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ABSTRACT: Sufficient conditions for the Euclidean null controllability of non-linear delay systems with time

varying multiple delays in the control and implicit derivative are derived. If the uncontrolled system is uniformly
asymptotically stable and if the control system is controilable, then the non-linear infinite delay system is Euclidean

null controllable. @JASEM

The control processes for many dynamic systems are
often severely limited, for example, there may be
delays in the control actuators. Models of systems
with delays in the control occur in population studies.
Most specifically models of systems with distributed
delays in the control occur in the study of agricultural
economics and population dynamics, Arstein (1982),
Arstein and Tadmor (1982). In most biological
populations the accumulation of metabolic products
may inconvenience a population and this result in the

Chukwu (1980) showed that if the linear delay system

x(t)= Llt,x,)

is uniformly asymptotically stable and
i(r)=L(e,x,) + Bleu(r)

is proper, then

x(t)=L(t,

x, )+ Bleule) + £ (6%, u(t))

fall of birth rate and increase in death rate. If it is
assumed that total toxic action in the birth and death
rates is expressed by an integral term in the logistic
equation then an appropriate model is the integro-
differential equation with infinite delays. Several
authors have studied these systems and established
sufficient conditions for the controllability and null
controllability of these systems, Chukwu (1992),
Gopalsany

(1992).

is Euclidean null controllable, provided f satisfies certain growth and continuity condition.

Sinha (1985) studied the non-linear infinite delay system

£(0)=L%, 1+ B+ [ 4@)(e+0)0+ (b, u(r) o W

and showed that (1) is Euclidean null controliable if the linear base system'

#{e)=L{e,x, )+ Blepde)

is proper and the free system

#(0)= Llt,x,) + [ A@OK(+)d6

is uniformly asymptotically stable, provided that f satisfies some growth conditions.
Balachandran and Dauer (1996) studied the null controllability of the non-linear system

i(r)= Lit,x,) + ZB

tel-oo,1,]

x(1) = 9(0)

Ji, Als)x(t + s)ds + (e, () u(t))

“)

Hale (1974) provided sufficient conditions for the stability of systems of the form
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)= L(t,x, ) + ZB (-h) + [ BO)s(+0)0 )

o0

The aim of this paper is to study the null controllability of systems of the form
£() = L) + Y B O () + [ dyHe, 0,50 +6) + £(x()20)ul?)
i=0

®
i(r) = ¢(¢) te -]

where L(t,¢) is continuous in £, linear in ¢, and is given by

L(u¢)=§oAk<r>¢(~hk> @

BASIC ASSUMPTIONS AND PRELIMINARIES.
Let E"be an n-dimensional linear space with normH. In equation (6) A, is a continuous nx#n matrix

. function for 0<h <hand H (t ,6, x(t)) is nxn matrix valued function which is measurable
in(t, O,x(t)), and H (t,@,x(t)) is of bounded variation in (Q,x(t» in (-— 00,00). The matrix function
B(t) i=0,1,2,....... n arenX p, continuous in ¢ and h=tf, — min, h, (to) where h,(t) are defined
below. Here x € E” and u e E". Let 0<h <y be given real numbers (y may be + ©) . The function
n: [—- }/,0]—) (O,oo) is lebesque integrable on [— }/,0]‘, positive and non-decreasing. Let B([— }/,O], E") be
the Banach space of functions which are continuous. Let B([~ }/,0], E ") be the Banach space ot functions

which are continuous and bounded on [—— j/,O] such that

M = Supse[~h,0]l¢(sx + fyU(SM(SXdS <®©
forany £ € R and any function X : [l‘ - }/,t] —E" et x, : [—— ;/,0] — E" be defined by
x,(¢) = x(t +5) se [— 7,0}
Assume that the function h, [l‘o,tl ] >R =012, ...... 1 are twice continuously differentiable

and strictly increasing in [t 0-0 ] further
h()st  for telt,,t] i=01,....... m.

Let us introduce as in Kantorovich (1992) the following time lead function #, with

AGILARNAR SR

such that 7, (h,. (t)) =t for i=0], i ,m te [l‘o,tl] .Further assume that
h, (t)zt and for £ =¢, the function A, (1‘) satisfies the inequalities
h(t)<h, (¢)S .. <h,, (6)<t,=h, )<k, ()= . =h(t)=h(t)=t, ®

Let the fundamental matrix X satisfy the equation

als) L, X, (.s) =5

ot

0, t—h<t<s
X(,s) =1 t=s

where X, (.,SXH) = X(t + 0,5), — h <@ <0 Then the solution of (6) is given by
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H(0)= xleskl) + [ XC S)ZB (sl (s + [ X(0 s)( [ dH(s.s-0.5 9))) (s +0)ds
+ [)X(t,s)f(s,x(s),)'c(s),u(s))ds for t, St
x(t)=o)  Jor  te(-=t] 9)

with initial state Y{t,) = (x(t, ). 6,1 where u(s) = n(s) for se It — h,ty) and x(t,t5,8) is the
solution of )'c(t ) = L(l‘ , X, ) Using the time lead function and the inequalities (8) we have,

)=l 1S [ KBk 3 [ on DBk

15 [l O W Gtk + 0 f,aems,e,x(s»x(w)j

+ thl,s Vf(s, x(s), ()u(s)

For brevity introduce the following notations

)= [, XErE)BEEENEM + 3 [ xCnB Pk )

