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ABSTRACT 

 

Floodplains are receptors of sediments from upland municipal areas, waste 

dumpsites, and adjacent rivers polluting floodplain farmlands used for both 

rainfed and irrigation continuous cropping. This study was therefore 

undertaken to study the distribution of heavy metals (HMs) and their potential 

pollution prediction using spatial modelling in the floodplain farmland around 

municipal waste dumpsite in Yola Adamawa, State Nigeria. Soil samples were 

collected systematically at 6 points (0, 20, 40, 60, 80 and 100 m) along three 

traverses from the dumpsite at interval of 20 m.  Mean values of iron (Fe) and 

chromium (Cr) across the study area were significantly higher than at the 

dumpsite, while Cu and Zn were significantly higher at dumpsite and 

decreased as spatial distance increased away from dumpsite. Clay significantly 

influenced spatial distribution of HMs’ Fe and Cr, while sand and soil pH had 

negatively effects on HMs. Increase in total organic carbon, available 

phosphorus (P), exchangeable calcium (Ca) and magnesium (Mg) increased 

concentration of manganese (Mn), copper (Cu), lead (Pb), chromium (Cr) and 

zinc (Zn). Among the HMs, copper had the prediction model with highest r - 

value and was obtained using the square root of spatial distance {Cu = 225.397 

- 1.5328(SD) ½} with the highest R-Squared value of 40.98%, though less than 

50 %. The overall means of contamination factor (CF) indicated a decreasing 

order of Pb > Zn > Cd > Cu > Mn > Cr > Fe. The enrichment factor (EF) index 

had moderate risk for all the metals with only Cr having low risk to the 

floodplain. Assessment of HMs using CF, EF and potential ecological risks 

(PER) models had similar trend of correlations with spatial distances from 

dumpsite, hence were considered to be more appropriate models to use for 

predicting HMs pollution compared to index of geo-accumulation (Igeo) model 

in the study area. 
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INTRODUCTION 

 

Soils across the globe are the basic environmental elements constituting ecosystem, 

and plays critical roles in maintaining ecosystem services, such as food production, 

biodiversity maintenance, water resources protection, carbon sequestration and regulation of 

microclimate (Adedeji et al., 2020).  However, environmental safety of soils deteriorates 

severely with the rapid population growth, urbanization and industrialization (Yao et al., 

2012; Akinbile et al., 2016; Adedeji et al., 2020).  Soils under such situations are increasingly 
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polluted by heavy metals. These heavy metals often originate from different anthropogenic 

activities or other alteration in the natural soil environment (Islam et al., 2015a; Adedeji et 

al., 2020; Otene and Alfred-Ockiya, 2020). In developing countries such as Nigeria, open 

dumpsites are common practice due to the low budget for waste disposal. A good amount of 

the city garbage is dumped in low lying areas which poses serious threat to groundwater 

resources and soil (Akinbile et al., 2016). The management of municipal solid waste (MSW) 

is essential for every community; and it is currently a major challenge in most Nigerian cities 

(Iorhemen et al., 2016; Ike et al., 2018).  

Soil pollution and risk assessment indices indicate the effects of overall soil quality 

of an area. Many authors have used indices for determination of Geo-accumulation index 

(Igeo), Enrichment Factor (EF), Contamination factor (CF), Pollution load index, (PLi) for 

soil of an area (Qingjie and Jun, 2008; Inengite et al., 2015; Islam et al., 2015a; Liu et al., 

2016; Dash et al., 2019; Dhamodharan et al., 2019; Jimoh et al., 2020; Shirani et al., 2020; 

Tong et al., 2022). Muller (1969) made use of the Geo-accumulation formula for calculating 

the degree of contamination in soil within dumpsite by the background concentration of the 

continental shale. While Islam et al. (2015a) and El Nemr et al. (2016) assessed the Igeo 

comparing the heavy metal in concentration in the dumpsite relative to the background level 

in the soil. The Enrichment factor was another index adopted by researchers to measure the 

possible impact of anthropogenic activity on the concentration of heavy metals in soils. This 

identifies the impact of the expected anthropogenesis on the heavy metal concentration in the 

soil (Islam et al., 2015a). In order to determine contamination level of heavy metals in soil 

around landfill pollution models such as contamination factor and degree of contamination 

