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ABSTRACT: This paper presents a new mathematical model of a tuberculosis transmission dynamics
incorporating first and second line treatment. We calculated a control reproduction number which plays a vital role
in biomathematics. The model consists of two equilibrium points namely disease free equilibrium and endemic
equilibrium point, it has been shown that the disease free equilibrium point was locally asymptotically stable if the
control reproduction number is less than one and also the endemic equilibrium point was locally asymptotically
stable if the control reproduction number is greater than one. Numerical simulation was carried out which supported
the analytical results.
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Tuberculosis (TB) is a protracted bacterial infectious
disease caused by Mycobacterium tuberculosis which
position a major health, social and economic burden
globally, especially in low and middle income
countries (WHO, 2013). The surge in HIV-TB co-
infection and growing emergence of multidrug-
resistant TB (MDR-TB) and extensively drug resistant
TB (XDR-TB) strains has further fuelled TB epidemic
(WHO,2013; WHO, 2016). It is the second fatal
disease due to a single infectious agent only after
HIV/AIDS (WHO, 2013; WHO, 2016). TB usually
affects the lungs but it can also affect other sites as
well (extra-pulmonary TB). Tuberculosis is conveyed
by tiny airborne droplets which are ejected into the air
when a person with active pulmonary TB coughs or
talks (Issarowa et al., 2015). According to the World
Health Organization (WHO), in 2013, about 9million
people were infected, worldwide, with TB and 1.5
million deaths from the disease were reported, 360,000
of whom were HIV-positive (Yang et al, 2014).
Tuberculosis is seen to be declining slowly each year
and an estimated 37 million lives were saved between
2000 and 2013 through effective diagnosis and
treatment (Yang et al, 2014; Okuonghae and

Ikhimwin, 2016). Numerous mathematical models
have been developed and wused to study the
transmission dynamics of TB in a population
(Aparicio and Castillo-Chavez, 2009; Castillo-Chavez
and Song, 2004; Feng, 2000). For instance,
Okuonghae (2013) worked on a deterministic TB
model with genetic heterogeneity in susceptibility and
disease progression. Zhang and Feng (2000)
constructed and analyzed a dynamical model to
investigate the spread of TB in a community with
isolation and incomplete treatment. The purpose of
this article is to formulate a mathematical model of a
tuberculosis transmission dynamics incorporating first
and second line treatment which provides insights into
the drug resistant cases in first and second line
treatment. The model considers human population N
. The population at time # is divided into six (6)

subpopulations. Susceptible (.S): this class include
those individuals who are at risk for developing an
infection from Tuberculosis (TB). Latent Class (E):
this class refers to susceptible individuals who
become infected. Infected (/) : this class includes all
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individuals who are showing the symptom of the
disease. First Line Treatment (R ) : this class include
all individual that failed to take drugs (treatment).
Second Line Treatment (R, ): this class include all

individual that failed to take drugs (treatment) for the
second treatment term. Recovered (R): this class

include all individual that have recovered from the
disease and got temporary immunity. The susceptible
class is increased by birth or emigration at the rate of

A . The susceptible class will get TB when they
mingled with infectious individuals at the A ,where
1=F IS/N , [ is the effective contact rate. The

latent class is generated at a rate , _ g IS ~ , it
g 2= PEL

decrease at rate O which is the progression rate. The
Infectious class is generated at a rate O, it also

reduces at rate of treatment 7, and it further reduce at
arate ), which is default of treatment. The first line
treatment is generated at rate }; , it reduces at a rate

of treatment 7, and it further reduce at a rate ¥,
which is second default of treatment. The second line
treatment class is generated atrate }, , itreduces ata

rate of treatment 7, and recovered class is generated
at rate 7,,7, and 7,. The Infectious, First line
treatment and Second line treatment class are reduced
at the rates O,,0, and O, while the whole classes

reduces at the rate g which is the natural mortality
rate. Hence we have that

Nty =S@O)+E@)+1()+R @)+ R,(t)+ R(t) (1)

The above assumptions result in the following system
of nonlinear ordinary differential equations:

ds_\_BSI_ ¢
dt N
dE  pSI
—=——-(u+0)E
-y Wro)
dl
E:O-E_(yl"'fl"',u"'&l)l 2)
dR
d_tl::711_(7/2+72+/1+52)R1
dR
d2 =7,R — (73 + 1+ 65)R,
t
cj{—lfzrll+72Rl+r3R2—yR

Simplifying (2), we have

ds
—=A-A5 - uS
dt #
9E _ s Kk E
dt 3)
d—[:O'E—KZI
dt
dR
dtl ==yl - K;R,
dR
dtz =7,R - K,R,
d—}:=111+12R1+r3R2—/4R
where
K =u+o 4)
Ky=n+r+u+o )
Ky=p+1,+u+o, (6)
K,=1,+pu+0o, (7
1
ﬂ:'g_ (8)
N
Boundedness of Solutions: Consider the region
S=>20
S
E>0
E
7 120 9
D, = R eR’|R >0 2
‘ R, 20
RZ
R>0
K A
N < —
7

It can be shown that the set D, is positively invariant
and a global attractor of all positive solution of the
system (1)

Lemma 1 The region Dy is positively invariant for the
system (1).

