

Journal of Agriculture and Environmental Sciences

Research Article

Identification and characterization of honeybee flora in Jimma Zone, Ethiopia

Tesfa Mossie^{1*}and Hayat Worku¹

¹Ethiopian Institute of Agricultural Research (EIAR), Jimma, Ethiopia

Corresponding author: mtesfa6@gmail.com

Received: November 30, 2022; Received in revised form: April 12, 2023; Accepted: May 3, 2023

https://dx.doi.org/10.4314/jaes.v8i1.2

Abstract: Due to the existence of diverse floral resources and favorable ecological conditions, Ethiopia is still one of the top ten natural honey producers worldwide. The study was conducted to identify and characterize the phenology and pollen potential of major bee forages in the various Agro-ecological conditions of Jimma zone. A total of 90 beekeepers were purposefully selected from three districts and interviewed using semi-structured questionnaire. The density and abundance of flowering plants were determined using sixty main quadrant sampling techniques. In addition, sixty-six pollen specimens were collected for one year using pollen traps at seven-day intervals and were also traced back to plant species level under a light microscope. The diversity of the bee flora was determined using the Shannon-Wiener diversity index. Based on survey, pollen load collection, and plant inventory data, the study has revealed the presence of 141 pollen and/or nectar-source honeybee plant species belonging to 62 families in the study area. Herbs were the most dominant bee flora growth forms, accounting for 62 (44%) of a total of 141 honeybee plant species, followed by trees at 48 (34%) and shrubs at 31 (22%), respectively. Herbaceous plant had a greater density value of plant species per plot than did trees and shrubs. The families with the highest number of species were Fabaceae 18 (12.8%), Asteraceae 11(7.8%), Poaceae 9(6.4%), Solanaceae 6 (4.3%), Acanthaceae 4 (2.8%), and Euphorbiaceae 4 (2.8%) in the study area. One hundred fifteen (81.6%) bee forage species were both sources of pollen and nectar, whereas fifteen (10.6%) were pollen sources and the remaining eleven (7.8%) were nectar source plant species. The Shannon diversity index and evenness were found to be 2.8 and 0.6, respectively. This indicated that the study area has a rich bee floral plant species and is suitable for beekeeping. The midland Agro-ecology relatively has the highest species diversity, richness and evenness compared to the highland and lowland Agro-ecologies. Two main flowering periods of honeybee plants were followed by two honey flow season. Therefore, beekeepers should follow floral calendar of honeybee plants to exploit the potential of the area for honey production.

Keywords: Agro-ecology, flora resources, floral calendar, flowering period

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

1. Introduction

Apiculture is a livestock industry that contributes significantly to the national and international economies of a country, mainly in Africa. Ethiopia is still one of the top ten natural honey producers worldwide due to the existence of diverse floral resources and favorable ecological conditions (Fitchl and Admassu, 1994; Gidey and Mekonen, 2010; Bareke and Addi, 2020). It directly and indirectly contributes to household income and the national economy (Fenet and Alemayehu, 2016). The production of honey, beeswax, pollen, royal jelly, and other by-products is the direct income source for the users. Contributing to plant pollination and the conservation of the natural environment is the indirect role of honey bee production. Honeybees and plants have had a strong relationship for over 50 million years (FAO, 1986). Beekeeping conserves natural resources and protects the global environment. It can be integrated with agricultural practices like crop production, horticulture crops, and conservation of natural resources (Gezahegn, 2001; Bareke and Addi, 2020). Honey bees require feed for their production and reproduction like other livestock species. It depends on flowering plants for their nutrition and protection. About 40, 000 plant species are used as honeybee forage across the world (Crane, 1990). Among the flowering plants found in Ethiopia, 500 species are rich in nectar and pollen (Fichtl and Admasu, 1994). Plants are classified as nectar or pollen source plants based on the honeybee's activity of extending their proboscis and hind legs into flowers, respectively (Wubie et al., 2014; Jenberie et al., 2016; Pande and Gi, 2018). Honeybees' main food sources are pollen and nectar. Nectar is a major component in the production of honey, whereas pollen is used as larval food, which is important in colony reproduction (Facade and Paul, 2006).

Ethiopia has abundant natural and cultivated flora as well as diverse agro-ecological and climatic conditions that are ideal for beekeeping. The presence of a large number of honey plants is important for the country's honeybee colonies, production, and productivity. The botanical composition of natural vegetation differs depending on the Agro-ecology, climate, and soil type (Gebretsadik, 2016). The type and quantity of flora present determines productivity and reproduction performance of honeybees (Amssalu, 2007). Oromia is one of the Federal Republic of Ethiopia's regional states that is rich in natural resources and has favorable climatic conditions for improved beekeeping development. The region has virgin forests with a high biodiversity, such as Harena, Yayu, Dindin, Anfarara, Munessa, Jibat, Chilimo, and Menagesha-Suba that are ideal for beekeeping.

The region also contains cultivated crops such as oil and horticultural crops, as well as pulses, all of which can help to further the development of beekeeping. These make the region one of the potential areas for honeybee production.

