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ABSTRACT

In agriculture, science and technology, experiments must be performed at
predetermined levels of the controllable factors, meaning that an experimental design
must be selected prior to experimentation. A cyclical group of a certain order in a
particular degree of a polynomial forms a rotatable design if it satisfies both moment
and non-singularity conditions of the rotatability method or criterion. In agriculture
and science, we observe what happens and, based on these observations form a
theory as to what may be true, test the theory by further observations, and by
experiments and watch to see if the predictions based on the theory are tulfilled.
Technology is the application of agricultural and scientific knowledge to practical
tasks in all of which statistical theory is crucial in the formulation of theories or
hypotheses and evolution of predictions. Suppose an experimenter is interested in
determining the relationship between a response and several independent variables.
The independent variables may be controlled by the experimenter or observed without
control. Suppose, further, that these independent variables represent all the factors
that contribute to the response, and that the exact relationship between the response
and the independent variables is the response function and, geometrically, it defines a
surface called the response surface.

In the real world, however, we rarely know the exact relationship or all the
variables which affect that relationship. One way of proceeding then is to graduate,
or approximate to, the true relationship by a polynomial function, linear in some
unknown parameters to be estimated and of some selected order in the independent
variables. Under tentative assumption of the validity of this linear model, which we
can justify on the basis of Taylor expansion of the response function, we can perform
experiments, fit the model using regression techniques, and then apply standard
statistical procedures to determine whether this model appears adequate. Since in
practice we do not know all of the factors which affect the response, we usually
select a subset of the independent variables which we believe might have significant
eftects. This selection may be made on the basis of prior knowledge, or a preliminary
experiment may be performed to screen the important independent variables out of
a larger set of possible independent variables.

~Polynomial models of order higher than two are rarely fitted in practice. This
is partially because of the difficulty of interpreting the form of the fitted surface which,
in any case, produces predictions whose standard etrors are greater than those from
the lower order fit, and partly because the region of interest is usually chosen small
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enough for a first or second order model to be a reasonable choice. Exceptions
occur in meteorology, where quite high order polynomials have been fitted, but there
are only two or three variables commonly used. When a second order polynomial is
not adequate, and often even when it is, the possibility of making a simplifying
transformation in response or in one ormore of the variables would usually be explored
before reluctantly proceeding to higher order, because more parsimonious
representations involving fewer terms are generally more desirable. This has limited
research in second order polynomials whence the gap in the mathematical world in
respect of third order polynomials particularly the development of the mathematical
formula for sequential construction in the factors leading to the current endeavour.

Once an experimenter has chosen a polynomial model of suitable order, the
problem arises as how best to choose the settings for the independent variables over
which he has control. A particular selection of settings, or factor levels, at which
observations are to be taken is called a design. Designs are usually selected to satisfy
some desirable methods or criteria chosen by the experimenter. These methods or
criteria include the rotatability method or criterion and the method or criterion of
minimising the mean square error of estimation over a given region in the factor
space. The present endeavour represents an attempt to meet, in part, this need in
third order polynomial models using the rotatability method or criterion along with
the cyclical group of order six to generate the point sets. The criterion or method of
rotatability says that the variances of estimates of the response made from the least
squares estimates of the Taylor series are constant on circles, spheres or hyperspheres
about the centre of the design. Thus, a rotatable design, that is, a design which meets
this criterion or method, could be rotated through any angle around its center and the
variances of responses estimated from it would be unchanged while the cyclical group
of order six generating point sets provides the set of points on which the criterion or
method of rotatability is applied.

Specifically, the problem considered is that sequential choice of combinations
of levels of independent variables will enable the experimenter to approximate a
functional relationship by fitting a Taylor series expansion through terms of order
three by the method of least squares and will also follow the criterion or method of
rotatability in six factors. Such a sequential choice of combinations of levels of the
independent variables will be called a third order rotatable design in six dimensions
or factors. The objective is to have eventually the mathematical formulation of third
order rotatable designs in a finite number of factors, as is the case for second order
rotatable designs. Already in the literature, we have third order rotatable designs in
five dimensions or factors but there is no mathematical formula of their sequential
construction like we have for second order rotatable designs. This is necessary
because when such sequential designs are used, the results of the experiments
performed according to the five dimensional designs need not be discarded when
appending the sixth factor. In soil science for instance, continuous cultivation of crops
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may exhaust previously available mineral elements, necessitating sequential appendage
ofthemineral elements which become deficient in the soil in time among other examples.

In our endeavour, we were able to append the sixth factor. However, the
other aspects of the problem for further study would include the practical field
application after the estimation of the free or arbitrary parameters-employing the
general equivalence theorem, which states that the minimisation ot the generalised
variance of the estimates of the coefficients which are linear in the polynomial models
is equivalent to the minimisation of the maximum variance of the estimated response
to identify specific optimum designs of order three and the mathematical formulation
for third order rotatability. The moment and the non singularity conditions are
by-products of the criterion or method of rotatability which the cyclical group of
order six generated points satisfy.

Key words: Five dimensions, rotational designs, sequential, six dimensions, third
order
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1.0 INTRODUCTION

The technique of fitting a response surface is one widely used, especially in the chemical
industry to aid in the statistical analysis of experimental work in which the yield of a
product depends, in some unknown fashion, on one or more controllable variables.
Before the details of such an analysis can be carried out, experiments must be performed
at pre-determined levels of the controllable factors, that is, an experimental design
must be selected prior to experimentation, (Bose and Draper ,1959).

