JASEM ISSN 1119-8362
All rights reserved

Full-text Available Online at
http:// www.bioline.org.br/ja

J. Appl. Sci. Environ. Mgt. 2003
Vol. 7 (2) 78 - 88

Object Oriented Software Development Using a use-cases Approach

!Okerinde J B; **Owolabi, O

!Information Technology Department, Shell Petroleum Development Corporation, Port Harcourt, NIGERIA
2Dept. of Mathematics/Computer Science, Faculty of Science, University of Port Harcourt, P. M. B. 5323, Port Harcourt Nigeria

ABSTRACT: This paper presents a systematic approach to the analysis and design of an online banking
system using the Use-Cases method of Jacobson. This analysis and design method will support the development of
highly effective reuseable code, thus bringing the benefits of object orientation into important software projects @

JASEM

The Object-oriented systems development methods
differ from the traditional development techniques in
that the traditional techniques view sofiware as a
collection of programs (or functions) and isolated
data. A program, according to Wirth (1975), is "a
set of mechanisms for performing certain action on
certain data". The object-oriented approach, on other
hand, insists that such approaches result from an
artificial view of the "real world" (OSM, 1999). Data
and processes cannot be considered in isolation as
each depends on, and contributes to, the other.
Object orientation considers the "real world" as
comprising a number of "objects” each of which
encapsulates data and processing elements into a
single "entity" (an object is commonly an entity in
data modeling terms). It is a combination of the
process and the data oriented approaches to system
development. As such it represents a major advance
in our ability to model systems, making their
implementation far closer to a direct simulation of
the real world. The development of object orientation
has been driven largely by the basic principles of
modularity, particularly the ability to decompose
things into self contained, highly cohesive modules
which can be combined in limitless ways to provide
a large variety of system solutions. To put it another
way, objects are identified, implemented and reused
as required. This has given rise to the concepts of the
"Software IC" which treats the software components
of a system in a similar way to "off the shelf"
integrated circuits for hardware systems. Thus an
attempt is made to make software development
easier and more natural by raising the level of
abstraction to the point where applications can be
implemented in the same terms in which the users
describe them. However, it must be appreciated that
real reusability has to be worked for and doesn't just
happen. So far, most of the work on object
orientation has concentrated on the development of
objects at the Design/Implementation level, but the

* Corresponding author

Abstracts Available Online at htp://www.inasp.org. uk/ajoljournal/jasem

same object oriented principles must be applied as
well to the analysis level in order to ensure that the
“real” objects and their references are consistently
implemented. We therefore emphasize in this paper
a method, the use-case method (Jacobson, 1994), of
object oriented analysis.

Object Oriented Sofiware “Development. System
development can be viewed as a process; the
development itself is a process of change,
transformation, or addition to an existing product.
The process can be divided into sub-processes: small,
interacting phases, that must be so clearly defined in
such a way that allows each activity to be performed
as independently as possible. Each subprocess must
possess the following (Anderson and Bergstrand,
1995);
A description in terms of how it works;
Specification of the input required for
the process;
e Specification of , the output to be
produced;
This process can be viewed in terms of the Analyse-
Design-Implement model:
Analysis translates the users' needs into system
requirements and functionality. '
Design begins with a problem statement and
ends with a detailed design that can be
transformed into an operational system. This
step constitutes the bulk of the software
development activity that includes the
definition of how to build the software.
Implementation refines the detailed design into
the system development that will satisfy the
users’ needs. It includes the system
development, and its testing.
In procedural programming, a designer examines the
entire problem to be solved and proceeds to break the
big problem into smaller pieces that can be solved

algorithmically, i.e., by a specific set of steps. After
" variables are declared, the specified sequence of
actions is followed. The program and the data are
viewed as separate entities. In the object-oriented
‘approach, on the other hand, a designer views the
system to be implemented as a set of interacting
objects. So, to code a system in object-oriented
paradigm, the programmer defines objects and
associated properties. The sequence of actions that
oceur in the running system depends on how the user
interacts with the objects.

