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ABSTRACT

Design of hydraulic structures for the storage and conveyance of water in river basins
poses major problems in ungauged catchments due to lack of sufficient stream flow
data. Improvement of stream flow data can be achieved through rainfall-runoff
modelling, where rainfall-runoff models are used to simulate stream flow. For amodel
to be used for stream flow simulation in ungauged catchments, its conceptual
parameters need to be correlated to its physical catchment characteristics, a process
known as regionalisation. [HACRES, a lumped conceptual rainfall-runoff model was
calibrated to six catchments ranging in size from 49 km? to 600 km? within the upper
Tana basin to obtain a set of model parameters that characterise the hydrological
behaviour of these catchments. Physical catchinent characteristics representing
topography, soil and land cover were derived from spatial data using GIS. By
correlating these two sets of parameters, equations were developed which related
the conceptual parameters to catchment characteristics and which enabled the
estimation of model parameters from catchment characteristics. The estimated
parameters were used to simulate stream flows in two validation catchments within
the same geographic region and the goodness of fit evaluated. The stream flows
simulated using the derived regional parameter sets agreed well with the observed
stream flow series. The R? values were 0.21 and 0.67 while the Nash-Sutcliffe
efficiency values were 0.21and 0.68 respectively. Although some R? values were
low, considering limitations of data availability and quality, the results showed that the
methodology can be used to generate stream flow data in ungauged catchments for
~ water resources planning and other management interventions.
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1.0 INTRODUCTION

The planning, design and operation of water resources systems are important
components of river basin management. The development of sound river basin
management strategies requires long term stream flow data for estimating water
balances at different points in a stream network. These data can be obtained from
catchments gauged with automatic flow recorders. However, such instruments are
expensive to acquire and maintain, hence many catchments in developing countries
are ungauged and even the gauged ones have inconsistent records. This is because
gauging stations may be insufficient, irregularly distributed or poorly maintained. Stream
flow data is therefore inadequate and need to be improved. This is achieved through
rainfall-runoff modelling using distributed, semi-distributed or lumped models.
Distributed models are complex and hence limited in application due to huge data
requirements. The less complex lumped models are widely used because they require
less input data and pose little computational burden.

Rainfall-runoff models used for generating stream flow data have either
conceptual parameters only or both conceptual and physical parameters that need to
be determined before they can be used for data generation. Conceptual parameters
are determined through model calibration, which is achieved through optimisation
algorithms, (Sorooshian and Gupta, 1995) and requires rainfall and stream flow data.
Physical parameters are determined using spatial data from topographic, soil and
land use maps in a GIS environment. Most studies on rainfall-runoff modelling have
concentrated on gauged catchments because of availability of data for model
calibration and validation. However, major problems occur in ungauged catchments
where water resources management interventions have to be carried out using limited
data. Direct adoption of models from gauged catchments is not feasible due to
variability of hydrological processes from one place to another (Pilgrim, 1983).
Rainfall-runoff models can be used to generate data in ungauged catchments after
regionalisation, which involves relating flow characteristics at gauging stations to
catchment physical and climatic characteristics. The resulting quantitative relationships
are then used to derive model parameters for the ungauged catchments, allowing
simulation of stream flows given rainfall data. Better simulation results are obtained if
the selected catchments are in the same region where there is minimal variability in
hydrological processes (Onyando et al., 2005). Models for use in regionalisation
should be those with few parameters in order to avoid over-parameterisation (Pilgrim,

- 1983; Jakeman and Hornberger, 1993). '
Various regionalisation methods have attempted to apply models to
ungauged catchments using models of variable complexity (Post and Jakeman, 1996,
1999; Kokkonen et al., 2003; Sefton and Howarth, 1998). However, such studies
have been limited in Kenya due to lack of consistent data for model calibration and
validation. Past studies on rainfall-runoff modelling have been reported by Onyando
(1994), Onyando and Sharma (1995) and Onyando and Chemelil (2004) and
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Onyando et al., (2005) who, using event based rainfall and runoff data from humid
areas of Kenya, simulated stream flows using lumped models. The main limitation of
regionalisation as a method of estimating stream flows in ungauged catchments is the
need for data from many catchments in the same region (Kokkonen, 2002). Although
use of many catchments gives better relationships between model parameters and
catchment attributes (Schaake et al., 1997), it increases the variation of climate and
physiography hence introducing more variables in the regression analysis (Seibert,
1999). Generally, catchments with similar characteristics show similar hydrological
behaviour and hence it is possible to provide a regional parameter set where parameter
values vary with measurable catchment characteristics (Seibert, 1999).