Box and Hunter (1957) suggested designs of a certain type, which they
called rotatable, as being suitable for such experimentation where the variance of the
estimated response is constant at points equidistant from the centre of the design.
Such designs permit a response surface to be fitted easily and provide spherical
information contours. They geometrically chose the N sets of points at which
observations are to be made corresponding to the N points in the space of the
variables. Box (1952) discussed the problem arising when it is possible to choose in
advance the N combinations of levels at which a set of quantitative factors are to be
heldina set of N experiments to determine the slopes of a regression surface assumed
planar.

Box and Wilson (1951) and Box (1952), as ameans of specifying the extent
of variation for a given factor, defined the unit for this variable as
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A second order rotatable design aids the fitting of a second order surface and a third
order rotatable design aids the fitting of a third order surface, (Draper, 1960).
Herzberg (1967b) found that the variance of the difference between the estimated
responses at any two points in the factor space is a function of the distances of the
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two points from the centre of the design and the angle subtending the points at the
centre for a rotatable design.

Box and Wilson (1951) described the experimental attainment of optimum
conditions mainly in answer to problems of determining optimum conditions in
chemical investigations, but believed that the methods would be of value in other
fields where experimentation is sequential and the error fairly small. Gardiner et al.
(1959) considered a problem arising in the design of experiments for empirically
investigating the relationship between a dependent and several independent variables,
all variables beirig continuous. They assumed that the form ofthe functional relationship
is unknown, but that within the range of interest, the function may be represented by
aTaylor series expansion of moderately low order. Specifically, they considered that
choice of combinations of levels of the independent variables which, one, will enable
the experimenter to approximate a functional relationship by fitting a Taylor series
expansion through terms of order three, by the method of least squares and, two, will
have the property of rotatability.

The problem of fitting a curve to the relationship between the concentration
of a stimulus and the proportion of individuals responding probably goes back to
Gustav Theodore Fechner who, in 1860, transformed proportions to the
corresponding normal deviates for data from psychological experiments. Certainly,
Box and Wilson’s paper (1951) and the large number of papers by Box and his
associates, which followed it in the next decade, constitute the single most powertul
source of ideas in the investigation of response surfaces, but many of the fundamental
ideas had been used and discussed much earlier as the case of Fechner indicates.

Following on the lines of Huda (1982), Patel and Mutiso (1992) and Koske
and Mutiso (2005), we consider the problem'of constructing third order rotatable
designs in six dimensions from those in five dimensions such that the experiments
performed according to the five dimensional designs need not be discarded when
analysing the six dimensional designs. The designs constructed allow experiments to
be performed sequentially in the factors by starting with experiments involving five
factors only. After performing a five dimensional design, the experiments may be
stopped if it is felt that the sixth factor is not really needed, while if'it is felt that
another factor should have been included, the experimenter may proceed by the
method presented without discarding the original results. The number of additional
experiments required to convert the five dimensional designs into six dimensional
designs is smaller than the number of experiments required by the designs with the
minimum number of experiments among the available six dimensional third order
rotatable designs which are all non-sequential in the factors. The designs presented
may therefore be more economical.
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2.0 ' THE CONSTRUCTION OF SIX DIMENSIONAL DESIGNS FROM
FIVE DIMENSIONAL DESIGNS

It is known from Box and Hunter (1957); Bose and Carter (1959) and Gardiner,
Grandage and Hader (1959) that a set of N points (N > 7) equally spaced on a circle
centred at the origin satisfies the moment requirements of a third order rotatable set
and hence, two-dimensional third order rotatable designs may be constructed by
combining such point sets associated with two or more distinct circles, Huda (1982).

Huda (1982) constructed three-dimensional third order rotatable designs
which share some of the features of the designs constructed by Herzberg (1967a).
Patel and Mutiso (1992) extended the work to four -dimensional third order rotatable
designs. Koske and Mutiso (2005) recently constructed five-dimensional third order
rotatable designs. Suppose such a design is given by the points
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(0,0,0,0,0, 400),
(0,0,0,0,0, ),
(0,0,0,0,0,+y).

For this set of points the following conditions hold:
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and all other sums of powers and products up to order six are zero. It follows that
this set of points forms a third order rotatable design in six dimensions if:
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Let p? =tp] (t = 0,1) Then the last two equations in (2.2) are simultaneously
satisfied if there exists t such that:

(1+1')’  162.53968
(1+12%)? N

: - (2.4)
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3.0 APPLICATIONS
The levels of the factors in each treatment could either be qualitative or quantitative
depending on the nature of the experiment. Once the experiment is carried out, the
exact response surface could be fitted using the method of least squares, which can
then be used to obtain the levels of the factors at which the response is optimum.

Experiments of this kind are widely conducted in the fields of human medicine,
veterinary science and agriculture, providing useful information.

In the discussion on Box and Wilson’s paper (1951), Box defined experiments
which include all combinations of several different treatments or factors as factorial |
experiments but it was adopted that all experiments with factors are factorial
experiments. Wilson emphasised that the practical application of these methods is
not automatic, that judgment is required, and that a bad experimenter suffers here as
in any other method of experiment - a bad experimenter being one who is not fully
aware of what he does and who applies an insufficient intellect to his results.
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The current endeavour is geared to construct in sequence third order rotatable
designs in k factors on the lines of those in second order.
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