≥ 1.0. 

Ismail (2017) studied this tapered beam model using a 

coupled homotopy-variational approach (CHVA). The 

study focussed on the strong nonlinear regime and the 

solution derived for the natural frequency produced 

more than 1.0% error when 𝐴 < 50. On the other 

hand, the error in the natural frequency estimate 

reduced to zero when 𝐴 ≥ 100. In spite of the fact that 

the CHVA gave accurate frequency-amplitude 

response for 𝐴 ≥ 100, the estimated displacement 

profile shows large deviations from the actual 

displacement (Big-Alabo et al, 2020). This shows that 

the CHVA is inaccurate for the strong nonlinear 

periodic oscillations of the tapered beam. 

 

Stretched elastic cable with mid-point mass: The 

vibration of a mid-point mass attached to a stretched 

elastic cable has been studied by many (Big-Alabo, 

2019b; Elias-Zuniga, 2014; Belendez et al, 2009). Its 

model is given as (Big-Alabo, 2019b): 

 

𝑢̈ + 𝜔0
2 (𝑢 −

𝜓𝑢

√𝑢2+1
) = 0         21 

 

This oscillator exhibits a linear or weakly nonlinear 

response for 𝐴 < 0.10 and 𝐴 > 10.0 when 𝜓 < 1.0. 

The moderate to strong nonlinear response occurs in 

the amplitude range of 0.10 < 𝐴 < 10.0. Hence, it is 

easy to test a solution method outside this range and 

conclude that the method works for the strong 

nonlinear oscillations. Substituting the restoring force 

of equation (21) in (5) gives: 

 

𝜖𝑟 = |1 −
𝐴2(1−

𝜓

√𝐴2+1
)

[𝐴2+2(1−√𝐴2+1)𝜓]
| × 100%         22 

 

Since the nonlinear response of this oscillator depends 

on 𝜓, the energy profile and error analyses were 

conducted for 𝜓 = [0.1, 0.5, 0.9] as shown in Figure 

5a-d. The plots showed that the response exhibits 

weakly or moderately nonlinear response for all 

amplitudes when 𝜓 < 0.75. This explains why only 

𝜓 > 0.9 showed the presence of strong nonlinear 

response for certain amplitudes i.e. 0.425 ≤ 𝐴 ≤ 3.0. 

 

Asymmetric quadratic nonlinear oscillator: So far, all 

the oscillators considered are symmetric (i.e. oddly 

nonlinear) and equation (5) applies to such oscillators. 

Here we consider asymmetric oscillators in which the 

amplitude is different for each half-cycle.  

 

 

 
Fig 5: (a-c) Energy profile of stretched elastic cable with mid-point 
mass and (d) error estimate for the equivalent linear approximation. 
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Examples of asymmetric oscillators include the 

quadratic nonlinear oscillator, Helmholtz-Duffing 

oscillator and nonlinear ship roll motion. For these 

oscillators, the potential energy is determined from 𝐴 

to −𝐵 where 𝐴 and 𝐵 are the amplitudes on each half-

cycle and 𝐴 ≠ 𝐵.  

 

This implies that a bi-linear approximation would be 

applied. Therefore, 

 

𝐾𝑒𝑞 = {
𝑔(𝐴)/𝐴                 0 < 𝑢 < 𝐴

𝑔(𝐵)/𝐵              0 > 𝑢 > −𝐵
         23 

and 

𝑉𝑒𝑞 =
1

2
[𝐴𝑔(𝐴) + 𝐵𝑔(𝐵)]         24 

 

So that 𝜖𝑟 for an asymmetric oscillator can be 

determined as: 

 

𝜖𝑟 = |1 −
𝐴𝑔(𝐴)+𝐵𝑔(𝐵)

2(∫ 𝑔(𝑢)
𝐴

0 𝑑𝑢+∫ 𝑔(𝑢)
−𝐵

0 𝑑𝑢)
| × 100%         25 

 

The same boundaries of 𝜖𝑟 defined in section 2 are 

applicable for the asymmetric oscillators. 

 

 
Fig 6: (a) Energy profile of asymmetric quadratic nonlinear 

oscillator and (b) error estimate for the equivalent linear 

approximation. 

 

The model for the asymmetric quadratic nonlinear 

oscillator can be expressed as: 

 

𝑢̈ + 𝑢 + 𝑢2 = 0         26 

 

where 𝑔(𝑢) = 𝑢 + 𝑢2, the initial conditions are 

𝑢(0) = 𝐴 and 𝑢̇(0) = 0, and the system oscillates in 

the range 𝑢 ∈ [𝐴, −𝐵]. It can be easily demonstrated 

that the initial amplitude for which periodic 

oscillations are possible is 0 < 𝐴 ≤ 1/2. Also, the 

amplitude on the other half-cycle can be derived as: 

 

𝐵 =
2𝐴+3−√(1−2𝐴)(9+6𝐴)

4
> 𝐴         27 

 

Hence, the corresponding limit of 𝐵 is 0 < 𝐵 ≤ 1. 

Consequently, 𝜖𝑟 can be derived as: 

𝜖𝑟 = |1 −
𝐴2(1+𝐴)+𝐵2(1+𝐵)

(𝐴2+𝐵2)+2(𝐴3−𝐵3)/3
| × 100%         28 

 

Figure 6a shows that the total potential energy of the 

equivalent bi-linear oscillator is always greater than 

the exact total potential energy. The corresponding 

error analysis in Figure 6b suggests that the system 

exhibits a weakly nonlinear response when 𝐴 < 0.025 

and a strong nonlinear response when 𝐴 > 0.2. 

 

Conclusion: In this article, a simple energy-based 

criterion was developed to estimate the strength of the 

nonlinearity of an oscillator for any given set of input 

parameters. Given that there is no known prior study 

of this nature, the present study is an attempt to 

categorize the response of conservative nonlinear 

oscillators so that solution schemes developed to 

provide periodic solutions can be properly evaluated. 

It is hoped that this study will generate interest in 

nonlinear scientists to develop a more rigorous test 

criterion for the same purpose. The present criterion is 

based on simple energy considerations and provides a 

quick test. 
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