The objective of this study was to simulate daily stream flows in sub-
catchments of the Upper Tana basin using regionalised parameters of [HACRES
(Identification of Hydrographs and Components from Rainfall, Evaporation and stream
flow) model.

2.0 DESCRIPTION OF STUDYAREA

The study area lies in central Kenya between longitudes 36.58°E and 37.54°E and
latitudes 0.16°S and1.20°S, at an altitude of between 1,000 m and 4,000 m
(Figure 1). It experiences a bimodal rainfall pattern with rainfall increasing with altitude.
Stream flows are influenced by climate with topography and relief affecting seasonal
and annual rainfall distributions. The upper parts of the basin receive an annual rainfall

~ ofabout 1,200-2,400 mm, while the lower parts receive about 800-1,200 mm annually

(Jaetzold and Schmidt, 1983). These rainfall variations have an effect on stream
flows such that seasonal distribution of rainfall is reflected in stream flow variations.
Estimated potential evaporation exceeds rainfall in most parts of the basin except for
the high altitude areas, with the deficit being most pronounced in the lower catchments.
The annual average is 1,500 mm.
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Figure 1: Location and relief of study area

The area is drained by several perennial streams that include Chania, Thika, Maragua,
Rwamuthambi, Sagana and Gura, that originate from the western slopes of Mt Kenya
and the eastern slopes of the Aberdare Ranges. Flows in these streams show marked
variations in seasonal and annual volumes that pose a major challenge to the
management of water resources in the basin. The area is divided into various agro-
ecological zones with different soil types that influence land use are predominantly
clay-loams of volcanic origin that have high infiltration rates, are resistant to erosion
and are highly permeable. They are suited for coffee and tea growing. The area is
densely populated with intensive irrigated agriculture that reduces the dry season’s
- low flow in streams. ’

3.0 METHODOLOGY

3.1 The Rainfall-runoff Model

The THACRES is a lumped parameter rainfall-runoff model based on the unit
hydrograph principles that uses temperature and rainfall data to estimate stream flow.
The parameters are calibrated prior to simulation by comparison with observed stream
flow data (Jakeman and Hornberger, 1993). During calibration, four of the model’s
parameters ¢ (increase in catchment wetness index per unit rainfall in the absence of
any decrease due to evapotranspiration. It is usually set such that the volume of
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rainfall excess is equal to the total stream flow volume over the estimation period), 7,
(the recession time constants for quick flow), . (the recession time constant for slow
flow) and v _(the proportional volumetric contribution of slow flow to total stream
flow) are determined directly from the raw rainfall, stream flow and temperature
data, while the other two parameters ¢ (the rate at which catchment wetness declines
in the absence of rainfall) and f(temperature modulation factor which determines
how ¢, changes with temperature for a constant catchment wetness index (S,) are
calibrated using a trial and error procedure, optimising the model fit to the observed
data. '

IHACRES consists of two modules in series. The first module is a non-
linear loss module that converts rainfall to effective rainfall, defined as that part of
rainfall that leaves the catchment as stream flow. It uses temperature and rainfall data
to estimate relative catchment moisture index which determines the proportion of
rainfall that becomes effective rainfall. The second module is a linear unit hydrograph
‘module representing the transformation of effective rainfall to stream flow. It allows a
flexible configuration of linear stores in parallel and/or series (Figure 2), which is
identified from the time series of rainfall and stream flow data, but is either one store
only, representing ephemeral streams, or two stores in parallel, allowing both slow
and quick flows to be represented. The parsimony of the linear module ensures that
the model is defined by just six parameters, making it relatively simple in structure
compared to other conceptual rainfall-runoff models. Its parametric efficiency makes
it suitable for regionalisation studies since it is easy to relate its parameters to catchment
attributes. The six parameters may be considered as dynamic response characteristics
(DRCs), as together they can be used to predict daily hydrologic response of a
catchment. The model assumes a linear relationship between effective rainfall and
stream flow. The non-linearity normally observed between rainfall and stream flow is
accommodated in the non-linear module, which converts rainfall to effective rainfall,
the underlying concept being that catchment wetness varies with antecedent rainfall
and evapotranspiration. A catchment wetness index, S, which indicates the potential
of the catchment to produce stream flow from rainfall is therefore computed at each
time step. It varies from zero to unity, depending on the antecedent rainfall and the
rates of water loss to evapotranspiration and stream flow.
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Figure 2: Schematic representation of the IHACRES model
Source: Kokkonen et al., (2003)

