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ABSTRACT

In this paper we study the variance estimators for the combined ratio estimator
under an appropriate asymptotic framework. An alternative bias-robust variance
estimator, different from that suggested by Valliant (1987), is derived. Several

variance estimators are compared in an empirical study using a real population.

1.0 INTRODUCTION

The problem of variance estimation is an important one in sample surveys. It is
made much more important by the fact that the two main competing approaches to
sample survey theory suggest different variance estimators for a given population mean
‘ les't';mator. This has aroused a lot of intefest among researchers to find out which
method of variance estimation is appropriate for a given population mean estimator.

" One such study is that by Valliant (1987). Valliant studied, among other
things, the prediction properties of the variance estimators, for the cofixbined ratio
estimator. However, we note that the asymptotic framework used by \;ailiant is not
appropriate for the combined ratio estimator. He considered the case when the sample
size within each stratum tends to infinity and the number of strata is fixed. This is a
situation where the separate ratio estimator, rather than the combined ratio estimator,
is used in practice. We also note that some of the variance estimators were not
considered in Valliant's study. For example, the BRR (Balance Repeated Replication)
variance estimation technique was not considered.

In this paper we examine the prédiction properties of the variance estimators
for the combined ratio estimator. We consider the case when the number of strata
tends to infinity while the sample size in each stratum remains bounded. We also

derive an alternative bias-robust variance estimator for the combined ratio estimator.
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2.0 THE COMBINED RATIO ESTIMATOR AND ITS ERROR - VARIANCE

The population consists of H strata with N, elements in the h - th stratum from

- which a simple random sample of size n,is taken without replacement. The total
sample sizen = Znh and population size N = ZNh . Throughout this paper the
summation sign is from 1 to H. Associated with the i-thunit of the h - th stratum are
two values y,; and x,,. Y is the variable under investigation while x is a variable
assumed known for each unit of the populatioﬁ. For the h-thstratum let
W, =N, /N be the stratum weight, f, =n, /N the sampling fraction, ¥,,%, , Y,,
X, the y and x sample and population means respectively. One common estimator of

Xy

Y =2 W,Y, is the combined ratio estimator, ¥ , given by Yo =3

5t

s
where 7, =2 W,¥,, X, =2 W,%, and X=) W,X,.
A framework (Krewski and Rao, 1981) for asymptotic calculations in stratified
random sampling is to let H tend to infinity and n, remain bounded. To prevent any
stratum from playing a dominant role, it is often further assumed that W, n/n, is

bounded uniformly in h (Wu, 1985). The followings assumptions will be made in all

the asymptotic calculations in the rest of this paper.

(i) Max (n,)=0(1) D)
(i) Max (W, )=0o(n"")

(iit) As N, N and n grow, f, — 0 and both the sample and population remain
stable in the sense that the sample and population averages X , X, , X,, X\,
X all converge to non zero constants.

The combined ratio estirﬁator is often studied under the following model (Wu,

1985);
EY,; = &, + fxy
o’x,, i=j
cov(YYy)= @)
0 i#]
D= W,a, =0
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The side constraint D = 0 is unnatural but indispensable. Under model (2.2), the error-

variance of ¥, is
N,-2n, _

Var(ys‘ ) (X/xst) {ZW; .._i:]_.n m + sz X“)/N
h''h

Zﬁ(xh %)% -X)

] wa XY
fo

+;(3"ZW2(_ Xh)z N, |

By Nh

where %" »ﬂ,fZ xj,and X{ = N;'D"xj;  Under conditions (2.1), this error-
1

3

variance reduces to

Var(§ o - ¥) = (X/x,. ) Z—~x"’<72+0(1/nN) .................. ()

3.0 BIASES OF THE VARIANCE ESTIMATORS
We now investigate the biases of the variance estimators in estimating (3)
3.1 THE CONVENTIONAL ESTIMATOR
A variance estimator that is conventionally associated with the combined ratio

estimator is given by

ost z W 2 T Sih

here S, =(n ~l)"nzh/ .
a = \Ihy 4 Yui xhiYyX—hJ

Under model (2) and using assumptions in (1) the model bias of V, is

obtained as
Bias(V,,) = [l X/X.,) ] lZ———x"’ +0{1/nN)

—\2 Ca . . =
Hence the relative bias of V_ is ( X,/ x) ~ 1which is an increasing function of X, and

vanishes only in samples balanced on x, i.e. when X, = X. The condition X, = X is

st

satisfied if the sample from each stratum is balanced on x.
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3.2 THE LINEARIZATION ESTIMATOR
This estimator was originally suggested by Wu{1985) and is given by
Vi = (X’/ist)z\/os‘. Under model (2) and to order O(l/ nN) this estimator can easily

be shown to be unbiased.

