DETAILED STRUCTURE OF PIPE FLOW
WITH WATER HAMMER OSCILLATIONS
P N. Kioni
Department of Mechanical Engineering, Jomo Kenyatta University of Agriculture
and Technology, Nairobi, Kenya

ABSTRACT ‘
Herein, the evolution and detailed structure of velocity and pressure fields of an
oscillating axi-symmetric pipe flow arising from a rapid closure of a valve has been
determined through the solution, by the finite volume technique, of the full Navier
Stokes equations. The method correctly predicts the distortion of the pressure
waveform. 'he two-dimensional solution obtained confirms the one-dimensional
solution ebtained by the method of characteristics of the two-equation model
incorporating frequency dependent friction typically used in modelling of transient
pipe flows. ’
The velocity field following valve closure is seen to consist of the initial velocity
profile upon which is superimposed an oscillating velocity component. The oscillating
component is uniform in a pipe cross-section, at any instant. However, the profiles of
initial steady state flow component and the uniform oscillating flow component are
progressively distorted as the cumulative distance traversed by the wave increases.
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1.0 INTRODUCTION ‘ '
Transient flow, and associated wave propagation, is a frequent occurrence in pipe
systems. In some cases, the feature is imposed on a flow by virtue of the characteristics
of an appliance, such as a reciprocating pump, connected to the system, and operations
such as pump starts and pump trips. In other cases, such as in the water-hammer

' phenomenon, the feature is a natural response of an entire system to temporal change
at aboundary or at a critical section of a flow. Under conditions of transient flows,
large pressure surges, may be generated and they may be destructive to the pipe
systems. Thus, in design of pipe systems, such conditions are avoided or a system is
designed to withstand the most adverse pressure conditions it may experience. The
need to accurately predict the magnitude of such pressure surges and the conditions
und: + which they occur has been a major driving force in the study of transient flows.

The governing system of equations which is normally the basis of numerical
a:ialysis of transient flow in pipe systems consists of two equations describing the
conservation of mass and of linear momentum. The development of these equations
is well documented by Wylie and Streeter (1983). In their most general form, they
are nion-linear hyperbolic partial differential equations in which the dependent variables
are pressure and the mean flow velocity at a flow cross-section, whereas the
independent variables are time and the distance along the axis of the flow conduit.
The pair of equations has been solved for most applications using the method of
characteristics which has been the most popular technique with major writers in the
field, Wylic et al. (1983), Chaudhry (1987) and Wylie (1996).

In the application of the two-equation model to transient flows, it is necessary
to modify the friction term to incorporate the dependence of fluid friction on the rate
of change of velocity. Zielke (1968) has given a suitable friction term model for
laminar transient pipe flow. The friction models for turbulent transient flows have
been given by Vardy et al. (1991 and 1994).

This one-dimensional approach makes the numerical analysis of long pipe
neiworks tractable and has been successful in providing the key information required
in the design of a large variety of engineering systems in which flow transients are
important. Further insight into the way in which the pressure field is coupled to the
velocity field, and knowledge of how the flow field interacts with the pipe system
devices, for example valves, may be obtained through two or three-dimensional
analysis of the flow. However, the two or three-dimensional analysis requires a number
of grid points per unit length of the pipe and, therefore, may be applied only to short
pipe sections in the areas of' interest.

Presented in this paper is a model for obtaining the detailed pressure and
velocity field solutions for the water-hammer phenomenon for an axisymmetric pipe
flow. The model consists of the full Navier-Stol.¢s equations, the mass conservation
equation and a compressibility equation. These are solved using a finite volume
technique. The model is applied to obtain a solution for laminar flow field subsequent
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to sudden closure of a valve in a pipeline. This solution is compared to the one-
dimensional solution obtained for the two-equation model incorporating frequency
dependent friction, see Zielke (1968), and solved by the method of characteristics.

