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ABSTRACT
Necessary and sufficient conditions for a matrix AeB(¢,¢;) were determined by K.

Knopp and G. G. Lorentz in 1949. Necessary and sufficient conditions for a matrix

AeB(¢y,¢,), p=l were determined and their proof presented along classical lines in

L

1970 (Maddox I,ﬁ 970). A sufficient condition for a matrix A € B(/ ool ) 1< p <0 was

given by (Maddox I, 19’{0/\ /)

.
-

In 1971, Crone solved the problem for

AeB(/,,£,)(Maddox I, 1980 ). In 1981 H.R. Pitt determined a necessary condition for
y v
amatrix A€ B(£,,¢,), p>q21, ~+1=1,pqe R (Ruckle,\jwsl).
P g

But never before have necessary and sufficient conditions for a matrix

Ae B, L, Xp> 1,—1~ L= 1) been determined. In this paper we determine necessary and
r q
e
sufficient conditions for a matrix 4 € B({ p,ézgl;f;j),} P21l ;@ >1) such that

1 1 .. . -
—+ —l— =l=—+ —I—,— . From these conditions, necessary and sufficient conditions for a
P q P q

matrix A € B(¢,,¢,),p 21 are easily determined. We also present the proof for the
necessary and sufficient conditions for a matrix A € B(£,£,),p 21 along the modern

functional analytic methods.
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NOTATIONS

ma (Z, gl: Epa [

B(X,Y),

|| x denotes respectively the set of real

numbers; the set of complex numbers; the absolutely summable sequences; the p-
absolutely summable sequences; the bounded sequences; a Banach space; the algebra of
bounded operators in X; the algebra of bounded linear transformations from X into Y and

the norm of a bounded operator A in the space X.

”x“ will denote the norm of a vector £ in X while

A = (ag): X —» Y, the action of an infinite matrix A from X into Y provided

-
Z Qi Xy
k

converges in the Y-norm for x = (Xk)kzl~

X and Y in our investigation will be restricted to some form of ¢, (p 2 1)y

1.0 INTRODUCTION

Let &, = (0,0, ... 1,0, 0 ...)" denote a sequence with zero entries except 1 in the k™

position, then each ¥ = (X1 in X or Y has a unique representation

If we denote the k™ column of the matrix

A = (ag) by ¥, = (anx) n21 = A€, then A = (ag): X — Y has a unique representation

o o
xzz x,Ade, = Zx,,vk .................................... [T 2
k=1

k=1

provided A is continuous (Franekic,1974).
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Theerem 1.1

The matrix A = (an) € B(¢4), £p) if and only if

) "}k = (ank) n21 € gp

0 P
11
() sgpglankl <o

‘Furthermore

1
ah-sup| 3"l

The Matrix B class

The proof along classical lines was presented in 1970 ( Maddox (1970 ) which covers the

first part only.
Proof: (Necessity)

() b, =4é.et,

Ae,

@ [, =

= sup[[y, <[]
= sup|[p, | <o
k

1. sup[i|ank|p} <0
k n=1

(Sufficiency)

By the representation equation (2) i.e.

k=1

L4 0
Nzl 2 kel e < sup e 2 |
k=1 k=1

- supl

A,

71

<4, k=1,2, ...
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Thus 4] <suplfi|

This last inequality and the necessity part inequality both imply

: J

af=supl, s 3l |
n=}

2.0 RESULTS

Theorem 2.1

Letp>1,p =1 and q, ¢’ be such that —11;+l=1 = —17+—17 then
q p q

A = (an) €B(¥4p, £y) if and only if

(1) ";k = (ank )nzl 4 Y

! <o
l,’,,,

i S
k=1

Furthermore

eI

T35}

Proof: (Necessity)

() Clearly v, =4¢, el ,

(iiy  If N is an arbitrary positive integer and f be any linear functional on £, of unit

norm then we define

N
0 =3"sgn £ (5, )5, ”Z;' é,.
k=]

pa—_—
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A
q:l”

then "2‘” ) ”::1 whence

A(N) Y A
), - 2.

