Main Article Content
Synthesis and growth of spherical ZnO nanoparticles using different amount of plant extract characterization and morphology of structures
Abstract
The use of plant extracts has become an interesting ecofriendly method to synthesize and stabilize the different structures nanoparticles (NPs). This work investigated the effect of plant extract as a reducing and stabilizing agent on the growth and morphology of ZnO nanoparticles (ZnO-NPs). Green synthesis and growth of spherical ZnONPs was carried out by co-precipitation method using a Zinc acetate salt and various amounts of Azadirachta indica seed husk extract (20 ml and 40 ml). The synthesized ZnO-NPs were characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM-EDX), and transmission electron microscopy (TEM). The FTIR analyses revealed the presence of Phenolic alcohol, amines and carboxylic acid groups and ZnO in synthesized NPs with more intense peaks at higher amount (40 ml) of A. indica extract. Also, structural morphology analyses using SEM revealed uniform spherical shaped particles with diameter from 25 to 60 nm (20 ml of extract) and 19 to 35 nm (40 ml of extract) for ZnO-NPs. The EDX spectral revealed that the required phase of Zn and O was present 69.54% (Zn) and 30.46% (O) at 20 ml of extract, also 73.71% (Zn), 26.26% (O) at 40 ml of extract respectively and confirmed high purity for the synthesized ZnO NPs. TEM revealed spherical shaped NPs with diameter ranging from 28 to 52 nm (20 ml of extract) and 8.2 to 11.9 nm (40 ml of extract) respectively, with a trend reduction in particle size of NPs at higher amount of A. indica seed extract (40 ml) and growth of more uniform particles with no agglomeration. The study showed successful growth of spherical ZnO-NPs with required properties at a higher amount of extract.