A zero value of S, indicates arelatively dry catchment, with rainfall falling at this time
producing no effective rainfall, while a value of unity indicates that the catchment is
relatively saturated and all rainfall falling at this time will become effective rainfall.

The index S, is given by:

where c is the parameter that determines the impact that a unit input of rainfall has on
the catchment storage, 1, is rainfall and t_(t ) is the time constant (days) of catchment
losses at daily mean temperature t, (C) according to:

w b WwEXP 20 f L f )]
where t is the time constant (days) of catchment losses at 20°C. The constant 20°C
is areference temperature chosen depending on conditions in the study area and
may therefore vary while | is a factor describing the effect of a unit change in temperature
on the loss rate. Effective rainfall u_is then calculated according to:

1 ;
uk 5 Sk Sk 1 rk ........................................................................................ (3)

The percentage of rainfall, that becomes effective rainfall in any time step, varies
linearly (between 0 and 100 %) as the catchment wetness index varies (between 0
and unity). For calibration, the model requires time series of rainfall, stream flow and
a surrogate variable representing evaporation.

81



Journal of Agriculture, Science and Technology

3.2  TheCatchments

The area was delineated into sub-catchments using a 90 m by 90 m shuttle radar
topographic mission (SRTM) DEM and the established river gauging stations as
outlet points. The DEM was also used to derive topography based physical catchment
descriptors (PCDs) required in the development of PCD-DRC relationships. Basing
on availability of continuous rainfall and stream flow data for model calibration and
validation, six catchments were selected for the study. The selected catchments covered
a wide range of locations and morphological types with each catchment being limited
to 600 km? in order to reduce uncertainties that may result from lumping of rainfall.
The catchments were selected such that they were representative of the statistical
population of catchments in the area both geographically and in parameters space.

3.3  Hydrological Data
‘Stream flow data was obtained from the Ministry of Water Resources and Irrigation
for eight gauging stations covering the period 1970-1990. After evaluation, the period
1970-1975 was selected for further analysis because of good quality data that was
available. The criteria adopted for the selection of stations was quality of data, length
of available records, spatial distribution and minimum percentage of missing data
(less than 10% WMO, 1994). Rainfall data for 16 stations for the concurrent period
were obtained from the Kenya Meteorological Department.
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Figure 3: Delineated study catchments
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The raw data were checked to identify and fill in missing values. To fill in missing
stream flow data, an average of that particular day’s flow over a twenty year period
was taken, while missing rainfall values were filled using the inverse distance method,
which involves computing the weights of the surrounding rain gauges on the basis of
their distances from the rain gauge with the missing rainfall data (Muthusi, 2004).
Monthly temperatures for the area and period of study for were obtained from Kalders
(1988). Areal rainfalls were computed using the Thiessen polygon method, which
attempts to make allowance for irregularities in gauge locations by weighting the
record of each gauge in proportion to the area, which is closer to that gauge than to
any other gauge. '

3.4  Model Calibration and Validation
The model was calibrated with daily rainfall-stream flow time series during acommon
period of observation (1970-75) in order to account for climatic variability. For each
catchment, a real rainfall, stream flow and monthly temperature data were used to
- calibrate and validate the model. Firstly, the period of record was divided into three
non-overlapping two-year calibration periods (Jakeman ez al., 1993), which allowed
each model to be exposed to some inter-annual variability. It also balanced the
problems of variance and bias by ensuring that the hydrological response of the
catchment does not change during the calibration period. Shorter calibration periods
generally yield model parameters with very high variance while longer calibration
periods are likely to encompass changes in the hydrologic system such as a shift in
the stage discharge-rating curve (Jakeman et al., 1993). The models were therefore
calibrated for two years (1970-71, 1 972-73 and 1974-75). Since IHACRES model
assumes an initial catchment wetness index (S, ) of zero, each calibration period was
made to start and end on alow flow (in this case the month of January). The parameters
of the model that performed well with all catchments were adopted as the dynamic
response characteristics (DRCs) of these catchments and related with their physical
catchment characteristics. A model validity test was performed which involved keeping
the parameter sets obtained during calibration constant and running the model in
simulation. The resulting simulated flows were compared with the observed flows
and the goodness of fit evaluated graphically and statistically. Sensitivity tests which
involved assessing flow response to variations in model parameters were carried out
in one of the calibration catchments,. Since [IHACRES model package automatically
determines the value of parameters 7, , n.and c, only parameters | and 7, were
-varied during calibration.