2.0 GOVERNINGEQUATIONS AND BOUNDARY CONDITIONS
The independent variables are the time ¢ and the spatial coordinates x and r of a
cylindrical coordinate system, in which x is aligned with the pipe axis. The dependent
variables are the axial and radial velocity components u and v, respectively, pressure
p and density r. Thus, the conservation equations are for
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Closure of the system of governing Eqs (1) - (3) is achieved through the compressibility
equation, namely,
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where K is the bulk modulus of a fluid. In Egs (2) and (3), v .y is defined as
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2.1 Assumptions

The following assumptions have been made:

] The flow is laminar.

(1) The dynamic viscosity is constant.

(iii) There are no body forces.

(iv)  Theeffective bulk modulus, X is constant

w) The pipe is rigid. Hence there is no change in volume of the computational
space due to change of pressure.

(vi)  Thereis no separation of liquid column or formation of vapor cavities.

(vi)  The flow is axi-symmetric.

2.2 Boundary Conditions

Solution of the above system of governing equations requires suitable boundary
conditions to be imposed. These are specified as given below for the pipe flow
configuration illustrated in Figure 1. The no slip condition, # = v = (), is imposed at
the wall, r = R. At the line of axi-symmetry, r = 0, the condition imposed is v =

0,0u/0r = 0,and dp/or = 0. Attheinlet, x = 0, the pressure is specified. At the

outlet, x = L, the velocity is specified during the valve closure, thereafter, there is no
flow across the boundary and the no-slip condition is applied.

2.3  Discretisation and Numerical Solution of the System of Governing
Equations g
The discretised form of the system of governing equations, corresponding to equations
(1) - (3), are second-order accurate in space, and are obtained following the finite
volume formulation as described in Patankar (1980). The Euler implicit scheme is
applied for the temporal differencing and a hybrid of upwind and central difference
scheme s used for the spatial derivative terms. A collocated grid, in which the velocity
u and v, density r, and pressure p are evaluated at the same cell centre, is used
instead of a staggered grid. This is achieved by approximating the mass flixes at cell
interfaces following the procedure in Rhie and Chow (1983).
The compressibility equation is discretised on the Euler implicit scheme to
give the following equation;

n

(p”“’ - p”)= (p"‘” - p")% ........................................................................... (6)

Equation (6) is used in the approximation of the time derivative of density in the

discretized continuity equation and in updating density field, p"*', every time anew

pressure field, p”*', is evaluated. The superscripts n and n + / denote the times ¢
and ¢+ 1/, respectively.
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The discretised system of the governing equations is solved following PISO (pressure
implicit with splitting of operators) Issa (1990), which is a pressure based non-iterative
procedure and which is, in many ways, similar to SIMPLE method (Patankar, 1980).
The procedure is based on an operator splitting concept in which evaluation of the
solution at each time step involves a predictor step followed by two corrector steps.

In the predictor step the discretised momentum equations are each solved implicitly
to obtain a preliminary velocity field solution. In this predictor step, the pressure field

is taken to be that determined at the end of the previous time-step. The preliminary
velocity field solution does not satisfy mass conservation equation. Mass conservation

is enforced in the corrector steps. In the first corrector step the preliminary velocity
field solution is utilised in the implicit solution of the discretised pressure equation to
obtain the pressure field, and subsequently, the mass fluxes at the cell interfaces.

These cell interface fluxes satisfy the mass conservation equation. Using the new
pressure field and the new mass fluxes, an updated velocity field and density field are
obtained. In the second corrector step, the updated solutions are used in the
determination of final and more accurate solutions for the pressure field, interface
mass fluxes, velocity and density fields as done in the first corrector step.

3.0 RESULTS AND DISCUSSIONS

The flow configuration consists of a pipe which is connected to a reservoir at one
end and 10 a valve at the other end. Throughout this simulation the flow is laminar.
The initial condition for the simulation is a steady state pipe flow in which the valve is
fully open. The valve is closed over a short period t measured from the onset of the
closure. The closure time ¢ used is short enough to ensure that the Jowkowsky
pressure rise, that is, the possible maximum pressure rise, is attained.

The principal objective in this study is to obtain two-dimensional solutions of
the flow problem by finite volume technique. However, for purposes of validating the
finite volume procedure, solutions are also obtained by the method of characteristics.