Proof: The rate of change of the total human
population is give as

%:A—yN—511—52R1—53R2 (10)
by standard comparison theorem,
d
AN A uN (11)
dt

using the integrating factor method

A A
Te" <—e" +T,(0)-—-
/’lh Il'lh (12)
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T, =T,(0)e™" + ﬂ[1 - e_”h’]

A A
If N(O)<— then N <— so, D, is a positively

invariant set under the flow described in (1). Hence,
no solution path leaves through and boundary of Dy.
Also, since solution paths cannot leave D, solutions
remain non-negative for non-negative initial
conditions. Solutions exist for all time t. In this region,
the model (1) is said to be well posed mathematically
and epidemiologically.

Positivity of Solution
Lemma 2 Let the initial data for the model (1)

$(0)>0,E(0) > 0,1(0) > 0, R, (0) > 0,R,(0) >0

and R(0) >0be  then  the
S(1), E(t),1(t), R, (t), R, (t), and R(t)with

positive initial data will remain positive for all time t
>0

Proof: Let
1, ={1>0:5(0)>0,E0)>0.10) >0,R (0) > 0,R,(0) >0,R0) >0} >0

solution of

das
2L A-(A+4)S
» (A+n)

to solve the ODE using the integrating factor method

Z{S (t)exp{wl(l(f) +u(7)d (r)H =/{@W{ﬂ +’£(ﬁ{f) +#(f))d(T)H
S (1) = S(O)exp{—ytl () y(‘[))d(z’)}

(14)

+{exp{jut‘ 71(4(7) . ,,(T)yz(r)H J.A{expo{ uy +j;(l(r) . ,u(r))d(r)de >0

Similarly, we can also show that,
E@t)>0,1(t)>0,R (t),>0R,(t) >0, and R(t) >0
for all the time ¢ > 0

Local stability of the disease-free equilibrium and
Reproduction Number: The system (1) has a disease
free equilibrium attained by setting the right hand side
to zero and the disease classes to zero to obtain
Q=(S°E",I°,R’,R*,R") = (i,o,o,o,o,oj (15)
; u

Using the notation in van den Driessche and
Watmough (2002) the matrices F and V for the new
infection terms and the remaining transfer terms
respectively, are respectively given as

919

0 g 0 0

F oo 0 0 0 0 (16)
0O 0 0 0
0O 0 0 0

and

K, 0 0 0

y_| o Kio0 0 (17
0 -y, K, 0
0 0 =72 K4

Now, it follows that the control reproduction number
is given as

of op

= - (18)
KK, (u+o)(y+r+u+d)

R

"The following result is established using Theorem 2 in
(van den Driessche & Watmough, 2002).

Lemma 3: The DFE of the system (1) is locally
asymptotically stable if Rc< 1 and unstable if R-> 1.
The value R, is the humans effective reproduction
number since there is the presence of control
strategies. The threshold quantity R, is the control
reproduction number for the model (1). By Theorem
1, biologically speaking, Tuberculosis is eliminated
from the population when R.< 1 if the initial sizes of
the populations of the model are in the region of

attraction of Do~ However, the disease free

equilibrium may not be globally asymptotically stable
even if R;< 1 in the case when a backward bifurcation
occurs. That is, there is the presence of a stable EEP
co-existing with the DFE.

Existence of Endemic Equilibrium Point (EEP) of the
Model: Let the endemic equilibrium point be

é:** :(S**,E**,I**,RT*,R;*,R**). At

state, solving (1) in terms of force of infection we have

steady

§” = L B _ /1—A
Py K\(A" + )
- A" oA ,
K, K,(A7 + )
R = ’1**710ﬁ ;
K, K, K4 +u)
R™ = A7y y, 0N ,
2 PP
K, K, KK (4 + )
R™ = A"K K, roA+ A"K,1,y,0M + Aty 7,0h (19)
1K KKK, (A7 + )
Now,
w BI”
A= p = (20)

N
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Substituting the values of / ™ and N into (20)
gives

ﬂ**(Al/I** +A2):0 @1
Where

A=K KKK +KKKKdo+KKKKSyo-KKdyyo (22)

A, = uK K, K, K,(1-R.) (23)
From (21), either

AT =0 24)
or

A**:yK1K2K3K4(RC71) (25)

AZ
So system (1) has a unique (stable) endemic
equilibrium if R, > 1, since AT >1if R.>1.