Despite the region's diverse Agro-ecological, climatic conditions, abundance of natural and cultivated flora, beekeepers lack a floral calendar for honeybee foraging and honey production. Flora calendar is a timetable that indicates the approximate duration of the flowering period, abundance, distribution, and honey potential of honeybee forages in various Agroecological zones of the country (Admasu et al., 2004; Amssalu, 2004). Identification and documentation of bee forages and their flowering calendar is critical for the sub-sector's development endeavors since the flowering periods of honeybee plants differ depending on the diversity of plant habits and environmental conditions (Tilahun, 2003). Therefore, establishing a floral calendar is a critical tool for planning various beekeeping management operations, such as hive super adding, and predicting the frequency and period of honey flow in a given area. The length of flowering period, nectar and pollen production, and honeybee plant availability in a specific area are all determined by agro-ecology and season. Therefore, assessing the different Agroecological zones for determining the availability of bee forage, their life forms and establishing a flowering calendar of honey plants that enable effective seasonal colony management is paramount important. Furthermore, for optimal honey production, beekeepers should be aware of the flowering seasons of both main and minor nectar and pollen sources of plants in the vicinity of their apiary site (Pearson and Braiden, 1990). The study's overarching goal was to characterize and document major bee forages contributing to honey production, as well as to develop an appropriate flora calendar for effective bee management in various Agro-ecological conditions of the Jimma zone.

2. Materials and Methods

2.1. Description of the study area

The study was conducted in beekeeping potential areas of the Jimma zone of Oromia regional state, which geographically lies at a latitude of about 7013'-8 056'N and a longitude of about 35052'-

37037'E. The area has high humidity and is rich in fauna and flora biodiversity. Three study districts (Goma, Gera, and Shebe Sombo) were selected based on ecological differences and beekeeping potential. Agro-ecological representation is used to exploit bee flora species in different ecologies in the study area.

2.2. Honeybee flora inventory

Three kebeles were selected from each district depending on their Agro-ecological variation and potential for beekeeping activities. Household beekeepers were selected based on their experience in beekeeping and after discussion with district experts. A total of ninety (90) beekeepers, thirty (30) from each district, were also purposefully selected to get sound information on honey source plant lists, flowering periods, duration, beekeeping experience, number of colonies, number of harvest per year and of poisonous plants. Semi-structured presence questionnaires were used to collect the primary data from respondents. A group discussion with experts, community groups, development agents, and farmer beekeepers was held to generate relevant information. Necessary and supportive data on plant nature and habitats, feeding resources, and plant phenology were collected following field observation. During data collection, the types of honeybee forage, honey flow season, plants with adverse effects, swarming seasons, and management practices were all considered.

2.3. Pollen sample collection and laboratory analysis

The total of 18 honeybee colonies was established in nine different locations across three districts of the study area in different Agro-ecologies. At each site, two honeybee colonies were established for pollen trapping and pollen sample collection. Honeybee colonies were fitted with pollen traps and loads to collect dislodge pollen pellet samples at seven-day intervals. In one year, a total of 66 pollen specimens were collected and used to determine the botanical origin of honeybee pollen. The fresh and dry weight of pollen pellets was recorded. The collected pollen was dried at room temperature, and the fresh and dry pollen pellets were weighed and sorted by color. Each sorted pollen samples were identified at generic and species level under light microscope following diluting with ether solution. Using prepared pollen reference materials, reference books, pollen atlases, plant species were identified from each type of pollen by comparing the shape, size, and apertures of the pollen. Pollens that we couldn't identify botanically using either analysis technique have been labeled as "unidentified".

2.4. Honeybee flora species composition and diversity

Assessment of plant species composition and diversity were performed in purposively selected districts based on the beekeeping potential. For vegetation analysis using quadrant sampling techniques, two representative kebeles were chosen from each district based on vegetation coverage and ecological difference. The diversity and composition of honeybee plants were determined according to Tesfaye et al. (2013) plant density determination method. The quadrant/plot size varied depending on vegetation types. Honeybee plants were classified as trees, shrubs, and herbaceous. Tree and shrub sampling plots were $20m \times 20m$ in size, whereas herbaceous plant sampling plots were 2m x 2m in a two-kilometer radius every 0.1km from the hive to estimate the frequency and density of bee plants.

The main plots were laid out systematically considering the availability of vegetation coverage, and then small quadrants of 2m x 2m plots were laid out at different sites of the main plots to understand the forgeable area of honey plants. A total of 60 plots were taken for the districts, representing different Agro-ecologies. Then plant species within quadrants were counted for the assessment of plant density and frequency at specific sampling sites. Honeybee flora species abundance was defined and computed in all quadrants, and density was calculated in hectares. Plant specimens were collected during flowering seasons with necessary botanical features like leaves, flowers and portion of stem. The collected specimens were pressed, identified and then compared to the published report at the Holeta Bee Research Center.

2.5. Richness and diversity of bee forage plants

The Shannon-wiener diversity index, species richness, and Shannon's evenness were used to determine the diversity of bee forage plant species. The Shannon-Wiener diversity index is the most widely used for non-sample-size-dependent measure of species diversity (Ramirez-Arriaga *et al.*, 2011).

Shannon index (H') =
$$\mathcal{E}(pi * lnpi)$$
 [1]

Where, H' is Shannon index, pi is proportion of individual species and ln is log base n.

Evenness
$$(J) = \frac{H'}{H'max} = \frac{H'}{INS}$$
 [2]

Where, H' is Shannon diversity index, H'max = lns where S is the number of species, ln = log basen. The value of evenness is found between zeros to one (Kent and Coker, 1992).

2.6. Statistical analysis

Data on bee flora species, abundance, frequency, diversity, and pollen count were summarized using descriptive statistics. The data was thoroughly examined using Microsoft Excel and the Statistical Package for Social Sciences (SPSS).

3. Results and Discussion

3.1. Major honeybee plant species identified by beekeepers

A total of 39 pollen and/or nectar source plant species belonging to 23 families were identified during the survey work (Table 1). The species of bee plants reported by beekeepers through survey were more or less comparable to those found by plant inventory and pollen analysis. This has demonstrated that beekeepers' indigenous knowledge is significant for bee plant inventory results.

