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ABSTRACT

Interpolation procedures tailored for gaussian processes may not be applied to infinite variance
stable processes. Alternative techniques suitable for a limited set of stable case with index ae(1,2]
were initially studied by Pourahmadi (1984) for harmonizable processes. This was later extended to the
'ARMA stable process with index ae(0,2] by Nassiuma (1994). In this paper, the problem of
interpolation of stable processes is studied with the aim of developing an algorithm applicable to
general linear and nonlinear processes by using the state space formulation. Application of this
procedure to the estimation of missing values is discussed.
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1.0 INTRODUCTION

A wide range of theories have been developed in relation to the state space representation of time
series models. Of greatest interest has been the idea of extrapolation, filtering and interpolation. These
developments have been exclusively based on the assumption that the underlying process is gaussian. A
possible alternative is to consider processes with infinite variance stable errors. Such processes have
been found appropriate for data emerging from a wide range of fields (Zolatarev, 1986).

Some missing value procedures for scalar gaussian systems have been studied by Miller and
Ferreiro (1983) and Pourahmadi (1989). Techniques for the estimation of missing observations which
are based on the state space representation of processes have been studied by Brockwell and Davis
(1987] and Abraham and Thavaneswaran (1991) for gaussian processes. These later procedures are
applicable to a more general set of linear and nonlinear time series models.

Initial work on interpolation for scalar processes having a stable distribution was carried out by
Pourahmadi (1984) whereby he developed an interpolation procedure for harmonizable stable
processes with characteristic index ae(1,2]. An approach applicable to symmetric stable processes
with index a.e(0,2] was developed by Nassiuma (1994).

This article aims at studying interpolation procedures applicable to a wider class of scalar models
with a symmetric stable distribution using the state space representation. Some simplifications in the

results are observed and in particular, the covariation function given in Nassiuma (1994) is no longer
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necessary. The application of the developed procedure to the estimation of missing chservations is also
discussed.

In Section 2, we start by giving the extrapolation algorithm which was initially studied by Stuck
(1978) (although he referred to it as a filtering algorithm). A simple proof of the filtering algorithm is
also given. The interpolation procedure is then developed in Section 3 and its application to the

estimation of missing observations is discussed in Section 4.

2.0 EXTRAPOLATION AND FILTERING ALGORITHMS

Consider a general state space model of the form

D O TD Gl : YT PO 1

VO OTD Gl 08 T 2
where A;, B,, C, and D, are scalar coefficients which are linear or nonlinear functions of the past
observations. The sequences {u} and {w,} are mutually independent random variables defined on the
probability space (€, F, P) and have scale parameters o, and a,, respectively. The above two equations
(1) and (2) are referred to as the state and the observation equations respectively. The state variable is
usually not observed but is evaluated on the basis of the observations. In the case of gaussian systems,
o, and ., represent variance functions of the respective random variables.

The prediction of scalar valued harmonizable stable processes was studied by Cambanis and
Soltani (1983) while stable processes based on the markovian representation were studied by Stuck

(1978). The main result obtained by Stuck is given in the following theorem.

Theorem 2.1
Suppose that the set of observations S, = (Y}, Y», ..., Y\) are available. Let ¥, and y, be projections of
X, and Y, respectively onto the observation space S, in the LP(Q2) space where pe(0,2]. Using the state
and observation equations (1) and (2), the prediction algorithm is obtained as

X AX, TEKAY-Y,) 3

and the dispersion (Brockwell and Davis, 1987) of the prediction error is obtained as

|IX

Qt+1:|(A!_KICI)laQI+lBt|aau+|KIDI

where K, is the smoother given as

Ewe
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Proof: (Stuck 1978).
When the observaiions (Y, Vs, ..., Y ) are available and are to be used in evaluating the state variable
X1, the problem is that of deriving a filtering algorithm. Such an algorithm is given in the following

theorem.

Theorem 2.2:

Let the observations Yy, Y3, ..., Y. be available and suppose that the state and the observation

equations are as given in (1) and (2) respectively. The filtered estimate of Xy is then obtained as
X=X P Rl Yer=Yur)

where the smoother is given as

. |l _
K™ " o p — ifa>1
el Qe+ DI
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Proof:

The filtered value is the projection of X, onto the observation space Y, Y, ..., Yu such that

)E'H/:;I)[XH']‘Y[,Yz,...,YH!]
=P{ Xl Y1, Y 20 Yo ] Y PL Y 1= ¥ )]

— A )2—1 + IZHI(YHI - E}MI)‘
The error of the filtered estimate is then evaluated as

XH-I“ )?H,:(]'IZMC:)(XM- XH])‘ IZH/D: We+t
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with its corresponding dispersion being

Disp( X, - X:.1))= Q. =1- K Cf' Q¥ K. DI -
where () is as in the extrapolation algorithm. The-derivative of the above dispersion with: respect to the
smoother when equated to zero leads to

ér'(/: "aCl ] ]']ZI,IC,I(“-UQ,,/_*‘I IZ:»II((I-I) I Dtlaaw-_—o

and solving for K1 leads to the result as in the theorem.