developed by Hakanson (1980); modified degree of contamination (Abrahim, 2008) and 

pollution load index (Tomlinson et al., 1980) and Geo-accumulation index (Muller, 1969) 

were used. Several of these indices as models determining extent of soil pollution have been 

used in Nigeria along with other models like degree of contamination (CD) and the potential 

ecological risk (PER) by researcher (Adedeji et al., 2020) to examine the ecological and 

health risks of potentially toxic metals. Otene and Alfred-Ockiya (2020) used some pollution 

indices such as contamination factor (CF), pollution load index (PLI), geo-accumulation 

index (Igeo), toxicity unit analysis (TUA) and potential ecological risk (PER) to determine 

the pollution status and ecological risk level of the sediment of Elele-Alimini Stream, Port 

Hacourt Nigeria. 

 Floodplains are receptors of sediments from upland municipal areas, waste 

dumpsites, and adjacent rivers. The sediments transport heavy metals causing pollution 

within floodplain farmlands (Islam et al., 2015a). These floodplains in the Savanna zone of 

Nigeria are where rainfed crop production is sustained in the dry season via irrigation for 

continuous cropping. Hence, when the spatial distribution of pollutant heavy metals on such 

agricultural land is not known it is difficult to manage or understand their impact on the 

environment and human health (Akinbile et al., 2016).  

This study, therefore, designed to develop model for predicting spatial distribution of 

heavy metals and examine pollution indices that more appropriately define influence of waste 

dumpsite on the pollution of irrigation floodplains in Yola Adamawa State, Nigeria.  
 

  



Distribution of heavy metals and their potential pollution prediction using spatial modelling  

 

203 
 

MATERIALS AND METHODS 

 

Study Area 

 

The study area is the irrigation farmland along Shinko floodplain of Benue River in 

Yola, Adamawa State. The study area is geographically situated along Latitude 9o 17' to 

14.28″ N and longitude 12o 27' to 04.61″ E at 157 to 162 m above sea level (Figure 1). The 

Municipal waste dumpsite is situated within residential area/buildings along the busy Mubi 

road. The dumpsite lay in heaps that span about 500 m along the road adjacent to the river 

and has been active for more than five decades and takes waste and irrigation water from 

different parts of the community.  

Yola shows typical tropical climate (Zemba, 2010), with average annual rainfall is 

872.4 mm with the highest occurrence in July, August and September. The rainy season runs 

from the months of May through October, while the dry season commences in November 

and ends in April/May. The area has an average sunshine hour of 7.80 daily, 237.13 monthly 

and 2845.5 yearly. The temperature of the study area is generally high throughout the year. 

The seasonal variation in temperature indicated maximum temperature was lowest between 

August and September (31.30C) to a highest value of 39.80C in April. The minimum 

temperature increases from 16.90C to 27.00C in November to April respectively.  

 

 
Figure 1: Map of Nigeria showing the Study Area in Yola, Adamawa State  

 

Soil Sampling 

 

Soils samples were collected at two different depths in a single profile at a depth of 

0–30 cm and 30–60 cm. The soil was collected at six (6) points (0, 20, 40, 60, 80 and 100 m) 

along a traverse from the dumpsite at interval of 20 m and it was replicated 3 times along the 

dumpsite to the farmland (Figure 2) with control point within floodplain over 2 km outside 
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the farmland. This provided a total of 38 soil samples collected (6 x 3 x 2) +2). The soil 

samples were air dried, crushed and sieved using 2 mm diameter sieve and the selected soil 

properties were analyzed in the laboratory. 

 

 
Figure 2: Map of the study area showing the soil sampling points along the traverse 

 

Laboratory Analysis 

 

The bulk density is determined as described by Blake and Hartge (1986). The particle 

size distribution was determined by the hydrometer method as described by Udo et al. (2009). 

Total porosity was calculated mathematically using equation 1 (Danielson and Sutherland, 

1986): 

𝑇𝑃 (%) = ⟦1 − (
ρb

ρp
)⟧ 100………………………………….(1) 

 

Where:  

TP =Total porosity   

ρp = Particle density   

ρb = Bulk density. 