When developing an object-oriented application,
two basic questions always arise:
¢ What objects does the application need?
e What functionality should those objects have?
For example, every Windows applications needs
window objects that can either display something or
accept input. Whenever a window displays
something, that something is an object as well.
Conceptually, each object is responsible for itself e.g.
a window object is responsible for things like
opening, sizing and closing itself. Programming in
an object-oriented system consists of adding new
kinds of objects to the system and defining how they
behave. ’

In the Object Oriented Paradigm, the
problem domain is modeled using object-classes, and
instances of the objects (Booch, 1994). An object is
any abstract or real world item that is relevant to the
system. An object-class is a grouping of these
objects. For example, in a library information system
object-classes would be such things as members,
books, etc. Objects would be instances of these
classes.

The object-oriented software development
life cycle consists of three processes: object-oriented

Okerinde, J B; Owolabi, O 79

analysis, object-oriented design, and object-oriented
implementation as shown in figure 1.

Object-oriented Analysis

The first task in Object-Oriented analysis is to find
the class of objects that will compose the system. At
the first level of analysis, we can look at the physical
entities in the system, that is, who are the players
and how do they cooperate to do the work of the
system? These entities could be individuals,
organizations, machines, units of information, or
whatever else makes sense in the context of the real-
world system. In the process of developing a model,
the objects that emerge can help in establishing a
workable system. The following are clues for finding
the candidates classes and objects:

Persons: What roles does a person play in the

system? For example, customers,
employees, of whom the system needs to
keep track.

These are physical locations, buildings,
stores, sites or offices about which the
system keeps information.

Things or event: These are events, points in time that
must be recorded. For example, the system
might need to remember when a customer
makes an order, therefore an order is an
object.

To understand the system requirement, users or the

actors should be identified. The concept of use-case

was suggested by Jacobson (1994) to describe the
user-computer interaction.

The next thing to do is to identify the
hierarchical relationship between super-classes and
subclasses before identifying the attributes
(properties) of objects, such as name, sex and age.

Places:

Build a
se-Cases Médel
Object
 Analysis
/alidate/
Analysis est
Reration and Reuse
Using OO Uker Acceptance
or ing ing Thsti Design classes, Build Obje‘ct BuiklUser
Lanmamms !) 2 Define attril agd |and dynamic hiterface and
methods odel Plototype -
i l . User Accepts _J
Implementation Design Testing

Fig 1: Object-oriented software development

identified during the analysis phase and the user
interface. Additional objects and classes that will

Object-Oriented Design: The goal of the object-
oriented design (OOD) is to design the classes

Object ariented software... 80

support the implementation of the requirements are
" also identified at this stage. For example, the object
that will be required for the user interface such as
data entry window.

Object-Oriented Implementation: Afler the object-
oriented analysis and design, it is important to
construct a prototype of some of the key components
of the system. A prototype is a version of the
software product developed in the early stages of the
product's life cycle for specific, experimental
purposes. Since object-oriented development is
highly incremental, the users’ feedback from the
prototype is used to further analyse and design the
system until the user is fully satisfied with the system
or their requirement is met before implementation is
done.

ANALYSIS, DESIGN AND
IMPLEMENTATION OF AN ONLINE
BANKING SYSTEM

Mobile Link Online Banking System
Description: n this case study, the Object-Oriented
system development methodology will be used in the
analysis, design and implementation of Mobile Link
Online Banking system. Online banking systems
have recently become very important due to the
central role of electronic banking in the new e-
commerce era (Bahrami, 1999; Winfield, 2001). The
system description is as follows: The Mobile Link
bank client must be able to deposit an amount to and
withdraw an amount from his/her accounts from any
'‘Cash Machine' of the bank in any location. Each
transaction must be recorded, and the client must be
able to review all transactions performed against a
given account. Recorded transaction must include
the date, time, transaction type, amount, and account
balance after the transaction. A Mobile Link bank
client can have two types of accounts: a current
account and a savings account. For each current
account, one related savings account can exist.
Access to the MobileLink bank accounts is provided
by a password (for personal identification). A
password should allow access to all accounts held by
the bank client. Neither a current nor a savings
account can have a negative balance. The system can
automatically withdraw money from a related
savings account if the requested withdrawal amount
on the current account is more than its current
balance. If the balance on a savings account is less
than the withdrawal amount requested, the

transaction will stop and the bank client will be
notified.