The most frequently reported bee floral species by beekeepers were *Vernonia spp*, *Coffea arabica*, *Croton macrostachyus*, and *Guizotia scabra* with 90 (100%), 83 (92.2%), 77 (85.6%) and 73 (81%) rate, respectively. The most bee floral plant species has been known as the best indicators of adaptation to the area and climatic condition (Wubie *et al.*, 2014). However, no single bee floral plant species has been identified by beekeeper respondents in the midland. This demonstrated that the midland has an overlapping bee flora plant species or vegetation distribution.

Bee floral plant species were classified as herbs, shrubs and trees and wild and cultivated based on growth forms and source of bee plants. According to beekeeper respondents, trees (62.5%) were the most important source of bee forages, followed by herbs (25%) and shrubs (12.5%). This finding is consistent with the findings of Kebede and Gebrechirstos (2016) and Haftom *et al.* (2013) in Tigray, who found trees to be a major source of feed for honeybees. The current survey findings, however, contradict to the findings of Teklay (2011), who reported that herbs are the most common floral plant species. These variations might link with the changes in geographical location, soil type and climatic situation.

The foremost sources of honeybee forages were wild 116 (82.3%) and cultivated 25 (17.7%). These findings indicated that majority of bee floral plant species were found in wild sources since beekeepers had no practices to cultivate bee floral plant species. Honeybee plant species reported by beekeepers during the survey were categorized as very good, good, and poor based on their abundance in the study area (Table 1). Most of the bee floral species identified through the survey were categorized as good in their abundance.

Coffea arabica, Croton macrostachyus, Vernonia Spp., Guizotia scabra, Eucalyptus camaldlensis, Coffea arabica Cordia africana, Mangifera indica, and Combretum molle were the most common honeybee plant species identified by beekeepers in different agro-ecologies (Table 1). The dominant honeybee plant species in the highland were Vernonia Spp., Schefflera abyssinica, Croton macrostachyus, Coffea arabica, and Bidens spp., while the most frequently visited bee floral species in lowland ecology were Cordia africana, Guizotia scabra, Combretum molle, Eucalyptus camaldlensis, Bidens spp., and Coffea arabica. On the other hand, Guizotia scabra, Vernonia Spp., Coffea arabica, Croton macrostachyus, and Bidens spp., were the most abundant floral plant species in midland agroecology based on survey results. Vernonia Spp., Cordia africana, and Guizotia scabra were the most abundant plant species in the highland, midland, and lowland, respectively. Frequently indicated bee floral species by beekeepers were Vernonia spp., Coffea arabica, Croton macrostachyus, and Guizotia scabra with 90 (100%), 83 (92.2%), 77 (85.6%) and 73(81%) rate, respectively. The most widely

distributed bee flora species in all agro-ecology is *Vernonia spp.*, *Schefflera abyssinica* and *Combretum molle*.

About 69.9% of beekeepers harvested honey yields twice a year, while 17.8% of beekeepers harvested honey yields three times in different agro-ecologies of the study area. This result is consistent with the study done by Shegaw and Giorgis (2021), who found that there are two main harvesting seasons. Honeybee plants are present at different periods of the year because plant flowering times vary depending on species, topography, climate and farming practices (Rijal et al., 2018). The average honey yields of frame hives in highland, lowland, and midland were 25.3, 23.3, and 30.2 kg respectively. The major honey flow seasons in the study are October to December, February to April, and May to June (Figure 1). The maximum and minimum flowering duration of bee plant species were ninety and seven days, respectively. Croton macrostachyus, Vernonia spp., Eucalyptus camaldlensis, Guizotia scabra, and Trifolium spp. had the longest flowering periods and offered a steady supply of nectar and pollen to honeybees on the hunt. Bareke and Addi (2019) and Zeleke et al. (2019) conducted comparable studies in the Gera forests and selected

parts of South Nations Nationalities and Peoples of Ethiopia, respectively. On the other hand, according to beekeepers respondents, the study areas dearth periods were August, July, and January. Shegaw and Giorgis (2021) conducted similar study in selected areas of the Southern Nations Nationalities and Peoples of Ethiopia. A drought period can cause the depletion of stored food inside the hive, which has a negative impact on honeybee productivity. Therefore, beekeepers should know the dynamics of honeybee colonies in accordance with bee floras, flowering periods and duration of flowering times in different Agro-ecologies. Almost all beekeepers in the study area were familiar with the honeybee colony dynamics conditions. This findings agrees with the study conducted by Lemessa (2006), Fichtl and Admassu (1994) and Teklay (2011) in colony dynamics conditions. Beekeepers were identified as bee flora depending upon the intensity of flowers visited by honeybees. The knowledge gained in identifying bee flora assists beekeepers in recognizing the honey harvesting season and managing the beehives. The identification of flora calendar assists beekeepers in planning various beekeeping activities (Genet, 2002).