Soil pH was determined in both water and 0.01 M CaCl2 solution at a 1:1 soil/water 

solution ratio. On equilibration, pH was read with a glass electrode on a pH meter Model PS-

3C meter. Electrical conductivity was determined from the soil/water paste using a 

Wheatstone bridge at 25 0C. The organic carbon was determined by the Walkley-Black 

dichromate wet oxidation method as described by Nelson and Sommer (1982). Available 

phosphorus was extracted using the Bray- 1 method and determined following the procedure 

described by Uyovbisere et al. (2013).  
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Exchangeable bases (Ca, Mg, K and Na) were extracted using ammonium acetate 

(NH4OAc) saturation method and determined as described by Thomas (1982). Potassium and 

sodium was read from the undiluted extract on a Flame photometer. Calcium and magnesium 

was read on an atomic absorption spectrophotometer (AAS). Cation exchange capacity 

(CEC) was determined by the neutral (pH 7.0) NH4OAc saturation method (Rhoades, 1982).  

Heavy metals in the soil sample were extracted using aqua – regia acid (a mixture of 

3 parts of HCl to 1 part of HNO3). The copper (Cu), iron (Fe), manganese (Mn), lead (Pb), 

cadmium (Cd) and zinc (Zn) were determined from the extract using atomic absorption 

spectrophotometer 230 Buck science (Udo et al., 2009; Uyovbisere et al., 2013).   

 

Pollution and Risk Assessment of the Soils  

 

Contamination index assesses level of pollution, evaluates the pattern of 

contamination and determines the potential risk due to exposure to ecological sensitivity in 

the soils. The analyzed results of the HMs in the soils were subjected to models to assess the 

extent of pollution and ecological risk. Contamination factor (CF), Enrichment factor (EF), 

Geo-accumulation index, (Igeo), Pollution load index (PLI) and Potential ecological risk 

(PER).  

Contamination factor (CF) was estimated using equation 2. 

CF = 
𝐶𝑚

𝐶𝑏
……………………………………………………………………(2) 

Where: 

Cm = concentration of an element in the soil sample  

Cb = geochemical background value of non-effected soil at the site. 

Enrichment factor (EF) was determined by equation 3 (Zhang et al., 2007). 

EF = 
{

𝐶
𝑚

𝐶
𝐹𝑒

}𝑠𝑎𝑚𝑝𝑙𝑒

{
𝐶

𝑚
𝐶

𝐹𝑒

}𝐵𝐺
……………………………………………………(3) 

Where: 

C
m 

= concentration of element i in the sample of interest  

C
Fe

= concentration of reference element (Fe)  

sample = soil sample of interest 

BG = soil sample of background (control site) (Zhang et al., 2007). 

Geo accumulation index (Igeo) for each of the heavy metals from the dumpsite and 

farmland was determined mathematically from equation 4 (Islam et al., 2015a; El Nemr et 

al., 2016). 

Igeo  = log2 (
Cn

Bn
)……………………………………………………..(4) 

Where: 

Cn = concentration of an element in the soil sample  

Bn = geochemical background value of non-effected soil at the site.  

The constant 1.5 allowed us to minimize effect variation in background concentration 

due to lithogenic impacts. Pollution load index (PLI) is an integrated approach used in 

assessing the sediment quality of heavy metals (Dash et al., 2019; Dhamodharan et al., 2019). 

Dhamodharan et al. (2019) opined that pollution load index can be assessed using the five 

hazardous elements, Cd, Cr, Ni, Cu, and Pb (Tomlinson et. al., 1980). Pollution load index 

(PLI) was determined using the element, Cd, Cr, Cu, Ni and Pb from equation 5 (Liu et al., 

2016; Dhamodharan et al., 2019) and categorized by Liu et al. (2016):  
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………………….(5) 

Where:  

CF = contamination factor for each simple metal  

p = number of heavy metals  

PLI = Pollution load index    

Potential ecological risk (PER) of individual metal element was determined using 

equation 6 (Islam et al., 2015b). 

…………………………(6) 

Where: 

Ci
s = concentration of an element in the soil sample 

Ci
n = geochemical background value of non-effected soil 

Ti
r = toxic response factor for each metal 

Toxic response factors were taken 2 for Cr, 5 for Cu and Pb, 10 for As, 40 for Hg and 

50 for Cd. 

