The Matrix Class B
$$(\ell_P, \ell_P')$$
 $p \ge 1$, $p \ge 1$ $\downarrow A_{SL}$ $\land b_{\times}$

J.S.K. Mutekhele and J.R. Akanga 2

ABSTRACT

Necessary and sufficient conditions for a matrix $A \in B(\ell_1, \ell_1)$ were determined by K. Knopp and G. G. Lorentz in 1949. Necessary and sufficient conditions for a matrix $A \in B(\ell_1, \ell_p)$, $p \ge 1$ were determined and their proof presented along classical lines in 1970 (Maddox I, 1970). A sufficient condition for a matrix $A \in B(\ell_p, \ell_p)$, $1 was given by (Maddox I, 1970). In 1971, Crone solved the problem for <math>A \in B(\ell_2, \ell_2)$ (Maddox I, 1980). In 1981 H.R. Pitt determined a necessary condition for a matrix $A \in B(\ell_p, \ell_q)$, $p > q \ge 1$, $\frac{1}{p} + \frac{1}{q} = 1$, $p,q \in \Re$ (Ruckle, 1981).

But never before have necessary and sufficient conditions for a matrix

 $A \in B(\ell_p, \ell_p)(p \ge 1, \frac{1}{p} + \frac{1}{q} = 1)$ been determined. In this paper we determine necessary and sufficient conditions for a matrix $A \in B(\ell_p, \ell_p)$, $p \ge 1$, $p \ge 1$) such that

 $\frac{1}{p} + \frac{1}{q} = 1 = \frac{1}{p^1} + \frac{1}{q^1}$. From these conditions, necessary and sufficient conditions for a

matrix $A \in B(\ell_p, \ell_p)$, $p \ge 1$ are easily determined. We also present the proof for the necessary and sufficient conditions for a matrix $A \in B(\ell_1, \ell_p)$, $p \ge 1$ along the modern functional analytic methods.

KEY WORDS: Banach spaces; Matrix, Class B

¹ Department of Mathematics, Egerton, University, P.O. Box 536, Njoro. Kenya;

² Department of Mathematics and Statistics, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000, Nairobi, Kenya Email: akangajotham@yahoo.com

NOTATIONS

 \Re , $\not\subset$, ℓ_1 , ℓ_p , ℓ_∞ , $(X.\|\|)$, B(X), B(X,Y), $\|A\|_X$ denotes respectively the set of real numbers; the set of complex numbers; the absolutely summable sequences; the passolutely summable sequences; the bounded sequences; a Banach space; the algebra of bounded operators in X; the algebra of bounded linear transformations from X into Y and the norm of a bounded operator A in the space X.

 $\|\hat{x}\|$ will denote the norm of a vector \hat{x} in X while

 $A = (a_{nk}): X \rightarrow Y$, the action of an infinite matrix A from X into Y provided

$$\sum_{k} a_{nk} x_{k}$$

converges in the Y-norm for $\hat{x} = (x_k)_{k \ge 1}$.

X and Y in our investigation will be restricted to some form of ℓ_p ($p \ge 1$)

1.0 INTRODUCTION

Let $\hat{e}_k = (0, 0, \dots 1, 0, 0 \dots)^t$ denote a sequence with zero entries except 1 in the kth position, then each $\hat{x} = (x_k)_{k \ge 1}$ in X or Y has a unique representation

$$\hat{x} = \sum_{k=1}^{\infty} x_k \hat{e}_k \dots 1$$

If we denote the kth column of the matrix

 $A = (a_{nk})$ by $\hat{v}_k = (a_{nk})_{n \ge 1} = A \hat{e}_k$ then $A = (a_{nk}): X \to Y$ has a unique representation

$$A\hat{x} = \sum_{k=1}^{\infty} x_k A\hat{e}_k = \sum_{k=1}^{\infty} x_k \hat{v}_k \dots 2$$

provided A is continuous (Franckic, 1974).