Object-Oriented Analysis for the Mobile Link Online
Banking System: The concept of use-case (Jacobson,
1994), the user-computer system interaction, is
adopted in this work. Use-case is a typical
interaction between a user and a system that captures
users' requirement and-needs. Expressing this high-
level process and interaction with the potential
system users in a scenario and analyzing it is
referred to as use-case modeling. Scenarios are used
to examine who does what in the interactions among
objects and what role they play. This interaction
among objects’ roles to achieve a given goal is called
collaboration. The Object Oriented Analysis (OOA)
consists of the following steps: identify the actors,

develop a business model using activity diagram,

develop the use-cases, develop interactive diagrams
and identify classes.

We shall follow the OOA steps listed above for the
MobileLink Banking System analysis

e Actors for the MobileLink Online Banking

System

The bank system will be used by one category of
users, which will be known as bank client
throughout this case study. Therefore the actor of the
system is the bank client. The bank client must be
able to deposit an amount to and withdraw from
his/her accounts using the system.

Business Process model for the MobileLink
Banking System

A simple activity diagram for the online banking
system starts from the bank client point of arrival at
the cash machine or ATM as shown in the Fig 2.
For any banking transaction using the online
banking system, the bank client will be required to
carry out the following activities; perform approval
process, enter bank customer number, enter
password, select type of transaction, ask type of
transaction, enter type of transaction, perform
transaction, end transaction

Use-Cases for the Mobile Link Banking System: The
following wuse-cases, modeling the interactions
between the actor (the bank client) and the bank, are
created from the system requirements, review of
existing or manual system documentation, interview,
and observations:

Okerinde, J B; Owolabi, O 82

1. Bank Transaction: The bank clients interact with the

bank system by going through the approval process after fmn!if:tmdtxe

which the bank client can perform a bank transaction. Cash Machind

2. Approval Process: The bank client enters a password. Enter Account No

The activities for the Approval process use-case are: Enter

Password and Verify Password.

3. Invalid Password: 1f the Password is not valid, an

appropriate message will be displayed to the client. This Enter password

use-case extends the approval process.

4. Deposit amount: The bank client interacts with the bank . Password not accepted
system after the approval process by requesting to deposit !)
money to an account. The client selects the account for l Password accepted

which a deposit is going to be made and enters an amount. Select

Steps involved are: Request account type, Request deposit transaction type d
amount, Enter deposit, Insert cash.

5. Deposit Savings: The client select savings account for I
More transactions

which deposit is going to be made, following same step as Porform

in deposit amount use-case. transaction

6. Deposit Current: The client select current account for]

which deposit is going to be made, following same step as {

in deposit amount use-case. l""'—_‘—'—'“
7. Withdraw amount: The bank client interacts with the Exit

bank system after the approval process by requesting to

withdraw money from an account. This use-case extends)

the bank transaction use-case. Steps involved are: Request
account type, Request withdrawal amount, Verify
sufficient, Eject cash.

Fig 2: Transaction activities

13. Current Transaction History: The client requests
a history of transactions for a current account. The
system displays the transaction history for the
current account. This use-case extends the bank
transaction use-case.

The extends association is used when we
have a use-case that is similar to another use -case
but does a bit more. For example, the Withdraw
current use-case extends the Withdraw amount use-

8. Withdraw Savings: The client tries to withdraw an
amount from a savings account. If the amount is less
than or equal to the balance, the action is performed
- on the savings account. ‘

9. Withdraw Current: The client tries to withdraw an
amount from a current account. If the amount is less
than or equal to the balance, the action is performed
on the current account.

10. Withdraw more from Current: The client tries to

withdraw an amount from his/her current account. If
the amount is more than the current account balance,
the difference is withdrawn from the related savings
account. This use-case extends the withdraw amount
use-case.

11. Withdraw Savings denied: The client tries to
withdraw an amount from a savings account. If the
amount is more than the balance, the transaction is
halted and a message displayed. This use-case
extends the withdraw amount use-case.

12. Savings Transaction History: The client requests
a history of transactions for a savings account. The
system displays the transaction history for the
savings account. This use-case extends the bank
transaction use-case.

case. The Withdraw amount use-case represents the
general case of withdrawal from any type of account.
The withdraw current now accounts for the
peculiarities of a current account withdrawal. Same
is true for the withdraw savings use-case.