The two-equation model solved by the method of characteristics (MoC)
incorporates the frequency dependent friction, which is implemented as given by
Zielke (1968). The problem solved is that considered by Zielke (1968) and for
which experimental data is given by Holmboe and Rouleau (1967). Hence, the flow
is inarigidly held pipe of diameter is 25.4 mm, length 36.088 m, kinematic viscosity

39.67 cm® /s , and a wave speed, ‘a’, of 1324.4 m/s.

The MoC solution obtained in this work is shown in Figure 2 where it is
compared with the experimental data reported in Holmboe and Rouleau (1967).

Non-dimensional pressurerise p /(apU,) and non-dimensional time, / [, are used.

The symbol U, denotes the initial mean velocity at the valve. It is seen that the MoC
model correctly predicts the pressure waveform. In the subsequent pfesentation, the
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one dimensional MoC solutions are used for validating the finite volume technique
(FVT).

In the set-up considered above, the pipe is rather long for the problem to be
conveniently modelled using the FVT, hence a direct comparison of the FVT solution
to the experimental data is not possible. With the FVT, solutions are determined for
pipe of length 1.4 m and diameter 10 mm and a fluid of dynamic

viscosity 35 70x10 kg/ms, density 900kg/m’, and bulk modulus

1.579 GN / m* . Hence, the properties are those of the fluid used in Holmboe and

Rouleau (1967).

In the finite volume case, the process of valve closure is simulated by reducing
the velocity from the steady state value to zero following the complementary error
function in which time is the variable. The complementary error function is used in
order to provide both the steep change of velocity required in sudden valve closure
and stability for the numerical process. Preliminary analysis indicates that, for a given
closure time, the subsequent flow phenomenon is not sensitive to the closure function.
At the inlet boundary, the Dirichlet condition is applied for velocity and the pressure
is the initial static pressure head. At the outlet boundary, no pressure specification is
required since the velocity is known.

To ascertain that the results are independent of the grid, numerical solutions
were obiained on amesh consisting of 31 x 101 and 51 x 151 points in the radial
and axial coordinates, respectively, with a time step of 2 microseconds. On the latter
mesh, a solution was obtained with a time step of 0.2 microsecond and, thus, it was
ascertained that for a time step of 2 microseconds, the solutions are independent of
the time step size. The solutions so obtained are shown in Figure 3. In this figure,
pressure time-histories are plotted for (a) a point at the valve and (b) a point mid-
way along the pipe. It is seen that there is virtually no difference between the solution
obtained onthe 151 x 51 mesh and that obtained on the 101 x 31 mesh.

An additional solution was obtained for a pipe of length 0.675 m so as to
determine the solution’s sensitivity to pipe length. This solution is shown in Figure 4.
(The pipe length of 0.675 m and above is sufficiently long to allow full development,
within the length, of the oscillating pipe flow; this was confirmed in numerical
experiments in which simulations were carried out for different pipe lengths.)

It 1s seen in the pressure time histories shown in Figure 3 for pipe length of
1.4 m that there is good agreement between the solution obtained by the MoC and
that obtained by the FV'T. Specifically, the following is noted. The Jowkousky pressure

rise, given by Ap = aplU

0

is obtained. The wave speed obtained in the finite volume
solution is 1324 m/s, and this is equal to the expected wave speed determined from
the input data using the formula ¢ = JE /T(; . It is also observed that the pressure
waveform is a bit distorted in the following three ways. First, during and immediately




Journal of Agriculture, Science and Technology

following valve closure, the pressure rises steeply to approximately the Joukousky’s
value and then marginally for some time before dropping steeply. Second, in
subsequent oscillations, the rate of change of pressure decreases as it approaches
the maximum or minimum values. However, in a half cycle, the maximum rate of
change occurs immediately after the maximum or minimum value has been attained.
Third, there is a progressive decrease of amplitude and an increase in waveform
distortion in the subsequent cycles. For the set-up considered, the extent of distortion
of the pressure waveform is dependent on the cumulative distance traversed by the
wave. Thus, the distortion per cycle is greater in the configuration with longer pipes,
as seen in Figure 4.