Theorem 1.1

The matrix $A = (a_{nk}) \in B(\ell_1, \ell_p)$ if and only if

(I)
$$\hat{v}_k = (a_{nk})_{n\geq 1} \in \ell_p$$

(II)
$$\sup_{k} \sum_{n=1}^{\infty} |a_{nk}|^{p} < \infty$$

Furthermore

$$||A|| = \sup_{k} \left[\sum_{n=1}^{\infty} |a_{nk}| \right]^{\frac{1}{p}}$$

The proof along classical lines was presented in 1970 (Maddox (1970) which covers the first part only.

Proof: (Necessity)

(i)
$$\hat{v}_k = A\hat{e}_k \in \ell_p$$

(ii)
$$\|\hat{v}_k\|_{\ell_p} = \|A\hat{e}_k\| \le \|A\|.$$
 $\mathbf{k} = 1, 2, ...$
$$\Rightarrow \sup_{k} \|\hat{v}_k\| \le \|A\|$$

$$\Rightarrow \sup_{k} \|\hat{v}_k\|^p < \infty$$

i.e.
$$\sup_{k} \left[\sum_{n=1}^{\infty} |a_{nk}|^{p} \right] < \infty$$

(Sufficiency)

By the representation equation (2) i.e.

$$\begin{split} A\hat{x} &= \sum_{k=1}^{\infty} x_{k} \hat{v}_{k} \\ \|A\hat{x}\| &\leq \sum_{k=1}^{\infty} |x_{k}| \ \|\hat{v}_{k}\| \leq \sup_{k} \|\hat{v}_{k}\| \sum_{k=1}^{\infty} |x_{k}| \\ &= \sup_{k} \|\hat{v}_{k}\|_{\ell_{p}} \|\hat{x}\|_{\ell_{1}}. \end{split}$$

Thus
$$||A|| \leq \sup_{k} ||\hat{v}_k||$$

This last inequality and the necessity part inequality both imply

$$||A|| = \sup_{k} ||\hat{v}_{k}|| = \sup_{k} \left[\sum_{n=1}^{\infty} |a_{nk}|^{p} \right]^{\frac{1}{p}}$$

2.0 RESULTS

Theorem 2.1

Let $p \ge 1$, $p' \ge 1$ and q, q' be such that $\frac{1}{p} + \frac{1}{q} = 1 = \frac{1}{p'} + \frac{1}{q'}$ then

 $A = (a_{nk}) \in B(\ell_p, \ell_{p/})$ if and only if

$$(i) \qquad \hat{v}_k = (a_{nk})_{n \ge 1} \in \ell_{p'}$$

(ii)
$$\sum_{k=1}^{\infty} \left\| \hat{v}_{k} \right\|_{\ell_{p'}}^{q} < \infty$$

Furthermore

$$||A|| = \left[\sum_{k=1}^{\infty} ||\hat{v}_k||^q\right]^{\frac{1}{q}} = \left[\sum_{k=1}^{\infty} \left(\sum_{k=1}^{\infty} |a_{nk}|^{p'}\right)^{\frac{q}{p'}}\right]^{\frac{1}{q}}$$

Proof: (Necessity)

- (i) Clearly $\hat{v}_k = A\hat{e}_k \in \ell_{p'}$
- (ii) If N is an arbitrary positive integer and f be any linear functional on $\ell_{p'}$ of unit norm then we define

$$\hat{x}^{(N)} = \sum_{k=1}^{N} \operatorname{sgn} f(\hat{v}_{k}) \|\hat{v}_{k}\|_{\ell_{p'}}^{q-1} \hat{e}_{k}.$$

$$\|\hat{x}^{(N)}\|_{\ell_p} = \left[\sum_{k=1}^N \|\hat{v}_k\|^q\right]^{\frac{1}{p}}$$