 

Statistical Analysis 

 

Descriptive statistics and two-way analysis of variance (ANOVA) were used to 

analyze the variation between the sampling points (0, 20, 40, 60 80, 100 cm and control point) 

and between the soil depths (surface; 0–30 cm and subsoil; 30–60 cm). The six sampling 

points, control and horizons (surface and subsurface) were regarded as the treatments, and 

replicated three times as traverses along the dumpsites. Properties that were significantly 

varied were ranked using Duncan Multiple Range test (DMRT).  Pearson correlation analysis 

was used to determine the relationship between the parameters that were normally 

distributed, while Spearman correlation for those soil samples not normally distributed. All 

the statistical analyses were carried out at 95 % confidence level. To develop models for 

predicting spatial distribution of heavy metals from dumpsite, regression analysis was used 

after the data were transformed as were not normally distributed to enabled validation and 

provide options to obtain the best model. Model that had a highly significant correlation with 

highest R2 was chosen as the best for each heavy metal. The statistical analyses were carried 

out using Statgraphic Centurion XV computer soft-ware packages (StatPoint, 2020). 

 

RESULTS AND DISCUSSION 

 

Status, Spatial Distribution and Relationship of Heavy Metals  

 

The overall range and means across the study area indicated decreasing order of 

concentration of heavy metals as follow: Fe ranged between 3205.75 and 4080.25 mg kg-1 

(mean: 3,818.21 mg kg-1) > Mn  267.75 to 1,554.25 mg kg-1 (881.49 mg kg-1) > Zn 132.60 

and 788.25 mg kg-1 (552.73 mg kg-1) > Cu 30.50 to 594.75 mg kg-1 (148.76 mg kg-1) > Cr 

69.5 and 203.5 mg kg-1 (138.88 mg kg-1) > Pb 0 to 114.75 mg kg-1 (26.45 mg kg-1) > Cd 0 to 

142.25 mg kg-1 (7.73 mg kg-1). The overall mean of concentration of heavy metals across the 
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study area were rated as high for Cu, low for Fe and Mn, low to high for Zn, Cr, Pb and Cd 

(FAO/WHO, 2001).   

The mean values of heavy metals Fe, Cu, Zn and Cr were significantly different 

between the spatial distances (Table 1). The mean values of Fe and Cr across the study area 

were significantly higher than at the dumpsite, while Cu and Zn were significantly higher at 

dumpsite and decreased as spatial distance increased away from dumpsite. 

Finer particles silt and clay tend to adsorb Fe, thereby increasing the concentration as 

indicated by their highly significant and positive correlation (r = 0.7723** and 0.6367** 

respectively; Table 2). Soil pH had a significant but negative correlation with Fe. These soil 

physical and chemical properties influenced the adsorption, mobility and availability of Fe 

as also ascertained by Luo et al. (2016). 

Spatial distribution of Mn was notably influenced by soil physical and chemical 

properties as indicated by the significant positive correlation with several parameters (Table 

2). Increase in silt, organic carbon and CEC contributed to adsorption of Mn, hence 

influencing its availability for plant use. The significant relationship between Mn and basic 

cation (Ca and Mg) as well as heavy metals Cu, Fe and Pb indicated similar factors and 

processes influenced their distributional trends in form of adsorption, mobility and 

availability (Alloway, 2001; Yahaya 2009). The distribution of organic carbon influenced 

adsorption and mobility of Cu and probably with available phosphorus as indicated by their 

correlation matrix (Table 3), and considered to be resourceful in the land use and 

management decisions for the study area. 
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Table 1: Ranking of Means of Heavy Metals of the Study Area (Spatial Distribution) 

Properties Units Dump                                Spatial Sampling Points                               Site SE± P 

(Value) 

LOS 

 

  0 m  20 m 40 m 60 m 80 m 100 m Control    

Fe (mg kg-1) 3484b 3966.4a 3979.1a 3964.7a 3754.4ab 3760.7ab 3902ab 137.90 0.004 ** 