3.0 INTERPOLATION ALGORITHM

The interpolation problem is such that either one or several observations are randomly missing from a
given set and thus one develops ways of estimating the missing observation(s). This implies that there
is lack of continuity in the observation space and we define it as S’ = (Y, Y2,..., Y1, Yioelyeo., Y). We
also define the projection of the state component Xm onto this observation space as being equal to Xmit.

The interpolation algorithm is then given in the following theorem.

Theorem 3.1:
- Let the observation Ym be missing from a set of t possible observations (m < t). The estimate of the
state component Xm based on minimizing the dispersion of the error of the estimate is then obtained as
Xm;t:Xm;l-lJrK:(Yt'};:)
with the dispersion of the error being obtained recursively as
Qi = Ques T K CI QKT D e

where the smoother K: # 0 lonly if t = m+1 and

K*m+1 = [Cm+1 (Am-KmCm)m/l/(ar-1)

fCm=1(Am - KmCm)jaOm/l/(a-1) + Jow(KmCm=1Dmja+/[Dm+1ja)+/BmCm+1 jacu/l/(a-1)
if o>l
= 1
Cm+1{Am - KmCm)

If jem=1(Am - KmCm) |aQOm > qw ([KmCm-+1Dm|o+|Dm+1 |a)+|BmCm+1 ooy, 0<a< 1
= 0
if |Cm=1(Am-KmCm) joOm < qw (KmCm+1Dmjg +Dm + 1|or) HBmCm+jou, 0<a< |
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Proof:
The interpolated state value Xy is the projection of X, onto the observation space S,". This implies that

we have

Xml!': PS,‘ (Xm)
o~ Amet Xomer T Ki(Y,- Y.)

= /‘{m[t-[ + K:(Yt - };t)
The error of the interpolated value is then evaluated as

Xm - Xmll = [1 = Km+/‘ C‘m*‘l(Am - Km Cm)](Xm - ert/)

*
- Km'*l [Km Cm+l Dm Wm + Dm+l Wm+1 + Bm Crn+lum+-1,li

with its dispersion being

Disp(Xm = Xm\t) = | I- Km +r Cm+I(Am ~-Km Cm)la O

+ [l K:n+] Km Cm+l Dm ’a + | Km+l Dm+l ia.] Oy + | Km*l Bm ’t‘jm-r-l |(I Gu
where K, and (2, are as in the extrapolation algorithm. The solution is then obtainea "y first of all
taking the derivative of the above dispersion with respect to the smoother. This is then equated to zero

and solved for the smoother and the result is easily obtained as in the theorem.

4.0 ESTIMATION OF MISSING OBSERVATIONS

The determination of missing observations is usually necessary for the application of most of the
popular computational techniques in time series. This essentially implies that for data that has some
observations which are missing, one has to first of all estimate their values. An approach applicable in
the analysis of irregularly observed data from a gaussian system without having to evaluate the missing
observations was discussed by Nassiuma and Thavaneswaran (1991). This approach was developed
with application to ARMA models and it could get quite complicated for more general time series
models especially for non-gaussian processes.

In this Section, we consider the application of the interpolation algorithm developed in Section 3
to the estimation of missing observations. For simplicity, we fellow the approach of Brockwell and
Davis (1987) by using the relation %, = C,X; in addition to the state and observation equations given in

(1) and (2). When the observation Y, is missing, it is represented by the randorn variable w, which
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“implies that under these circumsiances, we have C, = 0 and D, = 1. If on the other hand the
observation is not missing, we have Y, = Z, = C,X; which in this case implies that for t # m, D, = 0 and
C = 1. It easily follows that K, =0. Applying these relations to the interpolation algcrithm given in the
previous Section, we obtain the smoother in a simplified form as

Na-1)

& lAQOI .
Knar™ - p. o @f‘a>1
IAM{:QMII/( l)+|Bm| aull/( b
1 . A
s if| Al Q> | Bl @u,0<a <1
=0 if | Al QO <+|Bul 00,0 <@ < 1.

To now obtain an estimate of the missing value, we consider the state variable as representing the
missing component and we thus substitute Z,, for X, which leads to the estimate of the missing
observation as

Zow=7nt Kot (Y me1 - Y mer)-
In the case of a first order autoregressive process with parameter ¢, in addition to the above conditions,
we have Ap, = ¢ and B, = 1 and the estimated missing observation is of the form

a1 N
’¢Qm| “ )(Ym+’-Ym+l) f >1
~ Aa- (a-1) ya
[4F Qul ™7+ | el

Zm|l=¢Ym—I+

=¢Ym—l+(_Yﬂt17;M lf|¢|aQ,,,>a,,,0<aS1
=0 if 1o Qm<au.0<a<l
When o = 2 and (2, = a,,, We obtain the gaussian system estimate as

¢Qm(Ym+l' j;mﬂ)
¢’ +1

Zm|l=¢Ym-l+

= @Y mat ¢Q'"(Z'z’":1-y4f’)if|¢z>l,0<a <1

=0 if|¢2>I,0<a$l
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is a familiar resuit. It is however important to note here that the estimate reduces to Y. /¢ in the
Ftatlonary stable case for 0 < a < 1 otherwise the estimaie is zero.

In conclusion, the algorithm developed here facilitate the estimation of missing observations for a

¢ range of scalar valued linear and nonlinear models with stable distributions. The estimation of

ral missing observations follows eastly from the above resulis,
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