10'

o(tm) = x5t 9) + Hm) + [ X(0.)7(5,x(s) s)uds)) (12)
+ f(: Xz, ,s( fr dgH(s,H,x(s))x(s + 9))

6(,5) = 3 xr, ()8, 0, () ) S ()

Consider the homogeneous systems

5(6) = L(ex,) + ZB B0) (14)

)= Lltx) + [ doH(0,x(0)xle+0) (s)

The controllability matrix of system (14) at time t is given by
wit,s)= I G, (1,5)G," (t,5)ds (16)
gt

where T denotes matrix transpose.
Chukwu (1992), established null controllability of systems of the form (14)
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DEFINITION: The system (6) is said t o be null controllable if for each ¢ € B([— }/,0], E") there is a
L2t ue Lz([to,tlDu is a compact convex subset of E ¥ such that the solution x(t;t0,¢,u) of (6)
satisfies X, (t,;0,u)=0 and x(t,;t,,¢,u) =0

MAIN RESULT

THEOREM: Suppose that the constraint set ¥ is an arbitrary compact subset of £ and that
i Assume that system (15) is umtormly asymptotically stable, so that the solution

,(f0,¢) satisfies H’C,(o, ]‘ < me (0 “(é“ for some & > 0, m >0

ii. The linear control system (14) is controllable
iii. The continuous function f satisfies

“f [ x Xl < eXp(~ ﬂl) ( ( ),)'c(t),u(t)) for all
(e,x(0) X(f), u(t)) & [to,0]x B(- .01 £ )x L, (15,1, L)
Where

fn(x() u()ds<k<w and f-az0

then (6) is Euclidean null controllable.
Proof: Since (15) is controllable, hence it is proper in E" and W™ (to ,tl) exists for each f, > {,. Suppose
the pair of functions x,u form a solution pair to the following equations

u(t):_Gm(tl’tO)W_l(t()Dtl)q([Un) )]

for some suitable chosen £, </ <1, u(t)—n(t) [ —h,t ] and

()—x(tto,¢ + Hlt,n) + fG (ts)u(sds+ffd s@x(t) x(s + 6)ds

+ [ X 5)r(sx() ()u())
x() (t) te[ ht] (18)

then # is square integrable on [ - h, to] and x is a solution of (6) corresponding to the control 2z with
initial state Y(f,) = x(t,:4,77)= 0.Now it is shown that u : [to,t ]—-)u is a compact constraint subset of
E", that is ‘u|<a for some constant @ >0. Since (15) is uniformly asymptotically stable and B, are
continuous in £, it follows that

Gmr(rl,t)W"| < ¢, for some ¢, >0

|x, (¢4, 8) <c, exp[-alt, — 1,)] for some ¢, >0

{H(t,n)ﬁ Cy exp[— a(t, —t, )] Jfor some ¢; >0 hence

|u(f1sCl[cz expl-al ~1, )]+ ¢, + [ mexpl-als, - s)exp(- fs)(x(), u(.))ds}

and therefore

lu(t) <c,lc, +c; lexpl-alt, -, )+ km exp(; at)] (19)
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-}
(4

since f —a 20 and s>, 20. From (18)  can be chosen so large that lu(t)s a,te [to,l‘l] which
proves that 2/ is an admissible control for this choice of £
It remains to prove the existence of a solution pair of the integral equation (16) and (17). Let B be the Banach
space of all functions (x,u): [to ~h,t, ]x [to - h,t, ]—) E"xE’ where
xXe B([to - h,t, l E" ) and u e L, ([to ~h,t, ], E" ) with the norm defined by

) A R

I, = [ [Ix(sy ds}% |, = [ J:'[u(s]zds]yz .

Define the operation 7': B — B by T(x,u) = (y, v) where
v(t)z_Gm(tl’t)W_‘(tO’tl )‘1(’1’77) for te [to’ll]EJ . (20)
v([):?]([) forte[to_%to]

) = x(t;1,,0) + H{t,n)+ J:) G, (t_,s)vis)ds + J:] fr X(, s)dgH(s,Q,x(s), x(s +0))ds

b [ X sx()0ws  for re (21)
and y(t) = §(t) for telr, S an! -

Because of the various assumptions on our system and the estimate from (17) to (19) it is clear that
[v(t] <a, teJ and also v:|t, ~hty] = u, so [v(tXS a hence

”"”2 = a(tl +h—to )yz = ﬂo next

W) < e, +esexpl-alt—1,)] + ¢, “v(s)ds + kmexp(—at,) where

0

¢, =sup

G, (t,s] since a>0,t21, 20, it follows that
W) <c,+ ey +ealt,—t,)+km=p  teJ

ly(tj Ssup’¢(t] =0, te [to - h,to],
hence, if 2 =max{f, o}, then |y(¢)], <A(t, +h—1,)" = 5.,
Let r = max{ﬁo,ﬂ, }, then letting Q(r):{(x,u) € 1_’3:“x”2 <r, u”z <r}.

It follows that 7 : Q(r - Q(r)).since Q(r) is closed, bounded and convex, by Rieze’s theorem
(Kantorovich and akilov, 1992) it is relatively compact under 7. The Schauders theorem implies that 7" has a

fixed point (x,u) € Q(r) this fixed point (x,u) of T is a solution pair of the set of integral equations (20)
and (21). Hence the system (6) is Euclidean null controllable.
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