If 2M=

le‘”’li

. 1 o (-l on
AFN = J?(N)‘ kz:; ”q l Ae,

1 & A NIA 197 A

= M) ; ) "q Vi
. 1 & e pn el pon
FAE) =D Wl £
1 ad ~ (g1 ~

= lx(N) Z.; “vk “ \f(v" )l

(A*f) 3™ = ,(l,,) 5] B e 3

In the last equation, we consider v, as an element of the second dual space and thus

¥ ||=”ﬁk H . The last expression in equation (3) is non-negative so that

7R

A JIg-1{=

su “A* ">sup[ Al
Ut =Y
Using the inequality (4)

442 ] <~)” Sl ﬁplv(f )

g r e YRR A
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N
F )ll

|4*|=|4] on a Banach space

2 “

N
2. [P <[4

N 1
~ A P
Sl <l SR |

S Tt

and N being an arbitrary positive integer then

< -

b

:l < ”Au ........................................................... 5

(Sufficiency) We make use of the representation equation (2) i.e.

AR =" x,9,.
k=]
By Hélder’s inequality

A

[Ewr] [En

4% < 2 bl |9
k=1

1
q q
¢y
1

1 ’ 1
:I since we note here that %], = [i lx.|” ] g
14

k=1

Thus | 4] < {z o

Now the last inequality above and the inequality (5) imply that

M- |3

q
A 1

\4

k gp,:l
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0

e
< |-

k=1

Theorem 2.2

i

The £, - norm n(p)= [Z|xx|p ],, reduces to the supremum norm (sup norm), n(p) =
x=l

sup|x,,| as
k21

p—>

Proof: By Jensen’s inequality, if s > p then

Sl <[$ k]

k=1 k=1

N -

Thus 7 (p) is monotonic decreasing and non-negative hence

lim n (p) = inf 7 (p)

p-ro p>0

If xx =0,k =1, 2,3, ... then there is nothing to prove, If on the contrary there exists k

such that x # 0 then xx — 0 (k = ) implies theze is an integer k, such that

ixkol = sup |x,,| .
k

Ix/c(,l <n(p).

sup|x,| <7 (p) forall values of p
k

hence sup |x, | inf 7 (D) covovviiiiiini i 6
P p>0
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To reverse the inequality, we consider the following argument.

Let N be any positive integer. Denote

I

N " R
[Z MPY by 7™(p). Then n™(p) - n(p)as N — w.

k=1

1 1
N - N - \
7" (p) = [Z |xk|py < [Z }xkl.’pjlp = Ix/co‘N;
e ' P
lim ™ (p) < ’xko} as N* =1 (p~>w®)
,7—)173

If £ > 0 there exists a positive integer N' such that

n(py<n ™ (p)+e

(N}

})ijgry (p)+e.<./xknl+€

Since N described above is arbitrary, we could set it equal to N’ so
lim7 (p)< limn '(p)+& and

lim77(p) <|x, |+

and since ¢ I> 0 is arbitrary we have

lim 77 (p) < [x, |

Hence

limn (p) = {xk“( = sup |x,| by the inequality (6).
> K

T4
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Corellary 2.3

Letp=1and A = (ay) € B (4}, £,) then the necessary and sufficient conditions are

Q) b =@u)wmel, k=12

i) sup| Pl<o
) sl 32 fan
Proof: By theorem (2.1)set p=1and p' =p then p =1 implies q —» co hence

A1
uﬁﬂﬂiwmymmw¢bmmmmm@
' k=1 » & »

g—ro

Then sup [
k

n=1

Ia,,k |p] <o which is condition (ii). Condition (i) follows from
v, = Adé, et
The sufficiency is proved from

0
Ax = Z XV
k=1

0 o
48 < 3 bl 9] < sup 9. 2. |
k=1 k=1

= sup [, [
Thus A is bounded.

Corollary 2.4 Our results in (5) indicate that if A = (an) € B (¢;) then

ank

n=|

T
g Jp is easily deduced from

77

M, {z P

= e
Q|-

|4

k=1 n=]

)= {Z [Z lankl”']

by setting p' =p.
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3.0 CONCLUSION

We have established that 4=(a,,) &B (¢,,£,, ), if and only if

(1P =(an e £,

@3 fl', <

Furthermore
=3 b, }

1
q

2[5 iankt"']’%

k=l \ n=]

The Matrix B class

We have also proved using modern functional analytic methods that a matrix

A=(a,,)e B(¢,,¢ ) if and only if

) ‘;k =(ank )nZ] eEp

) Sl;({pi ]a,,k[”<oo
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