Figure 1: Honey flow month in different agro-ecologies

Local	Scientific name	Family name	Species	Life	Food source	Flowerin	Duratio
name			abundanc	forms		g month	n (days)
			e				
Buna	Coffea arabica	Rubiaceae	2	Shru	Pollen/	Feb, Mar	60
				b	Nectar		
Bisana	Croton macrostachyus	Euphorbiaceae	2	Tree	Pollen/	Jun, May,	90
					Nectar	Aug, Apr	
Girawa	Vernonia Spp.	Asteraceae	1	Tree	Nectar	Dec-Mar	90
Tufo	Guizotia scabra	Asteraceae	2	herb	Pollen/	Aug-Dec	90
					Nectar		
Bahrzaf	Eucalyptus	Myrtaceae	3	Tree	Pollen/	Year	90
	camaldlensis				Nectar	round	
Wanza	Cordia africana	Boraginaceae	2	Tree	Pollen/	Aug, Jul,	60
					Nectar	Sep	
Abalo	Brucea antidysenteric	Simaroubacea	3	Tree	Pollen/	Apr,Mar	15
	a Fresen.	e			Nectar		
Avocado	Persea americana	Lauraceae	2	Tree	Pollen	Sep, Oct,	90
						Jan, Feb,	

Table 1: Major honeybee plants identified by beekeepers

						Apr	
Mango	Mangifera indica	Anacardiacea	3	Tree	Pollen/	Mar, Dec,	60
		е			Nectar	Feb	
Tensa	Combretum molle	Combretaceae	1	Tree	Nectar	Mar, Apr,	60
						Feb	
Boqolo	Zea mays	Poaceae	2	herb	Pollen	Jul, Jun,	60
						May	
Adeye	Bidens spp.	Asteraceae	1	herb	Pollen	Sep, Oct,	60
ababa						Nov, Dec	
Girar	Acacia spp.	Fabaceae	2	Tree	Pollen/nectar	Apr,	60
						May,	
						Dec, Jan,	
						Feb	
Geteme	Schefflera abyssinica	Araliaceae	1	Tree	Pollen/nectar	Apr, Mar,	60
						May	
Kerero	Aningeria altissima	Sapotaceae	2	Tree	Nectar	Apr, Jun,	60
						May Jul	
Turba	Brugmansia	Solanaceae	3	Shru	Pollen/nectar	Almost	60
abeba	suaveolens			b		year	
						round	
Siddessa	Trifolium spp.	Fabaceae	3	Herb	Pollen/nectar	Sep, Oct,	90
						Jn, Feb,	
						Mar	
Rejii	Vernonia rueppellii	Asteraceae	2	Shru	Pollen/	Dec, Jan,	60
	sch.			b	nectar	Feb, Mar	
Sesbania	Esbania sesban	Fabaceae	2	Shru	Pollen	Year	15
				b		round	
Sesa	Albizia gummifera	Fabaceae	2	Tree	Pollen	Feb, Mar	30
					/nectar		
Wandabiy	Apodytes dimidiate	Icacinaceae	2	Tree	Pollen/nectar	Feb, Oct,	30
0						Mar	
Bayya	Olea welwitschi	Oleaceae	2	Tree	Pollen/nectar	Dec, Feb,	60
						Jan	
Keryo	Polyscias fulva	Araliaceae	2	Tree	Pollen/nectar	Apr, Mar,	30
						May, Jun	
Mashila	Sorghum bicolor	Poaceae	2	Herb	Pollen	Sep, Oct,	30
						Mar	
Kenchib	Euphorbia tirucalli	Euphorbiaceae	3	Herb	Nectar	Sep, Oct,	60
						Mar	
Nuge	Guizotia abyssinica	Asteraceae	3	Herb	Pollen/Necta	Sep, Oct	30
_					r	-	
Sio	Rhus sp.	Anacardiaceae	2	Tree	Pollen/nectar	Aug, Jul,	60
						Sep, Oct	
Sombo	Ekebergia capensis	Maliaceae	3	Tree	Pollen	Dec, Jan,	30
	(E. rueppeliana				/nectar	Mar, Oct,	
	_					Nov	
Zytune	Psidium guajava	Myrtaceae	3	Tree	Pollen/nectar	Jan	7
Giravilla	Grevillea robusta	Proteaceae	2	Tree	Pollen	Mar	20

					/nectar		
Ruze	Oryza sativa	Poaceae	3	Herb	Pollen	Sep, Oct	30
Sesame	Sesamum indicum	Pedaliaceae	2	Herb	Pollen	Mar,	60
					/nectar	May, Jun,	
						Sep	
Sole	Olinia rochetiana	Penaeaceae	2	Tree	Pollen/nectar	Sep, Mar	60
Bedesa	Syzygium guineens	Myrtaceae	2 Tree		Pollen	Jan, Feb,	
					/Nectar	Mar, Sep,	
						Aug	
Maget	Trifolium Spp.	Papilionaceae	2	Tree	Nectar	Mar	
Korch	Erythrina abyssinica	Fabaceae	3	Shru	Pollen	Jan, Mar	30
				b	/nectar		
Zembaba	Phoenix reclinata	Arecaceae	3	Tree	Pollen	Mar	15
Derbata	Terminalia laxiflora	Combretaceae	3	Tree	Nectar	Sep, Mar	30
Seho	Allophylus abyssinicus	Sapindaceae	3	Tree	Pollen/nectar	Aug	60

3.2. Plants poison to honeybees

In fact, not all honey bee plants are equally important in the lives and honey production of different bee species. The most frequently identified poisonous plant species in the study area, according to current findings, was Euphorbia cotinifolia (Key abeba). The result showed that 77.2% of beekeepers were aware of the presence of poisonous plants for honeybees. About 27.8% of the beekeepers have no awareness of the availability of poisonous honeybee plants in their surrounding areas. In the Kaffa zone of southwest Ethiopia, similar findings were reported by Addi (2018), as most of the beekeepers were aware of the presence of poisonous plants for honeybees. Euphorbia cotinifolia is a shrub that belongs to the family Euphorbiaceae, which bears flowers at different months of the year. This plant is easy to adapt and propagate by cutting, and it also acts as a living fence in the study area. It is mainly found in highland and midland Agro-ecology. The major flowering months of Euphorbia cotinifolia species are September to November, February to April, and May to June in the study areas.