3.5  Derivation of Physical Catchment Descriptors

- Physical catchment indices were derived for all catchments, to represent topography
soil and land cover using the DEM, soil and land cover maps. Based on spatial
distribution and low correlation with other indices, 14 indices were selected for further
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analysis. IHACRES being a conceptual model, no field measurements of these

- attributes were carried out and this limited the information available to quantify some -
PCDs. The inclusion of time variant indices allowed the hydrological response of
these catchments to be affected by changing land use/climate, an implicit assumption
being that the DRCs-PCDs relationships were constant and that change in either of
them did not affect the processes governing these responses. The PCDs were quantified
as follows:

3.5.1 Topographical Indices
Drainage density (D_Dens) was obtained by dividing the total length of streams
within each catchment by its area.

3.5.2 Mean Catchment Slope and Elevation (Elev.)

- These were computed from the DEM using Arc View Gis. Slope indicates the kinetic
energy available to move water towards the basin outlet and is related to total flow
as well as to base flow.

3.5.3 Stream Gradient (S_ Gradlent)

This was determined by dividing the total length of the main stream with the elevation
difference between its highest point and the outlet point.

3.5.4 Catchment Area

This is defined as the area draining to the catchment outlet and was determined using
Arc View Gis.

3.5.5 Land Cover and Soil Indices

The coverage of various land use types was derived from land use data available on
Africover maps. These areas were divided by the respective catchment areas to
obtain a dimensionless index. The same applied to soils data obtained ﬁom the digital
terrain database of East Africa map (FAO, 1997)

3.5.6 Geological and Climatic Indices

Due to lack of easily quantifiable geological data, geology was omltted asaPCD.
Climate was also omitted as it was assumed that IHACRES model is capable of
filtering out, to a sufficient extent any effects arising from different climatic descnptors
(Kokkonen et al., 2003).

3.6 Development of DRC-PCD Relationships
Using data from the calibration catchments DRC-PCD relationships were developed
through inspection, correlation analysis, principal component analysis, stepwise and
multiple regressions.

' Principal component analysis was used to identify variables that explained a
large proportion of the PCD variance. A stepwise regression was performed to
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identify PCDs with the strongest statistical relationship with DRCs. For each DRC,
the variables suggested by correlation analysis and stepwise regression were combined
~ inamultiple regression model such that each DRC was expressed in terms of PCDs
(equation 4): ‘

y (k) =b, +bx,(k) + bx (k) +--=-----r----+ b x (k) + e(k) ........................ 4)
With k = 1 --------- , N where:

-y (k) represents DRC x,(k), x,(k)..x (k) denotes the PCDs in the k™ model
simulation; N represents the total number of catchments; b b, b, b denotes the
ordinary regression coefficients obtained by minimising the regressmn residual e and
p is the number of PCDs used in the regression model. The quality of the resultant
regression model was judged by its ability to estimate the dependent variables for
observations on independent variables not used in estimating the regression
coefficients.

3.7  Validation of DRC-PCD Relationships

The developed estimation equations were validated by re-calculating the parameters
of'the calibration catchments as well as of two validation catchments. Since the purpose
of regionalisation was to estimate stream flows at ungauged catchments of the basin
and not to estimate model parameters, the usefulness of regionalisation was assessed
by comparing the estimated and observed stream flows for the validation catchments.

3.8  Sensitivity Analysis

The parameters t_ and | were varied over their calibration ranges in order to determme
the effect of thelr changes on hydrologic response. One parameter was varied
(increased/decreased by 50%) at a time while keeping the other constant at its
calibrated value. At each variation, the new parameters were used to simulate stream
flows, which were then compared with those before the variation in order to assess
the effect of individual parameter change on stream flow simulation. The aim was to
determine which parameter was most sensitive in terms of its effect on stream flow
simulation.