3.3 THE JACKKNIFE ESTIMATOR

A commonly used version of the jackknife estimate of variance for some
, A . o > n, -1
estimator ¢ in stratified sampling is given by Vj(é): $‘~~§~~~»(1 f, )2 (9“‘ }
&y

where 6" has the same form as @ but omits the h-th sample observation. Under

(2.2), using assumptions (1) and with the extra assumption that

‘W (% ~ )/(nh - 1)3("“[< 1 for all h and 1, it can easily be shown that to order

0(1/nN), V, ((3) for the combined ratio estimator is unbiased.

3.4 BRR VARIANCE ESTIMATOR

Assume we have a sample obtained by selecting two units from each stratum.
Let 6 be the estimate of the population parameter 6 based on the entire sample S.
Then the BRR method of estimating the variance of 6 is as follows. From each

stratum one out of the two sample units is selected to form anr - th sample denoted by

H, .
This process is repeated R times to form R replicates. Define d} =1 or
d; = -1 if the first or the second sample unit, respectively, in the h-th stratum is in

the r-th half sample. Also let
( if df =1

O =
ifd = -
Then Y =¥, + Ay, where Ay, = %(yh] ~ yhz) Now let ¥ be the estimate of Y

based on the r- th half sample where

BN
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=¥q + Wud, Ay,

Hence the estimate of 6 = g(Y) based on the r- th half sample is 6 = g(ly“’",) and one
version of the BRR estimator of the variance of & is given by
oy _1_ 2 S AV
ve(d)= =2 (¢ g)

In the case of the combined ratio estimator,

o _g_ X [Fut ZWadity, _ }
X, I+ Ay, t
2 W, dyAx
where 8, = SN <y, -, )

st
Assuming all the A, are less than one in absolute value and using the orthogonality

R
ofthe d ’si.e. Zd{‘d;} = 0, 1t can be shown that under model (2)

r:1
b:h,

EVB((?) (x/x, ) YW, /%0 + g (x/x“) b3 ’f(Axh)z +0{i/nN) (5
Comparing (5) and (4) (with n, = 2) shows that to order 0(1/nN), v ( )has bias
/)’z(f/fﬂ)lzwﬂxb)zzWf(A%’h)z

Thus VB( ) 1s positively biased and the bias is an increasing function of the

model parameter # The bias does not vanish in balanced samples.

3.5 BI1AS - ROBUST VARIANCE ESTIMATOR

In this section we obtain a bias-robust variance estimator using the procedure
of Royall and Cumberland (1978). To do this we assume a special case of model (2)
1e.

EYh =ﬂxﬁ

cofy,.Y,)=1 L (6)
0 1# ]
Valliant- (1987) has also obtained a bias-robust variance estimator using (6) as a
working model. However the estimator he obtained is different from the one we
obtain here. The difference arises because of the difference in the way residuals under
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6 are defined. Valliant uses the BLU estimator of 8 under 6 to define the residual.

On our part we have rewritten the combined ratio estimator in the predictive for from

which we have obtained the implied estimator of £ and then used this implied

estimator to define the residual.