3.3. Bee pollen analysis

Twenty-four honey bee plant species belonging to ten families were identified from a total of sixty six (66)

pollen samples collected in different districts (Table 2). Guizotia abyssinica, Vernonia spp., coffea arabica and eucalyptus spp. were the major pollensource for honeybees (Figure 2). On the other hand, Bersama abyssinica, Olea afriicana, Syzygium guineense (Willd.) DC and Syzyjium spp. were the minor pollen sources for honeybees. The current study found that the highest proportion of pollen grains was collected in October (46.3%) and November (14.6%). This is due to the fact that the majority of plant species bloom following the long rainy season (June to August). The lowest pollen loads, on the other hand, were recorded in July and August because rain impairs honeybees' ability to fly, which in turn lowers their ability to collect pollen. Low temperatures may also impede the growth and flowering of bee plant species, which would reduce pollen production and nectar secretion. The findings are consistent with those of studies carried out in the Kaffa Zone, Southeast Oromia Zone, and central Ethiopia by Bareke and Addi (2020), Lemessa and Addi (2009), respectively, in the collection of pollen grains in October and November. Contrary to the current findings, Wubie et al. (2014) reported that the most pollen grains were collected during the main rainy season. This might occur since the flowering period differs with different agro-ecologies.

Figure 2: Major honeybee flora species identified through pollen analysis

Scientific/species name	Family name	Life forms	Source of food	Harvesting period
Guizotia abyssinica	Asteraceae	Herb	Pollen/nectar	Sep-Feb
Vernonia amygdalina	Asteraceae	Tree	Pollen/nectar	Jan-Feb, Apr
Coffea arabica	Rubiaceae	Shrub	Pollen/nectar	Jan-Apr, Oct-Nov
Euclyptus	Myrtaceae	Tree	Pollen/nectar	Dec-Jan, Oct-Nov
Bidens spp	Asteraceae	Herb	Pollen/nectar	Oct-Jan
Trifoluma spp	Fabaceae	Herb	Pollen/nectar	Oct, Dec-Jan
Parkinsonia aculeuta	Fabaceae	Tree	Pollen/nectar	Oct, Nov
Rubus spp	Rosaceae	Herb	Pollen/nectar	Oct, Dec-Jan
Schefflera abyssinica	Araliaceae	herb	Pollen/nectar	Oct, Jan
Grass spp	not id	Herb	Pollen/nectar	Oct
Plantago lanceolata	Plantaginaceae	Herb	Pollen	Mar
Olea africana	Oleaceae	Tree	Pollen/nectar	Feb
Bersama abyssinica	Francoaceae	Tree	Pollen/nectar	Oct
Brassica spp.	Brassicaceae	Herb	Pollen/nectar	Oct
Calesulpinia	Francoaceae	Herb	Pollen/nectar	Dec
Calesulpinia decaptal	Francoaceae	Shrub	Nectar	Dec
Combretum molle	Combretaceae	Tree	Nectar	Oct
Datura arborea	Solanaceae	Shrub	pollen	Dec
Syzygium guineense (Willd.)	Myrtaceae	Tree	Pollen/nectar	Oct
DC				
Echoriopis spp	Cactaceae	-	pollen	Dec
Ejursaw spp	not id	-	pollen	Feb
Rubuytmaesolonceolata	not id	-	pollen	Mar
Syzyjium spp	Myrtacea	Tree	pollen	Oct

Table 2: Bee plant species identified from pollen analysis and pollen harvesting period

3.4. Honeybee flora species abundance and density

Density and frequency of honeybee floral species found in each quadrant have been summarized in Table 3. During the plant inventory investigation, a total of 98 honeybee plant species belonging to 47 families were identified from 60 main plots and subplots (Table 3). These honeybee plant species were classified as herbs, shrubs, and trees, depending on growth forms of plants. Herbs were the most frequently visited plant growth form, accounting for 49 (50%) of all visits, followed by trees at 26 (26.5%) and shrubs at 23 (23.5%) in sample plots. The Fabaceae (31.9%), Asteraceae (19.1%) and Poaceae (14.8%) families had the most honeybee plant species encountered in quadrant samples. The best predictor of adaptation to the area and local conditions is thought to be the highest frequency of bee plant species. Due to their climate preferences for growth, Boraginaceae, Rubiaceae, Poaceae, and Myrtaceae were the most prevalent families in sample plots. Herbaceous plant species had a greater density value of plant species per plot than did trees and shrubs. This result is consistent with Wubie *et al.* (2014) and Addi *et al.* (2004), who found that herbaceous plant species had a higher density value per plot than trees and shrubs.

The most common or top ten floral honeybee plant species in highland sample plots/quadrants were Cynoglossum lanceolatum Forssk, Coffea arabica, Isoglossa species, Snowdenia polystachya (Fresen.) Pilg, Pennisetum glaucum (Linn.) R Br, Desmodium species, Tinospora cordifolia, Acanthus eminers C.B Clarke, Eucalyptus camaldlensis and Cyclamen purpurascens (Table 4). Cynoglossum lanceolatum Forssk, Snowdenia polystachya (Fresen.) Pilg, Bidens spp., Sorghum bicolor, Isoglossa spp., K. abyssinica, Euphorbia pinnata, Erythrina tirucalli. Vernonia auriculifera Hiern and Lippia adoensis Hochst. ExWalp were the most frequent honeybee plant species in lowland ecology

(Table 4) whereas Cynoglossum lanceolatum Forssk, Eucalyptus camaldlensis, Colocasia esculenta, Snowdenia polystachya (Fresen.) Pilg, K. pinnata, *Erica spp., Psidium guajava, Arum maculatum and Guizotia scabra* were the dominant honeybee plant species in midland sample plots (Table 4).