Mn (mg kg-1) 995.5 971.5 878.4 994.5 720.08 729 594.5 199.81 0.402 NS 

Cu (mg kg-1) 283.2a 160.5b 119.3b 125.8b 100.6b 103.6b 84.5b 46.03 0.002 ** 

Zn (mg kg-1) 651.9a 668.8a 577.5ab 559.5ab 434.9bc 423.8bc 266.3c 91.98 0.006 ** 

Cd (mg kg-1) 38.38 2.79 1.88 1.42 1.04 0.87 6.00 14.272 0.074 NS 

Cr (mg kg-1) 94.75b 151.42a 140.54a 164.21a 143.21a 139.14a 141.25a 18.155 0.013 * 

Pb (mg kg-1) 33.04 33.58 13.75 19.13 25.17 34.04 10.63 19.974 0.859 NS 

NS > 0.05, * ≤ 0.05, ** ≤ 0.01.  SE = statndard error. Means followed by the same letters in the rows are not significantly different at 

5% level of significance (LOS).  
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Table 2: Pearson correlation matrix of soil properties verses heavy metals of the study area  

 Fe Mn Cu Cd Cr Pb Zn 

CLAY 0.637** 0.095 -0.106 -0.226 0.553** -0.263 0.204 

SAND -0.784** -0.324 0.065 0.251 -0.664** 0.048 -0.361* 

SILT 0.772** 0.535** 0.004 -0.219 0.636** 0.239 0.469** 

Av. P -0.134 0.373* 0.688** 0.207 -0.307 0.400* 0.350* 

BD  0.275 -0.247 -0.389* -0.2541 0.327 -0.163 -0.243 

Ca 0.583** 0.496** 0.261 -0.151 0.462** 0.353** 0.722** 

CEC 0.156 0.333* 0.354* 0.266 0.159 -0.005 0.669** 

ECe -0.173 -0.291 -0.063 0.196 -0.038 -0.215 -0.200 

ESP -0.285 0.103 0.305 0.584** -0.202 -0.277 0.372* 

K -0.251 0.081 0.293 0.462** -0.162 -0.273 0.359* 

Mg 0.481** 0.538** 0.412* 0.198 0.360* 0.043 0.727** 

Na -0.258 0.088 0.284 0.490** -0.166 -0.259 0.380** 

TOC 0.128 0.519** 0.539** 0.263 -0.050 0.420* 0.726** 

pH CaCl2 -0.016 0.330* 0.183 0.048 -0.217 0.189 0.454** 

pH H20 -0.367* 0.175 0.119 0.296 -0.494** 0.249 0.231 

Spoint 0.134 -0.301 -0.556** -0.373* 0.314 -0.023 -0.551** 

TP (%) -0.059 0.154 0.088 0.009 -0.094 0.102 0.101 

Fe  0.506** -0.012 -0.335* 0.780** 0.225 0.444** 

Mn   0.481** 0.046 0.208 0.440** 0.763** 

Cu    0.256 -0.060 0.410* 0.615** 

Cd     -0.217 -0.067 0.139 

Cr      0.043 0.227 

Pb       0.463** 
BD = Bulk density, TOC = Total organic carbon, Av. P = Available Phosphorus, Spoint = Sampling point, LOS = 
Level of significance (P): * ≤ 0.05, ** ≤ 0.01. 

 

Concentration of Zinc (Zn) highly and significantly varied with increasing the spatial 

distance buttressed by the highly significant correlation (r = -0.5506**).  Increase in organic 

carbon, silt and CEC contributed to the adsorption of Zn, (Table 2).  Zinc significantly and 

positively correlated with Av. P, Ca, Mg, K, Na, Cu, Fe, Pb and Mn (Table 2) indicated 

similarity in distribution trend associated with mobility adsorption and availability Uba et al. 

(2013). The trend of variation and relationship between soil properties are essential to land 

use, management plan and remediation strategy in the study area. 

The concentration of Cd and Cr in the soils significantly correlated with spatial 

distance (Table 2) and may be attributed to influence of physico-chemical properties that 

significantly correlated with them (Table 2). The high values of Pb may be attributed to traffic 

pollution. The significant relationship between available P and total organic carbon implied 

that Cd and avail. P might have been adsorbed or formed chelate complexes with Pb (Kabata-

Pendias, 2011; Wuana et al., 2014). 