40 RESULTSAND DISCUSSION

The models calibrated over the period (1974-75) were found to characterise well
the hydrologic response of these catchments as they performed well over the calibration
and validation periods and also fitted well to observed data (table1). The parameter
set was therefore adopted as the dynamic response characteristics (DRCs) of these
catchments and used to derive the DRC-PCD relationships.
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Table 1: Calibration and simulation results

86

Catchment ID  Calibration Results (1974-75) Simulation Results

(1970-75)
R E R? E

4CBO7 0.79 0.91 0.66 0.85
4CB04 0.85 0.91 0.67 0.79
4CA02 0.76 0.8 0.55 0.78
4BC04 0.57 0.78 055 0.77
4BEO1 0.76 0.86 0.77 0.88
4BCO?2 0.58 085 0.64 0.86

Deviations of simulated flows from observed flows were assumed to have occurred
principally due to recorded rainfall, being unrepresentative of basin rainfall while
variations in R? values during calibration and validation was attributed to differences
in catchment characteristics.

4.1 Relationship Between Model Parameters and Catchment
Attributes

Parameter | is strongly correlated with stream gradient (Table 3), meaning that stream
gradient may have an indirect link with catchment relief and hence evapotranspiration,
through the effect of temperature. The value of parameter ¢ depends on the rate of
catchment water loss as governed by parametert and hence is related to the same
catchment attributes (Table 3). In addition, like |, it is driven by vegetation present
because of the effect of vegetation on the rate of evapotranspiration. Area has a
strong relationship with ¢ as large catchments have larger storage capacities than
small ones. As expected only two components of flow recession were identified
from rainfall and stream flow data, (Jakeman and Hornberger, 1993) and these were
represented by time constants of quick and slow flow (t,andt)as well as the relative
volumetric throughput n_ Parametert_is related to drainage density and to elevation
(Table 3). This is unexpected as in catchments with high drainage densities; water
finds its way to the stream quickly and hence is expelled from the catchment meaning
alow t value. The low recession of quick flow may therefore be due to the impact of
attributes not considered in the analysis. Firstly, all the catchments are large and



JAGST Vol. 10(1) 2008 Parameters for Stream Flow Estimation

hence in-stream travel time is more influential than the time taken to reach the stream.
In addition, since all catchments are long, it takes a long time for stream flow to reach
the outlet point. Finally, parameter Z isinversely related to most land cover attributes
and the effect of vegetation on the movement of water is to delay its movement and
increase the time it requires to reach the outlet point. The effect of this is to increase
the quick flow recession constant even in the presence of dense stream network.
The time constant governing slow flow ¢, is correlated with t meaning that as t
increases water gets time to infiltrate to the ground and become sub-surface flow
which moves at almost the same pace as the quick flow. It was expected that t, will
show an inverse relationship with catchment slope (Post and Jakeman, 1996) since
steeply sloping caichments tend to have a shorter t_as subsurface water drains from
them quickly. However, there was a small positive correlation probably because all
the catchments have steep gradients. Vegetation cover delays surface flow enhances
infiltration and hence increases base flow. The proportional volumetric contribution
of slow flow to total flow n_ranged from 0.33 to 0.85 probably due to the similarities
of these catchments in terms of soil types and vegetation cover.

Table 2: Correlation matrix for calibrated DRCs and PCDs

! t, 1/C t, t oo
Area -0.60 008 ©  -0.61 045 068 0.54
D_Dens 0.80 0.88* 0.66 0.40 027  -0.74
MeanElev.  -0.28 0.06 -0.48 0.78 064  -0.51
MeanSlop.  0.77 040 0.89 0.18 025  -0.48
S_Gradient  0.86* 0.87* 0.72 0.29 011 -0.57
AG, - -0.64 -0.66 -0.58 -0.56 047 077
AG, 070 017 -0.89 0.21 0.03 0.14
AG3B -0.30 0.47 -0.50 0.13 -022 . -0.02
FR, -0.04 0.11 0.03 -0.33 049 037
RL, 020 0.24 0.1 0.01 0.17 0.07
R -0.50 -052 -0.56 0.38 0.38 0.05
R -0.56 0.06 -0.77 -0.27 048 041
R, -0.65 0.82 -0.61 -0.03 0.13 037
M 0.94* 0.52 0.94%* 0.36 042  -0.68