Shown in Figure S is the evolution of the velocity profile at a cross-section
mid-way along the pipe for two cycles of the velocity-time history. Each of the two
cycles cover the period between (a) points A and B, and (b) points C and D shown
in Figure 3(b). Hence, they are, respectively, in the first and the third cycles of the
oscillations following the valve closure. The actual velocity profiles u(r) are plotted in
parts (i), whereas in parts (i1) of the figure are the profiles of the velocity relative to
‘the initial steady-state velocity, that is, u(7) "u_(r). In this section of the pipe, the
radial component of velocity is zero. In the plots the parabolic shape of the initial
velocity is evident. It is seen that at any instant subsequent to the valve closure, the
velocity in a pipe cross-section is made up of the initial steady state profile upon
which is superimposed an oscillating component. The oscillating component is tnitially
uniform int & pipe cross-section. It is always opposite in direction to the initial flow
direction, and its lowest magnitude in a cycle is zero. However, the no-slip condition
at the pipe wall causes distortion of the profiles. This distortion is most pronounced
in a thin layer at the pipe wall. The distortion increases with time as the cumulative
distance traversed by the wave increases.

4.0 CONCLUSIONS
In this paper a numerical model for two and three-dimensional solution of transient
flow problems has been presented. The model consists of the Navier-Stokes,
continuity and the compressibility equations as the system of governing equations
which are solved using a finite volume technique. In this paper, the model has been
applied to obtain detailed solution of the flow field following sudden closure of a
valve in a pipeline. The model correctly predicts the pressure waveform and the
distortion thereof associated with the varying influences of the inertial and frictional
forces. The results agree with the one-dimensional solution obtained by the method
of characteristics for the two-equation model in which a frequency dependent friction
term is incorporated.

It has been found that the velocity protilc at any section, away from the
valve, is the sum of the initial steady state velocity profile, before the onset of the
valve closure, and an oscillating velocity component. The oscillating velocity component
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has a uniform profile across a pipe section at any instant. The oscillating component
is the result of the pressure wave propagating back and forth in the pipe. The two
components of the velocity are progressively distorted as the camulative distance
traversed by the wave increases. The model presented in this paper may be used as
a tool for numerical study of detailed velocity and pressure flow fields in a short pipe

section encompassing a pipeline device or a region in which an event of interest
occurs.
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Nomenclature

L- pipe length

R- pipe radius

K - bulk modulus of fluid

U, -  initial mean velocity at the valve

a- wave speed

g- body foice

p- pressure

t - time coordinate

u - axial velocity component

V- radial velocity component

X - axial space coordinate

r- radial space coordinate

Greek and Other symbols

VvV -  divergence operator

Dp - maximum pressuretise

coefficient of dynamic viscosity
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r- density

Subscripts
c- identifies valve closure point
o - identifies initial value
”___ Pipe Wall
Inlet Boundary
— Boundary
R ’L (Valve Location)
: Pipe Axis
X L |

Figure 1: An illustration of the flow configuration
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Figure 2. Experimental data and method of Characteristic (MoC) solutions
for the pressure time history for a 36.088 m long pipe (a) at the
~lve and (b) mid-way along the pipe
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Figure 3: Pressure time history MoC solution and Finite-Volume Technique
(FVT) solutions, computational mesh 151x51 and 101x31, fora 1.4
m.long pipe (a) at the valve and (b) mid-way along the pipe
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Figure 4: Pressure time history MoC solution, for a 0.675 m long pipe, and
Finite-Volume Technique (FVT) solutions, for 0.675 m and 1.4 m
long pipes, (a) at the valve and (b) mid-way along the pipe
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Figure 5: FVT velocity field solutions midway along the 1.4 m pipe shown as
(i) overall velocity profile and (ii) velocity profile relative to initial
steady state profile at different times in two cycle between (a) points
A and B, and (b) points C and D shown in Figure 3