 

Modelling Spatial Distribution of Heavy Metals around Dumpsite 

 

From the correlation analysis of concentration of selected heavy metals Fe, Mn, Cu, 

Zn, Cr, Cd and Pb with the spatial distance from the waste dumpsite (Table 2), only Cd, Cu 

and Zn were significantly and negatively correlated with the spatial distance.  Heavy metal 
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Cd, Cu and Zn significantly correlated negatively with spatial distance indicating correlation 

matrix r = -0.3734*, -0.6402** and -0.5493** (Table 3 and Table 4).   To develop model for 

predicting heavy metals based on distance from dumpsite, the data were transformed as were 

not normally distributed to enabled validation and provide options to obtain the best model 

(Table 3). For Cd, the model with the highest r - value was the square root-spatial distance 

model which yields the highest R-Squared value with 22.20 % (Table 4 and Figure 3).  

Copper highest r – value for the prediction model was obtained using the square root-X 

(spatial distance) model which yields the highest R-Squared value with 40.98 % (Table 4 and 

Figure 4).  The prediction model that fitted for Zn is the squared-Zn model that yields the 

highest R-Squared value with 30.43 % (Table 4 and Figure 5). However, Cd had the least 

coefficient of determination (R2) and was quite low (Table 3). The prediction models of 

spatial distribution of Cd and Zn are also considered not good. Copper had the highest R2 

with regression prediction model equation obtained using the square root of spatial distance 

(SD) {Cu = 225.397 - 1.5328(SD) ½} which yields the highest R-Squared value of 40.98 % 

(coefficient of determination; 0.4098) Tables 3 and 4). All the coefficient of determination 

(R2) were less than 50 %, hence considered as weak prediction models for the heavy metals 

studied in the study area.   

 

Table 3: Comparison of alternative models for Cd, Cu and Zn  

 Cd Cu Zn 

Model Correlation R2(%) Correlation R2(%) Correlation R2(%) 

Square root-X -0.4712 22.20 -0.6402 40.98 -0.4932 24.32 

Squared-Y -0.2997 8.98 -0.4418 19.52 -0.5516 30.43 

Squared-X -0.2698 7.28 -0.4105 16.85 -0.5493 30.17 

Squared-Y square root-

X 

-0.3857 14.88 -0.6364 40.50 -0.5040 25.40 

Linear -0.3734 13.94 -0.5558 30.89 -0.5506 30.32 

Square root-Y squared-

X 

-0.3692 13.63 -0.5066 25.67 -0.5466 29.88 

Double squared -0.2113 4.46 -0.3054 9.32 -0.5320 28.30 

Logarithmic-Y squared-

X 

<no fit>  -0.5346 28.58 -0.5367 28.81 

Square root-Y <no fit>  -0.6069 36.83 -0.5380 28.94 

Exponential <no fit>  -0.6059 36.71 -0.5187 26.91 

Reciprocal-Y squared-X <no fit>  0.5022 25.22 0.5069 25.69 

Reciprocal-Y <no fit>  0.5130 26.31 0.4742 22.48 

Reciprocal-Y square 

root-X 

<no fit>  0.4850 23.52 0.4030 16.24 

Squared-Y square root-

X 

<no fit>  -0.5007 25.07 <no fit>  

Logarithmic-Y square 

root-X 

<no fit>  <no fit>  -0.4526 20.48 

Squared-Y logarithmic-

X 

<no fit>  <no fit>  <no fit>  
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Table 4: Predicting regression models of heavy metals verses spatial distance 

Heavy Metal Regression Model Equation r R2 

Cadmium (Cd) Cd = 14.7481 - 0.00191463(SD) ½ -0.4712 22.20 % 

Copper (Cu)    Cu = 225.397 - 1.5328(SD) ½ -0.6402 40.98% 

Zinc (Zn)   Zn = {646.021 - 0.0254464(SD)}½    -0.5516 30.43% 

 

 
Figure 3: Graphical presentation of the Prediction Model for Cadmium 

 

 
Figure 4: Graphical presentation of the Prediction Model for Copper 
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Figure 5: Graphical presentation of the Prediction Model for Zinc 

 

Heavy Metals Pollution and Ecological Risk Assessment of the Soils   

 

Various models were employed to assess the heavy metals pollution and their potential 

ecological risk. Contamination factor (CF) was assessed as an index of pollution with the 

results of the overall mean indicated a decreasing order of Pb (2.939) > Zn (2.086) > Cd 

(1.932) > Cu (1.776) > Mn (1.445) > Cr (1.035) > Fe (0.9799). 