Local Stability of Endemic Equilibrium Point (EEP) of
the Model: The Jacobian expressed in terms of force
of infection gives

(A7) 0 0 0 0 0
A" -k, 0 0 o o0 |(26)
. 0 -k, 0 0 0
() i
0 0 7 -k, 0 0
0 0 0 5 -K, 0
0 0 7, 7, T, —u

Using elementary row-transformation, we have

Table 1: Variable and Parameter Values

920
A"=p 0 0 0 0 0
0 -k 0 0 0 0
- 0 o kK, o o ol @D
J(§7)=
0 0 0 -K, 0 0
0 0 0 0 -k, 0
0 0 0 0 0 -u
The Eigenvalues are giving as
A=-A"—pu (28)
from (25) if R, >1 then 4, <0
A, =-K <0 (29)
A, =-K, <0 (30)
A =-K; <0 @31)
A =-K, <0 (32)
Jo=—1<0 (33)

We claimed the following results
Lemma 4: The positive endemic equilibrium state of
the model (1) is locally asymptotically stable (LAS)

when the control reproduction number, R. >1 but

closeto 1.

RESULTS AND DISCUSSION

In this session we carried out the simulation of model
(2), examining the effect of treating infectious
individuals on different classes using Maple software.
Table 1 contains all the values used in simulations.

Variable Description Baseline Values References
S(O) Susceptible Individuals 24000 Ind/Year Assumed
E(O) Latent Individuals 200 Ind/Year (Andrawus et al.,2017)
I(O) Infectious Individuals 100 Ind/Year Assumed
irst Line Treatment nd/Year ssume
R (0) First Line T 40 Ind/Y A d
1
R (0) Second Line Treatment 50  Ind/Year Assumed
2
Recovered Individuals 98  Ind/Year (Egonmwan and Okuonghae, 2009)
R(0)
Parameters Description Values References
A Constant recruitment rate 200 Ind/Year [8]
ﬂ Effective contact rate 10 Ind/Year (Adewale et al.,2009)
Y7 Natural mortality rate 0.02041/year (Egonmwan and Okuonghae, 2009)
o Progression rate 0.048/year (WHO, 2013; WHO, 2016)
Default treatment of Infectious Individuals 0,1) (Yang et al.,2014)
7/ g
1
y Default treatment of First Line treatment 0,1) (Yang et al.,2014)
2
r.T..T Treatment rates (0,1), (0,1), (0,1) -
1°%2573
51 52 53 Disease Induced death rates (0,1), (0,1), (0,1) -
b 2
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Fig 2: The Effect of Varying Treatment Rates on Infectious

Individuals
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Fig 3: The Effect of Varying Treatment Rates on First Line
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Fig 4: The Effect of Varying Treatment Rates on Second Line
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Fig 5: The Effect of Varying Treatment Rates on Recovered
Individuals

Figure 2 is showing the effect of varying the treatment
rate on Infectious individual, increasing treatment rate
leads to reduction of Infectious individuals in a
society. Epidemiologically, this will reduced the
disease burden in a society. Figure 3 is showing the
effect of varying a treatment rates on First line
treatment (those that defaulted in treatment which will
lead to antidrug resistant), increasing the treatments
rates which will leads to fewer case of First line
treatment.

Figure 4 shows the effect of varying the treatment rates
on Second line treatment (those that defaulted in
treatment for the second time which will lead to
antidrug resistant), increasing the treatment rates leads
to a small number of such cases in a society that is the
cases of second line treatment. Figure 5 shows the
effect of varying treatment rates on recovered
individuals, increasing the treatment rates which will
leads to the recovered individual as years goes by.

Conclusion: In this paper, a mathematical model of a
tuberculosis transmission dynamics incorporating first
and second line treatment was formulated and
analyzed in order to gain better understanding of the
disease dynamics. The DFE was shown to be locally

asymptotically stable when the R is less than one and
the EEP was also shown to be locally asymptotically
stable when the R is greater than one. Numerical

simulation shows that treating Infectious Individuals
can leads to drastic reduction in second line treatment
cases in a society which will also leads to reduction of
Tuberculosis (TB) burden in a society.
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