Local name	Scientific name	Family	Plant	Plant	Plant	Plot
			type	count	density	observed
Ambebesa/sesa	a Albizia gummifera	Fabaceae	Tree	44	267	9
Arenchi	Pavonia urens	Malvaceae	Herb	89	8663	8
Bahrzaf	Eucalyptus camaldlensis	Myrtaceae	Tree	704	4689	8
Banana	Musa acuminate	Musaceae	Tree	82	2050	3
Bisana	Croton macrostachyus	Euphorbiaceae	Tree	34	174	12
Buna/Coffee	Coffea arabica	Rubiaceae	Shrub	1739	4329	30
Castor/gulo	Ricinus communis	Euphorbiaceae	Shrub	47	279	10
Demekese	Ocimum lamiifolium Hochst	Labiatae	Herb	16	4782	4
Dergu	Isoglossa species	Acanthaceae-N	Herb	464	69074	50
Emo	Colocasia esculenta	Araceae	Herb	352	1996	10
Girawa	Vernonia Spp.	Asteraceae	Tree	77	261	22
Girnche/chifrig	g Sida schimperiana Hochst. ex A. Rich.	Malvaceae	Herb	222	2500	19
Kello/adey abeba	Bidens spp.	Asteraceae	Herb	497	37499	30
Metene	Cynoglossum lanceolatum Forssk.	Boraginaceae	Herb	2514	68281	110
Muja	Snowdenia polystachya (Fresen.) Pilg	Poaceae	Herb	944	141250	31
Rejii	Vernonia auriculifera Hiern	Asteraceae	Shrub	133	762	13
Susbania	esbania sesban	Fabaceae	Shrub	72	679	9
Tufo	Guizotia scabra	Asteraceae	Herb	60	67944	25
Ulmaye/limich	Clausena anisata (Willd.) Benth	Rutaceae	Shrub	22	244	7
Abayi/qalawa	Maesallanceolataforssk	Myrsinaceae	Tree	14	200	4
Arebe duberti	Carduus schimperi Sch. Bip	Asteraceae	Herb	58	42916	7
Birbira	Millettia ferruginea	Fabaceae	Tree	7	113	3
Bosoke	Kalanchoe sp.	Crassulaceae	Herb	95	52000	9
Chat	K. pinnata	Crassulaceae	Shrub	320	4001	4
Cheda dima	Euphorbia tirucalli	Euphorbiaceae	Shrub	142	1354	5
Desmodium	Desmodium species	Fabaceae	Herb	209	29583	20
Endod	Phytolacca dodecandra	Phytolaccaceae	Herb	29	46250	5
Gomenzer	Brassica Carinta A.br.	Brassicaceae	Herb	15	37500	2
Haallaal	Urera hypselodenron (A.Rich) wedd	Urticaceae	Shrub	44	83750	4
Kontir	Caesalpinia decapetala	Fabaceae	Shrub	65	1116	4
Korch	Erythrina abyssinica	Fabaceae	Tree	143	1131	6
Mango	Mangifera indica L.	Anacardiaceae	Tree	2	50	2
Qortobi	Plantigo lanceolata L.	Plantaginaceae	Herb	42	31875	6
Sanaa maki	Senna didymobotrya (Fresen.) Irwin	Fabaceae	Shrub	8	200	2

Table 3: Honeybee	nlant species	s density and	d frequency in	sample quadrants
Table 5. Honeybee	plant species	s uchany and	a mequency m	sample quadrants

	and Barneby					
Sindedo	Pennisetum thunbergii Kunth	Poaceae	Herb	18	45000	2
Sokoro	Acanthus eminers C.B Clarke	Acanthaceae	Herb	97	681	5
Ulaga	Ehretia cymosa Thonn.	Boraginaceae	Tree	5	58	4
Wanza	Cordia africana	Boraginaceae	Tree	17	148	9
Zeytuna	Psidium guajava	Myrtaceae	Tree	145	925	7
Adenguare	Phaseolus vulgaris L	Fabaceae	Herb	3	7500	1
Agam	Carissa spinarum	Apocynaceae	Shrub	4	100	1
Alenge	Arum maculatum	Araliaceae	Herb	121	302500	1
Allala	Allamanda spp.	Apocynaceae.	Herb	13	16250	2
Ananno	Periploca linearifolia QuartDill. and A. Rich.	Asclepiadaceae	Shrub	30	375	2
Apple	Malus pumila	Rosaceae	Shrub	2	50	1
Asangira	Datura stramonium L.	Solanaceae	Herb	9	11250	2
Askira	Millettia ferruginea (Hochst.) Bak	Fabaceae	Tree	15	63	6
Avocado	Persea Americana	Lauraceae	Tree	5	25	5
Baddessa/Doki	Syzygium guineens	Myrtaceae	Tree	2	50	1
ma						
Besobila /kefo	Salvia nilotica/Ocimumbasilicum	Lamiaceae	Herb	6	15000	1
Boqqo	Bersma abyssinica	Melianthaceae	Tree	1	25	1
Bosoka	Eriobotrya japonica	Rosaceae	Tree	1	25	1
Butte	Ammocharis tinneana (Kotschy and Peyr.) Milne-Redh. And Schweick	Amaryllidaceae	Herb	8	10000	2
Cassava	Euphorbiaceae	Manihot esculent	Shrub	124	1550	2
Cheka	Calpurnia aurea (Aiton) Benth	Fabaceae	Tree	4	100	1
Chibo	Vernonia leopoldi	Asteraceae	Shrub	18	450	1
Damisa	Centella asiatica	Apiaceae	Herb	7	17500	1
Dhumuga	Justicaschimperiana(Hochst.ex.Nee s) T. Andres	Acanthaceae	Shrub	16	400	1
Potato	Solanum tuberosum	Solanaceae	Herb	20	16666	3
Dobbi/sama	Urtica simensis steud.	Urticaceae	Herb	34	42 500	2
Enselal	Foeniculum vulgare Mill/Anethum graveolens L.	Apiaceae	Herb	2	5000	1
Enset	E. ventricosum	Musaceae	Shrub	33	413	2
Girar	Acacia spp.	Fabaceae	Tree	3	75	1
Gomera	Capparis tomentosa Lam.	Capparidaceae	Shrub	1	25	1
Guriyo	Tinospora cordifolia	Menispermaceae	Herb	141	88125	4
Harbu/shola	Ficus sur Forssk.	Moraceae	Tree	2	50	1
Hidda bofa	Momordica foetida (Ao) Schumach	Cucurbitaceae	Herb	1	25	1
Hiddaa lafaa	Dregea schimperi (Decne.) Bullock	Asclepiadaceae	Herb	8	6666	3
Hiddi	Solanum incanum L.	Solanaceae	Shrub	5	4166	3
Jajjab	Setaria megaphylla (Steud.) Th. Dur. and Schinz.	Poaceae	Herb	26	32500	2