If
$$\hat{z}^{(N)} = \frac{\hat{x}^{(N)}}{\|\hat{x}^{(N)}\|}$$
 then $\|\hat{z}^{(N)}\| = 1$ whence

$$A\hat{z}^{(N)} = \frac{1}{\|\hat{x}^{(N)}\|} \sum_{k=1}^{N} \operatorname{sgn}(\hat{v}_{k}) \|\hat{v}_{k}\|^{q-1} A\hat{e}_{k}$$
$$= \frac{1}{\|\hat{x}^{(N)}\|} \sum_{k=1}^{N} \operatorname{sgn}f(\hat{v}_{k}) \|\hat{v}_{k}\|^{q-1} \hat{v}_{k}$$

$$f(A\hat{z}^{(N)}) = \frac{1}{\|\hat{x}^{(N)}\|} \sum_{k=1}^{N} \operatorname{sgn} f(\hat{v}_{k}) \|\hat{v}_{k}\|^{q-1} f(\hat{v}_{k})$$
$$= \frac{1}{\|\hat{x}^{(N)}\|} \sum_{k=1}^{N} \|\hat{v}_{k}\|^{q-1} |f(\hat{v}_{k})|$$

$$(A*f)\,\hat{z}^{(N)} = \frac{1}{\|\hat{x}^{(N)}\|} \sum_{k=1}^{N} \|\hat{v}_k\|^{q-1} \left| \ddot{\hat{v}}(f) \right| \dots 3$$

In the last equation, we consider \hat{v}_k as an element of the second dual space and thus

 $\|\hat{v}_k\| = \|\ddot{v}_k\|$. The last expression in equation (3) is non-negative so that

$$||A * f|| \ge |(A * f)\hat{z}^{(N)}| = \frac{1}{\|\hat{x}^{(N)}\|} \sum_{k=1}^{N} \|\hat{v}_k\|^{q-1} |\ddot{\hat{v}}_k(f)|$$

$$\sup_{\|f\|=1} \|A * f\| \ge \sup_{\|f\|=1} \left[\frac{1}{\|\hat{x}^{(N)}\|} \sum_{k=1}^{N} \|\hat{v}_{k}\|^{q-1} |\ddot{\hat{v}}_{k}(f)| \right]. \tag{4}$$

Using the inequality (4)

$$\begin{split} \|A^*\| &\geq \frac{1}{\|\hat{x}^{(N)}\|} \sum_{k=1}^{N} \|\hat{v}_k\|^{q-1} \sup_{\|f\|=1} |\ddot{\hat{v}}(f)| \\ &= \frac{1}{\|\hat{x}^{(N)}\|} \sum_{k=1}^{N} \|\hat{v}_k\|^{q-1} \|\ddot{\hat{v}}_k\| \qquad Note \|\ddot{\hat{v}}_k\| = \|\hat{v}_k\| \end{split}$$

$$=\frac{1}{\left\|\hat{x}^{(N)}\right\|}\sum_{k=1}^{N}\left\|\hat{v}_{k}\right\|^{q}$$

 $||A^*|| = ||A||$ on a Banach space

$$\sum_{k=1}^{N} \|\hat{v}_{k}\|^{q} \leq \|A\| \|\hat{x}^{(N)}\|$$

$$\sum_{k=1}^{N} \|\hat{v}_{k}\|^{q} \leq \|A\| \left[\sum_{k=1}^{N} \|\hat{v}_{k}\|^{q} \right]^{\frac{1}{p}}$$

$$\left[\sum_{k=1}^{N} \left\|\hat{v}_{k}\right\|^{q}\right]^{\frac{1}{q}} \leq \left\|A\right\|$$

and N being an arbitrary positive integer then

$$\left[\sum_{k=1}^{\infty} \left\|\hat{v}_{\kappa}\right\|^{q}\right]^{\frac{1}{q}} \leq \left\|A\right\| \qquad 5$$

(Sufficiency) We make use of the representation equation (2) i.e.

$$A\hat{x} = \sum_{k=1}^{\infty} x_k \hat{v}_k.$$

By Hölder's inequality

$$\left\|A\hat{x}\right\| \leq \sum_{k=1}^{\infty} \left|x_{k}\right| \left\|\hat{v}_{k}\right\| \leq \left[\sum_{k=1}^{\infty} \left|x_{k}\right|^{p}\right]^{\frac{1}{p}} \left[\sum_{k=1}^{\infty} \left\|\hat{v}_{k}\right\|_{\ell_{p'}}^{q}\right]^{\frac{1}{q}}$$

Thus
$$||A|| \le \left[\sum_{k=1}^{\infty} ||\hat{v}_k||_{\ell_{p'}}^q\right]^{\frac{1}{q}}$$
 since we note here that $||\hat{x}||_{\ell_p} = \left[\sum_{k=1}^{\infty} |x_k|^p\right]^{\frac{1}{p}}$