The pollution of the soils as indicated by CF index for Fe, Cu, Zn and Cr were 

significantly influenced by waste dumping (Table 5). However, HMs manganese and Cd 

were not significant different between the spatial distances. Contamination factor indicated 

spatial distance correlated significantly but negatively with Cu, Zn and Cd heavy metals 

(Table 6). 

The relationship between spatial distance from waste dump site and pollution and risk 

indices indicated that contamination factor (CF) for Cu, Zn and Cd were significantly 

correlated with spatial distance. Similarly, enrichment factor (EF) significantly correlated 

with spatial distance for Cu, Zn and Cd as well as Mn and Cr (Table 6). The comparisons of 

the mean values for EF for Cu, Zn, Cd and Cr significantly differ with spatial distance (Table 

5), this further affirmed the impact of waste dumping on HMs distribution within the 

floodplain (Inengite et al., 2015; Adedeji et al., 2020). 

Likewise, Pollution Ecological Risk (PER) significantly and negatively correlated 

only with spatial distance for Cu, Zn and Cd. The significant negative correlation between 

heavy metals Cu, Zn and Cd with spatial distance implied that pollution and risk indices 

decrease with increase in spatial distance for CF, EF and PER pollution and risk models.
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Table 5: Ranking of means of spatial distribution of pollution and risks indices 

Indices Spatial Sampling Points SE± P (Value) LOS 

0 m 

(Dump 

Site) 

20 m 40 m 60 m 80 m 100 m 

CF Fe 0.894b 1.017a 1.021a 1.018a 0.964ab 0.965ab 0.0325 0.003 ** 

CF Mn 1.632 1.593 1.440 1.630 1.181 1.195 0.3076 0.466 NS 

CF Cu 3.382a 1.916b 1.424b 1.501b 1.201b 1.233b 0.5272 0.002 ** 

CF Zn 2.460a 2.524a 2.179ab 2.111ab 1.641b 1.599b 0.3210 0.026 * 

CF Cd 9.594 0.698 0.464 0.354 0.260 0.217 3.3519 0.051 NS 

CF Cr 0.706b 1.128a 1.047a 1.223a 1.067a 1.036a 0.1264 0.008 ** 

CF Pb 3.671 3.731 1.528 2.125 2.793 3.782 2.1252 0.843 NS 

EF Mn 1.810 1.565 1.406 1.595 1.912 1.203 0.2848 0.238 NS 

EF Cu 3.730a 1.883b 1.393b 1.479b 1.210b 1.237b 0.5217 0.000 ** 

EF Zn 2.752a 2.480a 2.133ab 2.080ab 1.656b 1.606b 0.3039 0.004 ** 

EF Cd 10.854a 0.686b 0.457b 0.345b 0.285b 0.243b 3.7234 0.044 * 

EF Cr 0.787b 1.108a 1.024a 1.202a 1.094a 1.061a 0.1066 0.014 * 

EF Pb 3.890 3.670 1.504 2.114 2.778 3.734 2.1266 0.826 NS 

PER Cu 16.908a 9.580b 7.122b 7.504b 6.005b 6.164b 2.6360 0.002 ** 

PER Zn 2.460a 2.524a 2.172ab 2.111ab 1.641b 1.599b 0.3210 0.026 * 

PER Cd 287.81 20.94 14.06 10.63 7.81 6.50 100.558 0.051 NS 

PER Cr 1.412b 2.256a 2.094a 2.446a 2.133a 2.073a 0.2528 0.008 ** 

PER Pb 18.36 18.66 7.64 10.63 13.98 18.91 106259 0.843 NS 

GAI Fe 0.749a 0.559b 0.555b 0.560b 0.643b 0.640b 0.0502 0.003 ** 

GAI Mn 0.269 0.220 0.359 0.475 0.611 0.798 0.2745 0.299 NS 

GAI Cu 1.039 0.367 0.294 0.157 0.800 0.793 0.3360 0.083 NS 

GAI Zn 0.711 0.734 0.531 0.487 0.759 0.813 0.1959 0.490 NS 

GAI Cd 1.684 0.746 0.684 0.644 0.801 0.931 0.6966 0.719 NS 

GAI Cr 1.120a 0.220b 0.542b 0.318b 0.546b 0.574b 0.1858 0.004 ** 

GAI Pb 1.017 1.073 0.579 1.089 0.793 0.999 0.6150 0.955 NS 
CF = Contamination Factor, EF = Enrichment Factor, PER = Pollution Ecological Risk, GAI = Geo Accumulation Index.  LOS (P): NS (Not significant) 