*Correlation significant at 0.05 level =~ **Correlation significant at 0.01 level -
Afterinspection, correlation analysis, stepwise and multiple regressions the following

DRC-PCD relationships were obtained (Table 3), which were then used to estimate
model parameters.
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Table: 3 Developed optimized regression equations

DRCs Optimised Multiple Regression Equations of DRCs in Terms of PCDs
Y 0.013+5.233RL+3.895M,

T, -76.702+0.505D_Dens+40.946R +50.884RL,
e 162.052+1373.537M,
7 -8.181+178.720S_Gradient+9.810M,+14.201AG,
7. 65.647-0.056Area+596.878S_Gradient-20.363R,
v 0.426+1.680AG,

4.2  Evaluation of Model Performance

The quality of modelled data was judged by visual inspection of simulation hydrographs
and by two quantitative parameters R? a measure of goodness of fit and the
Nash-Sutcliffe (1970) efficiency E, which measures the deviation of observed flow
from modeled flow. It is defined as:

where: g isthe mean of the Observed stream flow.
g, isthe Observed stream flow. |

q,isthe simulated stream flow .

4.3  Simulation of Daily Stream Flows

The estimated parameters were used to simulate stream flows in two validation
catchments and a comparison made with observed flows. The R? values obtained
(0.67 and 0.19) compared well with the calibrated values of 0.68 and 0.20, showing
that the relationships were valid. Graphical plots of observed and estimated flows
(Figure 5) show good fits, except for the simulated peak flows of catchment 4ACO03,
which were underestimated. The observed high peak flows were not reflected in
concurrent high rainfalls, indicating a possible error in the recorded data. The low R?
value may be attributed to poor quality data and to differences in catchment
characteristics. In addition, this catchment is very large (1 035 km?) and errors may
arise due to lumping of rainfall.

44  Estimation of Regional Parameters

Since a functional relationship was established and validated, the DRC-PCD
relationships may be considered as a regional parameter set and used to estimate
stream flows in ungauged catchments within the geographic region given rainfall and
temperature data. The model was found to be sensitive to changes in parameter 7,
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which isthe inverse rate of water loss to evapotranspiration and to stream flow. Land
use/cover can be said to be a major driver of catchment hydrologic response.

50 CONCLUSIONS AND RECOMMENDATIONS

Regionalisation has been successfully demonstrated for the Upper Tana basin using
the IHACRES model. However, the results must be viewed in the context of the
amount and quality of data that was available to quantify the DRCs, as well as the
limited information that was available to quantify the appropriate PCDs. Regional
relationships developed between hydrologic response characteristics and physical
catchment descriptors can be used to make estimations of daily stream flows of
ungauged catchments from an appropriate rainfall and temperature time series. The
results of the study show that, with a suitable number of gauged catchments for
model calibration and validation, IHACRES model can be regionalised and used to
simulate rainfall-runoff processes in ungauged catchments of the Upper Tana basin.
The methodology can be used to generate stream flow data for planned water
resources projects in the basin. However, to improve the established DRC-PCD
relationships and enable the application of results with greater confidence, a larger
data set that explores a wider geographical space should be used.
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APPENDICES ' ,
~ Appendix 1 Description of soil types used in the study

R, - Well drained, extremely deep, dark reddish brown to dark brown, friable and
. sll ghtly smeary clay

R,- Well drained, extremely deep, dusky red to dark reddish brown, friable clay.
R,- Well drained, extremely deep; dusty red to dark reddish brown, friable clay,
with inclusions of well drained, moderately deep, dark red to dark reddish brown,
friable clay over rock.
M, well-drained, very deep, dark reddish brown to dark brown, very friable and
smeary, clay loam to clay.
Source: Exploratory soil map and Agro Climatic zone map of Kenya, 1980
By W.G Sombroek, HM.H. Braun and B.J.A. Van Der Pouw
, Kenya Soil Survey

Appendix 2. Description of land cover attributes used in the study
AG, Rain fed herbaceous crop
AG3- Rain fed shrub crop .
AG3B-Scattered rain fed shrub crop (Field density 20-40% of polygon area.) -
FR, Closed trees
RL,-Shrub savannah - ‘

. Source: (FAO, 1997 Africover Coverages)
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