Now the last inequality above and the inequality (5) imply that

$$\left\|A\right\| = \left[\sum_{k=1}^{\infty} \ \left\|\hat{v}_k\right\|_{\ell_{p'}}^q\right]^{\frac{1}{q}}$$

$$= \left[\sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} \left| a_{nk} \right|^{p'} \right)^{\frac{q}{p'}} \right]^{\frac{1}{q}}$$

Theorem 2.2

The ℓ_p norm $\eta(p) = \left(\sum_{\kappa=1}^{\infty} |x_{\kappa}|^p\right)^{\frac{1}{p}}$ reduces to the supremum norm (sup norm), $\eta(p) = \frac{1}{p}$

$$\sup_{k\geq 1} |x_k| \quad as$$

$$p \rightarrow \infty$$

Proof: By Jensen's inequality, if s > p then

$$\left[\sum_{k=1}^{\infty} |x_k|^s\right]^{\frac{1}{s}} \leq \left[\sum_{k=1}^{\infty} |x_k|^p\right]^{\frac{1}{p}}$$

Thus η (p) is monotonic decreasing and non-negative hence

$$\lim_{p\to\infty}\eta\left(p\right)=\inf_{p>0}\eta\left(p\right)$$

If $x_k = 0$, k = 1, 2, 3, ... then there is nothing to prove. If on the contrary there exists k such that $x_k \neq 0$ then $x_k \to 0$ ($k \to \infty$) implies there is an integer k_0 such that

$$\left|x_{k_0}\right| = \sup_{k} \left|x_k\right|.$$

$$\left[\sum_{k=1}^{\infty} |x_k|^p\right]^{\frac{1}{p}} \ge \left[\left|x_{k_0}\right|^p\right]^{\frac{1}{p}} = \left|x_{k_0}\right| \text{ and }$$

$$\left|x_{k_0}\right| \leq \eta\left(p\right).$$

 $\sup_{k} |x_k| \le \eta \ (p) \ \text{ for all values of p}$

To reverse the inequality, we consider the following argument.

Let N be any positive integer. Denote

$$\left[\sum_{k=1}^{N} |x_k|^p\right]^{\frac{1}{p}} \text{ by } \eta^{(N)}(p). \text{ Then } \eta^{(N)}(p) \to \eta(p) \text{ as } N \to \infty.$$

$$\eta^{(N)}(p) = \left[\sum_{k=1}^{N} |x_{k}|^{p}\right]^{\frac{1}{p}} \leq \left[\sum_{k=1}^{N} |x_{k_{0}}|^{p}\right]^{\frac{1}{p}} = |x_{k_{0}}| N^{\frac{1}{p}}$$

$$\lim_{p\to\infty}\eta^{(N)}(p)\leq \left|x_{k_0}\right| \text{ as } N^{\frac{1}{p}}\to 1 \ (p\to\infty)$$

If $\varepsilon > 0$ there exists a positive integer N' such that

$$\eta(p) < \eta^{(N')}(p) + \varepsilon$$

$$\lim_{p\to\infty}\eta^{(N)}(p)+\varepsilon\leq \left|x_{k_0}\right|+\varepsilon$$

Since N described above is arbitrary, we could set it equal to N' so

$$\lim_{p\to\infty}\eta(p)\leq\lim_{p\to\infty}\eta^{(N)}(p)+\varepsilon \text{ and }$$

$$\lim_{p\to\infty}\eta(p)\leq \left|x_{k_0}\right|+\varepsilon$$

and since $\varepsilon > 0$ is arbitrary we have

$$\lim_{p\to\infty}\eta\left(p\right)\leq\left|x_{k_{0}}\right|$$

Hence

$$\lim_{p\to\infty}\eta\ (p)=\left|x_{k_0}\right|=\sup_{k}\left|x_{k}\right|\ \text{by the inequality (6)}.$$

Corollary 2.3

Let $p \ge 1$ and $A = (a_{nk}) \in B(\ell_1, \ell_p)$ then the necessary and sufficient conditions are