> 0.05, * ≤ 0.05, ** ≤ 0.01. 
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Table 6: Correlation matrix of sampling points verses pollution and risk indices 

Contamination 

Factor 

Sampling 

Point 

Enrichment 

Factor 

Sampling Point Pollution 

Ecological Risk 

Sampling Point Geo 

Accumulation 

Index 

Sampling Point 

CF Fe 0.1337 - - - - GAI Fe -0.1316 NS 

CF Mn -0.3013 EF Mn -0.3856* - - GAI Mn 0.4010* 

CF Cu -0.5558** EF Cu -0.5820** Cu PER -0.5558** GAI Cu -0.0055 NS 

CF Zn -0.5506** EF Zn -0.6373** Zn PER -0.5506** GAI Zn 0.0795 NS 

CF Cd -0.3734* EF Cd -0.3757* Cd PER -0.3734* GAI Cd -0.1642 NS 

CF Cr 0.3137 NS EF Cr 0.3461* Cr PER 0.3137 NS GAI Cr -0.3236 NS 

CF Pb -0.0232 NS EF Pb -0.0399 NS Pb PER -0.0232 NS GAI Pb -0.0207NS 
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The significant variation for of PER for Cu and Zn (Table 5) also affirmed the impact 

of waste dumping on HMs distribution.  However, geo accumulation index (GAI) did not 

correlate significantly, similarly most HMs did not vary significantly with spatial distance 

(Table 5 and Table 6). The similarity in trend of correlations with spatial distances from 

dumpsite indicated that they were considered to be more appropriate models to use compared 

to Igeo model in the study area. Contamination factor for heavy metal Cd ranged between low 

and very high. The dumpsite was very highly contaminated with Cd, but the entire farmland 

was rated to be low. Heavy metal Cd may be immobile in the soils of the study area. It may 

be conditioned by the effect of the soil physical and chemical properties influence Cd 

immobilization in soils (Adedeji et al., 2020; Otene and Alfred-Ockiya, 2020).  The negative 

and significant correlation between Cd and spatial distance (-0.3734) indicated influence of 

dumpsite as a source of distribution Cd pollutant of the soils of the farmland in the study area. 

It may be transported through surface runoff and deposited along with decrease in 

contamination.  Degefa and Damea (2015) carried out similar research using landfill and 

indicated cadmium contamination within the dumpsite was as a result of anthropogenic 

activities. Similarly with the mean values of PER for Cu and Zn indicated that the spatial 

variability was significantly influenced by waste dumping (Table 5) as an anthropogenic 

activity Xinjian et al. (2020).  

 

CONCLUSION 

 

The study results indicated that clay significantly and positively influenced spatial 

distribution of concentration of heavy metals iron (Fe) and chromium (Cr), while negatively 

by sand and soil pH. Concentration of most of manganese (Mn), copper (Cu), lead (Pb), 

chromium (Cr) and zinc (Zn) increased with increase in total organic carbon (TOC), available 

phosphorus (P), exchangeable calcium (Ca) and magnesium (Mg) and was attributed to 

complexation (chelation), thereby influencing their distribution and availability. Copper had 

the highest coefficient of determination for modelling, but still weak for prediction model, 

and was obtained using the square root of spatial distance {Cu = 225.397 - 1.5328(SD) ½} 

which yields the highest R-Squared value of 40.98 %. The overall means of contamination 

factor indicated a decreasing order of Pb > Zn > Cd > Cu > Mn > Cr > Fe. The enrichment 

factor index indicated that all the metals had moderate risk with only Cr had low risk to the 

environment. Assessment of HMs using contamination factor (CF), enrichment factor (EF) 

and potential ecological risk (PER) models had similar trend of correlations with spatial 

distances from dumpsite, hence were considered to be more appropriate models to use 

compared to Igeo model in the study area.  
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