Under 6 the estimate of the population mean is of the form.
T= N"'{Z 0,9y, + ,L}ZZX;M} where summation over r indicates summation over
non-sample units. Rewriting ¥ in the predictive form

- — | ~

Yo = N I{Z 0,y +?(I‘xyy/xst - any)Tx}

Yex Where T, = ZZXM and T, = z N,x,, we conclude that under 6, ¥, uses

-~ 1 o
A= T (Tx?st / X, — Znh?h) as an estimate of . Hence the residual is given by
Ty = Vi — Py ‘

Note that Er,=0. Under a more general model in which the variance of

thehi - th unit is v,;, the expected value of the squared residual is Er; = Vhi(l ~d,)

o - 2 N
2% (= i | NuX , ' <
where d,, =- Th‘ (X/t,%, -1)- %L—ﬂjﬁ-«nh} Vh/nh}and Vo =05 Vi
1

X X Vhi xst

— 2 . .
When v,; = 07x,,, d,; is simply

2%, (s RN ’
K :%]&(X/fh-ist “1)" )z(]ll {,‘ :,X “nh} nhib}

X xVh’ st

1

2
Thi

ny,
Theref der 6 timat f ol is o bvo? =
erefore under 6 an estimator of ¢ is given by = . ; (1 - KL,)/ 2%,

Substituting this value in 3 (with t =1) we obtain a bias-robust variance estimator, v, ,

of the combined ratio estimator. Another éstimator can be obtained by using 4.

4.0 EMPIRICAL STUDY

We tested the theory of the préceding section using a population of 64 cities in
the United States. The variable y is the population size of each city in 1930 and the
auxiliary x is the corresponding population size of each city in 1920. this data set is
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e Combined Ratio Estivator

(anshecm et

atter plot of y verses x {not

Walula Variance Eetimation for
given in table 5.1 of Cochran (1977). Based on the sc

given here), a combined ratio estimator seems a reasonalbile estimator (o use.

The population was divided mto two strata by sorting units in ascending order
on x and then splitting it into two equal parts, the first stratum consisting of the first 12
units with the smallest values of x and the second consisting of the 32 units with the
largest values of z Simple random samples of equal size were selected without
replacement from each stratum. This sample selection procedure was repeated 2000
times for two sample sizes - 2 units per stratum for a sample size of 4 and 16 units per
stratum for a total sample size of 32

The following variance estimators were included in the study v .. v,

Y
Isg ? R,

ast

v,and v,. The estimator v, was not included in the sets of samples with total

samples with total sample size 32 because 1t would have required grouping of their
units before applying it. For each sample, the combined ratio estimator and the five
variance estimators were computed.

Table 1. Summary statistics for standardized errors and estimators of variance from

2000 stratified simple random samples

Estimator Sample Size ( _@Béf»_;_‘f‘_]ﬁ{, F;?;} \ VA S SZE>2.201 QSZEEEZ.?_QE
MSE /220

Vo 4 0.95 26.8 0.0 732
32 0.98 23 .4 00 76.6

Vo 4 0.83 26.9 0.0 731
32 0.97 231 0.0 76.9

v, 4 0.89 25.5 0.0 74.5
32 1.00 226 0.0 77.4

Vi, 4 0.89 23.6 0.0 76.4
32 0.98 22.7 0.0 773

Vp 4 0.93 243 0.0 757
32

Relative error of §, was 0.0015 for sample size 4 and 0.0006 for sample size 32.
As guaranteed by probability sampling theoryV., is approximately unbiased
over all samples for all the two sample sizes. At sample size 32 all the variance

estimators are nearly unbiased with vj being somewhat conservative. All the variance
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estimators are under estimates as sample size 4. Table 1 also contains the 95%

confidence coverage results over the 2000 samples. The standardized error (SZE)
defined as (V. - ?)/vl/ 2 was computed for each sample and each variance estimator
v The percentages of samples with SZE <-2.201, SZE>2.201 and |SZE| <2.201 were
computed. All the variance estimators gave relatively poor coverage rates at all sample
sizes. Interestingly, all the excess SZEs are negative. A possible reason for this is
given later.

We also performed conditional -analysis of the variance estimators. Samples
were sorted in ascending order of X and divided into 10 groups of 200 samples each.
In each group the averages of the errory ., -¥, the biases of the variance estimators
and the percentage of samples with |SZE}<2.201 were computed. Results for the
conditional coverage rates are given in table 3 and those for the conditional biases in
Table 2 Note that the resulis in tables 2 and 3 are given in ascending order of X
The theory in the preceding sections showed that under 2.2 the bias of v_, is an
increasing function of X, This result is well illustrated by the conditional biases
given in Table 2. For sample size 32, other estimators also tend to underestimate when
%, 1s smail and overestimate when X, is large.