(i)
$$\hat{v}_k = (a_{nk})_{n \ge 1} \in \ell_p$$
. $k = 1, 2, ...$

(ii)
$$\sup_{k} \left[\sum_{n=1}^{\infty} \left| a_{nk} \right|^{p} \right] < \infty$$

Proof: By theorem (2.1) set p = 1 and p' = p then p = 1 implies $q \to \infty$ hence

$$||A|| = \lim_{q \to \infty} \left[\sum_{k=1}^{\infty} ||\hat{v}_k||_{\ell_p}^q \right]^{\frac{1}{q}} = \sup_{k} ||\hat{v}_k||_{\ell_p} \text{ by the theorem (2.2).}$$

Then $\sup_{k} \left[\sum_{n=1}^{\infty} |a_{nk}|^{p} \right] < \infty$ which is condition (ii). Condition (i) follows from $\hat{v}_{k} = A\hat{e}_{k} \in \ell_{p}$

The sufficiency is proved from

$$A\hat{x} = \sum_{k=1}^{\infty} x_k \hat{v}_k.$$

$$\begin{split} \left\|A\hat{x}\right\| &\leq \sum_{k=1}^{\infty} \ \left|x_{k}\right| \left\|\hat{v}_{k}\right\| \leq \sup_{k} \ \left\|\hat{v}_{k}\right\| \sum_{k=1}^{\infty} \ \left|x_{k}\right| \\ &= \sup_{k} \ \left\|\hat{v}_{k}\right\| \ \left\|\hat{x}\right\|. \end{split}$$

Thus A is bounded.

Corollary 2.4 Our results in (5) indicate that if $A = (a_{nk}) \in B(\ell_p)$ then

$$||A||_{\ell_p} = \left[\sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} |a_{nk}|^p\right)^{\frac{q}{p}}\right]^{\frac{1}{q}}$$
 is easily deduced from

$$||A||_{(\ell_{p},\ell_{p'})} = \left[\sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} |a_{nk}|^{p'}\right)^{\frac{q}{p'}}\right]^{\frac{1}{q}}$$

by setting p' = p.

3.0 CONCLUSION

We have established that $A = (a_{nk}) \in B (\ell_p, \ell_{pl})$, if and only if

$$(1)\hat{v}_k = (a_{nk})_{n\geq 1} \varepsilon \quad \ell_{p^1}$$

$$(2) \sum_{k=1}^{\infty} \left\| \hat{v}_k \right\|_{\ell_{\rho^1}}^q < \infty$$

where
$$\frac{1}{p} + \frac{1}{q} = 1, \frac{1}{p^1} + \frac{1}{q^1} = 1$$

Furthermore

$$||A|| = \left[\sum_{k=1}^{\infty} ||\hat{\mathbf{v}}_k||_{\ell_{p^1}}^q\right]^{\frac{1}{q}}$$

$$= \left[\sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} |a_{nk}|^{p^1} \right)^{\frac{q}{p^1}} \right]^{\frac{1}{q}}$$

We have also proved using modern functional analytic methods that a matrix

$$A=(a_{nk}) \in B(\ell_1, \ell_p)$$
 if and only if

$$(1) \hat{v}_k = (a_{nk})_{n \ge 1} \in \ell_p$$

(2)
$$\sup_{k} p \sum_{n=1}^{\infty} |a_{nk}|^{p} < \infty$$

ACKNOWLEDGEMENT

The guidance of Dr. K.C. Sogomo of Egerton University in this work.

78

REFERENCES

- Dunford N. and Schwartz J. (1958) *Linear Operators Part I.* p50, Interscience Publishers, New York.
- Franckic D. (1974) Matrix, almost matrix and Tauberian Operators on l.c. spaces. Ph.D. Thesis, p. 50-62, Lehigh University, Amsterdam.
- Maddox I. (1970) *Elements of Functional Analysis*. p165-174, Cambridge University Press, London.
- Maddox I. (1980) *Infinite Matrices of Operators. p 15 Lecture notes 786*, Springer-Verlag, Berlin Heidelberg, New York.
- Ruckle W (1981) Sequence Spaces.p. 138-139, Pitman, London.