Karaba	Sida rhombifolia L.	Malvaceae	Herb	26	7222	9
Kase	Lippia adoensis Hochst. ex Walp	Verbenacae	Herb	86	107,500	2
Kishkishe	Senna septemtrionalis (Viv.) Irwin and Barneby	Fabaceae	Herb	7	17500	1
Kunche	Chenopodium album	Amaranthaceae	Herb	21	17500	1
Kusaye	Lantana trifolia L.	Verbenaceae	Shrub	2	50	1
Lochisa	Bersama abyssinica	Melianthaceae	Herb	35	875	1
Mixoo/dido/di	Galiniera saxifrage (Hochst.)	Rubiaceae	Shrub	2	50	1
du	Birdson					
Mulberry	Morus alba	Moraceae	Shrub	3	75	1
Nanaye	Pennisetum glaucum (Linn.) R Br	Poaceae	Herb	196	61 250	8
Pepper /berberi	Capsicum annuum L.	Solanaceae	Herb	18	4500	1
Qalawa/qaawa	Grewia mollis Juss	Tiliaceae	Tree	1	25	1
a						
Qumudu	Nymphoides indica	Menyanthaceae	Herb	41	34166	2
Raafu	Kleinia grantii (Oliv. & Heiern) Hook.f.	Asteraceae	Herb	17	21250	3
Ret/ Alovera	Aloe debrana Christian	Xanthorrhoeacea	Herb	17	42500	1
	(syn.A.berhana Reynolds)	e				
Rhodus	Chloris gayana	Poaceae	Herb	1	2500	1
Shajara	Cyclamen purpurascens	Primulaceae	Herb	80	33333	6
Shenkora	Saccharum officinarum L.	Poaceae	Shrub	6	150	1
Shultee	Rumex nepalensis	Polygonaceae	Herb	6	15000	1
Siddisa/wazma	Trifolium rueppellianum Fresen.	Fabaceae	Herb	39	97500	1
Siglu	Fagaropsis angolensis (Engl.) Dale	Rutaceae	Tree	6	150	1
Sorghum	Sorghum bicolor	Poaceae	Herb	135	1688	2
Suufi/suff	Carthamus tinctorius	Asteraceae	Herb	56	46666	3
Togo	Dieliptera acanthaceae C.B.el	Acanthaceae	Tree	10	25000	1
Tsid	Juniperus procera Hochst. ex Endl	Cupressaceae	Tree	40	1000	1
Uregessa	Clausena anisata Benth	Rutaceae	Tree	11	138	2
Vetch	Vicia sativa	Fabaceae	Herb	6	15000	1
Welensu	Erythrina brucei	Fabaceae	Tree	41	513	2
Yeriwo garo	Solanecio sp.	Asteraceae	Herb	1	25	1

Scientific name	Family name	Highla	Highland		Lowlar	Lowland			Midland			
		Count	Density	Plot	Count	Density	Plot	Count	Density	Plot	Туре	
Vernonia Spp.	Asteraceae	48	100	12	10	42	6	19	119	4	Т	
Coffea arabica	Rubiaceae	425	1181	9	604	1373	11	710	1775	10	Т	
Croton macrostachyus	Euphorbiaceae	20	84	6	1	25	1	13	65	5	Т	
Vernonia rueppellii sch.	Asteraceae	27	135	5	92		5	14	167	3	S	