The uses association occurs when a behaviour is

common to more than one use-case and we want to
avoid repetition of description of behaviour. For
example, the Approval process use-case is used by
the Bank transaction use-case.
The scenarios for the Transaction and the Current
account use-cases are shown in Figures 3 and 4.
These scenarios will have to be constructed for all
the uses-cases listed.

Object oriented software... 83

<L<USES>>

Bank transaction

<<extends>>

<fextends>>

<<actor>>
Bank client

<<extends>>

@{mss

<<extends>>

valid Password

Fig 3: Transaction usc-cases

ank transaction

Lextends>>
<<extends>>

/ithdraw\@

<<extends>>

<<éxtends>>

A¥ithdraw current

<<actor>>
Bank client

Withdraw savings

Fig 4: Current account use-cases

Classes for the Mobile Link Banking System:
Identification of classes has been described as the
hardest part of object-oriented analysis and design.
In fact, it is almost impossible to speak of a perfect
class structure or the right set of objects (Booch,
1994). This section documents the identification of
the classes for the Mobile Link Banking System
using the use-case driven approach. To identify the
objects of a system, we need to analyse the lowest
level of the wuse-cases with sequence and
collaboration diagrams. Sequence and collaboration
diagrams represent the order in which things occur
and how the objects in the system send messages to
one another. The sequence and collaboration
diagrams for some of the uses cases identified above
are shown in Figs. 5a and 5b. Using the sequence
and collaboration diagrams, the following classes

* can been be identified for the Mobile Link online

banking system: Bank class: belongs to the Bank. It
is the repository of accounts and process of the
account’s transactions. Bank Client class: an
individual that has a current account or a savings
account. Cash Machine class: allows access to all
accounts held by a bank client. Account class: an
abstract class; it defines the common behaviors that
can be inherited by other classes such as Current
Account and Savings Account.

Transaction class: keeps track of transaction, time,
date, type, amount, and balance

Current Account class: models clients’ Current
Account that allows special online withdrawal.
Savings Account class: models a client's savings
account

Okerinde, J B; Owolabi, O 84

[Bank Client l I Cash Machine l | Account | | Current Account l
Start
Kequest Password
Enter Password Verify Password
Password
Requests account Type assword OK
Enter type
Request amount
Enter amount Process transaction Withdraw current amount
Transaction successful Withdrawal successful
Dispense cash
Request take cash
Request continuation
Terminate
Fig Sa: Sequence diagram for Withdraw current use-case
5: Process transaction
2: Enter type
‘Account Fach Machine: 4 Enter amount
Definition 13: Terminate ‘BankClient
8: Transaction succeed
1: Request type
3: Request amount
9: Dispense cash
10: Request take cash
7. Withdrawal successful 6: Withdmwal current Account 11: Take cash

Current Account

12: Request continuation

Fig 5b: Collaboration diagram for Withdraw current use-case

Relationships, Atributes and Methods for the
MobileLink Banking System: Relationships: Every
object in a system interacts and relates to others that
rely on it for services and control. The associations
and their cardinalities in the MobileLink system are
shown in Table 1.

Table 1. Associations and cardinalities

Class Related class Association Cardinality
name

Account Bank Client Has One

Bank Client Account One or two

Savings Current Account Savings- One

Account Current

Current Savings Account Zero or one

Account

Account Transaction Account- Zexd or more
Transaction

Transaction Account One

Attributes
Attributes are things an object must remember such
as color and cost. To understand attributes we must
understand the system's responsibilities by
developing use-cases.

By analysing the use-cases for the system, the
following attributes can be identified for the
established classes:

Bank ciass: Branch and Address
BankClient class: firstName,
customerNumber, password and account
CashMachine class: address and state
Accounmt class: number, balance, bankClient and
transaction

Transaction class: transID, transTime, transType.
amount, postBalance
Currentdccount class:
Account (superclass)
SavingsAccount class:

lastName,

derives attributes from

derives attributes from

Account (superclass)

Object oriented software... 85

Methods

Objects not only describe abstracts data but also must
provide some services. Methods and messages
_provide services in object-oriented systems. Methods

Verify Password (), to verify the client's
password.