In general all the variance estimators gave better coverage probability rates in
the lower tails of the X, distribution than in the upper tails. This seems to suggest that
the biases of the variance estimators are not the major determinants of the poor
coverage rates of the associated confidence intervals. If they were, it would have been
expected that the coverage rates are better in the upper tail of the X distribution than
in the lower tail.

The major determinant of the poor performance seems to be the large positive
correlations between the numerators and denominators of the standardized errors. The
correlations associated with the five variance estimators were computed for each of the
groups. The correlations range from 0.39 to 0.97 in samples of size 4 and from 0.92
to 0.95 in samples of size 32. The correlations also tend to be small in the lower tails‘
than in the upper tails of the X, distribution. |

As noted earlier, all the excess $7Es are negative. The reasori for this lies in

the large positive correlations between the numerators and denominators of SZEs.

3
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Thus when ¥, 1s small, giving negative error, the variance estimators also tend to be

small producing large negative SZEs. On the other hand, when ¥, is large, giving

positive error, the variance estimators tend to be large preventing a large positive SZE.

Table 2. Conditional

Biases of the Combined Ratio Estimator and its Yariance

Estimators
| Sample Size 4
Yer Vo Vo \z Vg, Vi
1.65 297.0 332 37.1 51.8 74.
-5.67 -187.6 -47.6 -42.6 -25.6 (WA
~5.00 -07.2 4477 55.8 49 8 875
-3.05 -91.9 -15.1 8.8 595 §54
-5.77 -113.6 -78.1 -59.5 21.0 -25.2
13.10 -1443.0 -1441.5 -982 .4 »1058.9‘ -855.5
23.98 -1574.0 -1916.0 -1338.3 -160G6.5 -1126.3
1.60 1314 -496.0 ~280 .3 -472.8 -115.2
-10.96 145.0 -296 4 -218) -286.0 -125.6
-5.89 -773 8 258.5 308 ¢ -267.5 422.3
Sample Size 32
Yer Vst V st v Vi
1.87 -303 -21.5 ~16.2 -10.3
-0.01 -53.9 -427 -37.8 -35.6
1.59 -15.2 13 -2.1 -1.5
-0.48 -16.5 -11.8 =71 -8.2
0.3 -16.6 -10.0 5.1 -7.9
0.94 43 2.8 76 32
-(0.53 | 51 -9.8 -5.3 -1E3
-0.79 59 ~2.8 1.4 -6.3%
-0.37 333 19.2 233 131

37.5

362

00 .89 56.1
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Table 3. Conditional coverage rates

Sample Size 4
A Vo v, Vg, vy
75.5 82.0 82.0 87.5 83.0
71.5 78.5 78.5 82.0 78.5
75.5 79.5 79.5 85.0 80.5
79.0 83.0 83.0 86.5 83.5
67.5 71.0 71.5 72.5 72.5
72.5 72.5 73.5 78.0 75.0
76.5 74.5 76.0 76.5 76.5
80.0 74.5 80.0 78.0 82.5
66.0 56.5 62.0 58.0 65.0
68.0 59.0 59.5 60.0 60.0
Sample Size 32
A\ A\ V; Vg,
86.5 89.0 89.0 90.5
72.0 75.5 76.5 78.0
84.0 86.5 86.5 36.5
75.5 76.5 77.5 77.5
74.5 74.5 74.5 75.0
76.0 76.0 76.5 75.5
71.0 70.5 70.5 70.0
73.0 71.0 72.0 71.5
76.5 75.5 76.0 74.5
77.0 74.0 75.0 74.0

5.0 CONCLUSIONS

In this paper we have shown that the commonly used variance estimators
v.and v, for the combined ratio estimator are biased. The bias ofv_, 1is an
increasing function of X, and vanishes in samples balanced on x. On the other hand,

the bias of v, is an increasing function of the model parameter f#. Neglecting terms of
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order 0(1/nN) v, and v; are unbiased. The unbiasedness of v, and v; was:also

reported in Valliant (1987).
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