Account class:

Deposit ();

can be used to print an object, initialise variablWithdraw (); to be able to withdraw insufticient amount from

do some calculations. Every class is responsible for
storing methods that will be used to manage its
attributes.

For example, the account object must be
able to create transaction records of deposit or
withdrawal operation a bank client perform on an
account. From the sequence diagrams, we can
identify methods for each class in the MobileLink
Banking System as follows:

the savings account;
Create transaction ();
UpdateAccount ()

SavingsAccount class:
Withdraw (),
RetrieveAccount ();
UpdateAccount ()

CurrentAccount class:
RetrieveAccount ();

Bank class: UpdateAccount ()
BankClient class:
0O Design
Design classes, Apply design — T
methods axioms Design view/ scr satisfaction
attributes, and ecess layers and ind usability tests
associations Refine UML clats rototype ased on use cases

Continue testing

Fig 6: The Object-oriented design process in the unified approach

Object-Oriented Design for Mobile Link Banking
System: The processes involved in the Object-
oriented design phase are shown in fig 6. Attributes
design: ldentification of attributes in the object-
oriented system analysis are done in the design phase
in preparation for implementation. The main goal of
this phase is to refine and define in detail the
identified attribute and methods for the system.
Attributes represent the state of an object. When the
state changes, the changes are reflected in the values
of the attributes. An attribute can be single-valued or
multi-valued with several values at a point in time
(Nornman, 1996). A multi-valued attribute can be
used, for example, to keep tract of customers that
have visited a website. A third type of attribute is the
reference attribute which models association. For
example, a client may have one or more bank

accounts i.e. a client has zero to many instances of
Account.
The Unified Modeling Language (UML) format for
describing attributes is: visibility name : fype-
expression = initiated value where; visibilty could be
+ for public (accessibility to all classes) #
protected (accessibility to subclasses and methods of
the classes) - private (accessibility only to methods of
the class) type-expression is the type of attribute
such as string or float ; initial-value is the initial
value for the object. For example,
+custNumber:string = 1000

A complete UML class diagram showing the classes
of the MobileLink System with their attributes and
methods as well as the interactions between the
classes is shown in Fig 7.

Okerinde, J B; Owolabi, O 86

Fig 7 Unified Class diagram of the MobileLink Online Banking system showing attributes, methods and relationship between classes

Methods design: The next step in the object-oriented
design is the design of methods identified in the
analysis phase. The algorithms for the methods are
specified. Like the attribute, the by UML format for
describing a method is: visibility name (parameter
list): return type-expression where parameter-/ist is a
list of parameters, separated by commas return-type-
expression is a value to be returned by the method.
For example, +getNmane():aName

The activity diagrams for some of the methods
identified above are shown in Figs. § and 9.

The activity diagram in Fig. 8 describes the
verifyPassword method in detail. A bank client
Customer number and password are sent from the
Cash Machine object and used as argument in the
verifyPassword method. The verifyPassword method
will create a bank client object and attempt to
retrieve the client data based on the supplied
customer number using the retrieveClient method.

Fig 9 shows the current account specific withdrawal
method. It handles the possibility of withdrawing
excess funds from an associated savings account.
User Interface Design for Mobile Link Online
Banking System.

The next step is to design the user interface for the
banking system. This will enable bank clients to do
their banking from any of the banks' cash machine.
On displaying the MainUI, the client can then select
from any of the following services;

File: Exit the system by selecting exit option
from the File menu;

Current: Deposit into the current account by
selecting the Deposit option, withdraw into the
current account by selecting the Withdraw option;

Savings: Deposit into the savings account by

selecting the Deposit option,

Withdraw into the savings account by
selecting the Withdraw option;
Balance: Account balance and transaction history
can be viewed by selecting the transaction history
from the Balance menu.

&m'—l l
sz S|
i B kCTientAceessCT ManUl
Walidress : String l
BakCTent Cash Machine
_ - HhowBankCliotAccessUK)
HirstNurme : String [faddress : string wMai
#lasrNeme : String : String ["
HCustNumber : Stri -
#Password : String I ‘
+Herify Password()
Aot TransmctoulT gsAccomntUl J¢heckingAccountUl ‘
I \
Account Transacti) ‘
¢
Access Classes #rmbrer=Sring e .l
g B Adoourt. #ransID : String
ankClient: Doa I #ranstate : Date T Transoct Tronsact ‘
Bank DB ient; BankClien #transTime : Time o ° |
#transtype: String ‘
e #amount : float i
_ it () #postBalance : float
7 m!xent() #ereate T ¥
pd J:exr_xt())) #retrieve Accoumt()
: 0 #updateAccount
Account
Ci Account() ‘
wpdateCurrentAccount [urrentAcoount . Savmgsicoount
‘un'e:!,;
|
{retrieve Account() |-tetrieve Account()
JupdateAccount() {-updateAccount()
I
L

® Object oriented software ... 87

{thdraw using Account Account. withdraw (a

class method

insufficient funds

aceount
Doesn’t have savings account

A

sufficient funds

=

Withdraw using
SavingsAccount method

retumCode
=0K

T

sufficient funds

) Savings Account. withdmw
SavingsAceount. balance-
{anAmount -
CheckAccount.balance)

|

eturnCode =
Insufficient funds

.

o /

Fig 9: Activity diagram for the Current Account class withdraw method

\

Object-Oriented System Implementation:
Implementation is the Jast phase in Object-oriented
system development. It involves using any
programming language (such as Borland C++,
Visual C++, etc. that support object-orientation)
for the coding. Then follows system quality testing
and user acceptance testing. An object-oriented
database management system (OODBMS) is also
required to enable the creation and maintenance of
data. The OODBMS can be used for object
definition, object manipulation and recovery. It
allows objects to interact with other objects; objects
are 'active’ components in the object-oriented
database, unlike the conventional database system
where records play a ‘passive’ role. Modern
databases are distributed databases, which implies
that portions of the database reside on different
computers in a network. [Each portion of the
system is managed by a server,

that is, a process responsible for controlling access
and retrieval of data from the database.

RESULTS

The result of this analysis and development
exercise has been the derivation of a class
hierarchy suitable for an object oriented
implementation, given a description of the
requirements of a mobile banking software system.

The utility and effectiveness of the use-cases
approach for such a system development exercise
has been demonstrated. This approach will support
a smooth transition from system analysis and
design through to the final code.

REFERENCES

Anderson, M. & 1. Bergstrand (1995). Formalising
Use-Cases with Message Sequence Charis.
Masters thesis, Department of Communication
Systems at

Lund Institute of Technology, Sweden.

Aoki, A (1993). "Objecto shikou shi sutemo
bunseki sekkei nyuumon (Introduction to
object-oriented analysis and design)". Tokyo:
Software Research Associates, Inc, Japan.

Bahrami, A. (1999). Object Oriented Systems
Development Using the Unified Modeling
Language. Irwin/McGraw-Hill, U.S.A.

Booch, G.(1994). Object-Oriented Design with
Applications. Second Edition. The
Benjamin/Cummings Publishing Company,
Inc, Menlo Park, CA.

Okerinde, J B; Owolabi, O 88

Herbseb, JD, Klein, H, Oslon, GM, Brunner, H,
Oslon, JS, and Harding, J (1995). "Object-

Oriented Analysis and Design in Software .

Project Teams." J. Human-Computer

Interaction, 10, 249-292.

Howitz, D (1992). "Bringing objects to
mainstream MIS." Object Magazine, 2(4)
1992.

Jacobson, I (1994). Object-Oriented Software
Engineering: A use-Case Driven Approach.
Addison-Wesley, Reading, Object Technology
Series, MA.

Khoshafian, S (1990). Insight into object-oriented
databases. J. Information and Software
Technology, 32 (4).

Norman, R (1996). Object-Oriented Software
Analysis and Design. Englewood Cliffs, NJ,
Prentice-Hall.

OSM, (1999). Object Structured Modeling,
http://www.openhorizonz.co.nz/papers/osm.ht
m

Winfield, E (September 2001). Online Banking.
PC PRO, 186-201.

Wirth, N (1975). Algorithms + Data Structure =
Programs. Prentice-Hall/Manning
Publication, Englewood Cliffs.