Albizia gummifera	Fabaceae	8	67	3	1	25	1	35	175	5	Т
Eucalyptus	Myrtaceae	112	933	3	3	75	1	589	3681	4	Т
Malua anni la	D	2	50	1							C
Maius pumita	Rosaceae	2	50	1	-	-	-	-	-	-	<u></u> З
Acacia spp.	Fabaceae	3	/5	1	-	-	-	-	-	-	1
<i>C B Clarks</i>	Acanthaceae	93	381	4	-	-	-	4	100	1	н
C.B Clarke	A ma avina ana a				12	16250	2				II
Allamanaa spp.	Apocynaceae.	-	-	-	15	16230	2	- 17	-	-	П
Alle debrand Christi	Aanunonnioeac	-	-	-	-	-	-	1/	42300	1	п
Reynolds)	eae										
Ammocharis tinnean	Amaryllidaceae	8	10000	2	-	-	-	-	-	-	Н
a (Kotschy											
and Peyr.) Milne-											
Redh.and Schweick											
Arum maculatum	Araliaceae	-	-	-	-	-	-	121	30250	1	Н
Bersama abyssinica	Melianthaceae		36	900	2	-	-	35	875	1	Т
Bidens spp.	Asteraceae	32	13333	6	407	56 527	18	58	24166	6	Н
Brassica Carinta	Brassicaceae	11	27500	1		-	-	4	10000	1	Н
A.br.											
Caesalpinia	Fabaceae	23	192	3	-	-	-	42	924	1	S
decapetala		_		_					-		
Calpurnia aurea	Fabaceae	-	-	-	-	-	-	4	100	1	Т
(Aiton) Benth	1 uouoouo							•	100	-	-
Capparis	Capparidaceae	-	-	-	1	25	1	-	-	-	S
tomentosa Lam	Cuppullaceue					20					5
Capsicum annuum L	Solanaceae	-	-		-	-	-	18	4500	1	Н
Carduus schimperi	Asteraceae	26	16250	4	_	-	-	32	26666	3	н
Sch Bin	Tisteraceae	20	10250	-				52	20000	5	
Carissa spinarum	Apocynaceae	-	-	-	-	-	-	4	100	1	S
Carthamus tinctorius	Asteraceae	_	_	-	56	46666	3	-	-	-	н
Centella asiatica	Apiaceae	7	17500	1	-		-		_		н
Chanonodium album	Amaranthaceae	21	17500	3						_	н
Chloris agyana	Poncene	1	2500	1	-	-	-	-	-	-	Ц
Chioris guyunu Clausona anisata	Putacasa	2	2300	1	-	-	-	-	-	-	11 C
(Wild) Routh	Kutaceae	2	50	1	9	50	4	22	270	4	3
(with) Dentin.	A #0.0000				54	675	2	206	1021	7	TT
Colocasia esculenta	Araceae	-	-	-	04 0	67	2	280	21	/	П
Corata africana	Dolaginaceae	-	-	-	0	07	3	5	51	4	1
Cyclamen	Primulaceae	80	33333	0	-	-	-	-	-	-	н
purpurascens	Demesioner	007	51 007	40	(12	52 592	20	074	(0201	20	TT
Cynoglossum lanceol	Boraginaceae	997	51,927	48	043	22 282	30	8/4	08281	32	н
Datung atnamonium	Salamaaaaa				0	11250	2				II
Datura stramonium	Solaliaceae	-	-	-	9	11230	2	-	-	-	п
L. Dogwodiuwanooiog	Echagooo	142	20592	12				104	21962	0	TT
Desmoarumspecies	Aganthagaga	142	29383	12	-	-	-	104	21002	9	п
Dieupiera geanthaeaga C P al	Acanthaceae	-	-	-	10	23000	1	-	-	-	1
Dugogong	Draaaanaaaaa	12	200	1							т
afromontana	Dracaenaceae	12	500	1	-	-	-	-	-	-	1
Drogog gohimpori (D	Asalaniadaaaaa	0	6666	2							ц
Dreged schimperi (D	Asciepiadaceae	0	0000	3	-	-	-	-	-	-	п
E wentrige survey	Museess							22	412	2	c
E. veniricosum	Doroginaceae	-	- 22	-	-	- 25	-	33	415	2	<u>ь</u> т
Enrena cymosa Thoma	Богадіпасеае	4	33	5	1	23	1	-	-	-	1
$\frac{1}{1} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$	Desease	4	10000	1						-	II
Eiuesine jolicofolia	Foaceae	4	2500	1				1.00	(01//	6	н
Erica genus	Ericaceae	1	2500	1	-	-	-	100	69166	0	н
Eriobotrya japonica	Kosaceae	-	-	-	1	25	1	-	-	-	1
Erythrina abyssinica	Fabaceae	38	4/5	2	105	656	4	-	-	-	1
Erythrina brucei	Fabaceae	-	-	-	-	-	-	41	513	2	

esbania sesban	Fabaceae	28	116	6	1	25	1	43	538	2	S
Euphorbia tirucalli	Euphorbiaceae	41	512	2	101	842	3	-	-	-	S
Euphorbiaceae	Manihot esculent	-	-	-	-	-	-	124	1550	2	S
F :	a D (6	150	1	т
Fagaropsis	Rutaceae	-	-	-	-	-		6	150	1	1
angolensis (Engl.)											
Dale Eigun gun Egnach	Managaga	2	50	1							т
Ficus sur Forssk.	Moraceae	2	50	1	-	-	-	-	-	-	1
Foeniculum vulgare	Apiaceae	-	-	-	-	-	-	2	5000	1	н
Mill./Anelnum											
graveolens L.	D 1'	2	50	1							C
Galiniera saxifrage (Rublaceae	2	50	1	-	-	-	-	-	-	3
Hochsi.) Birason	T:1:	1	25	1							т
Grewia mollis Juss	Antonno	1	25	1	-	-	-	-	-	-	I
Guizona scabra	Asteraceae	4	10000	1	30	28000	5	10.2	29944	19	н
Isoglossa species	Acanthaceae	266	24629	27	120	30000	10	/8	15000	13	Н
Juniperus procera	Cupressaceae	-	-	-	-	-	-	40	1000	1	Т
Hochst. ex Endl	A							16	100	1	C
Justicaschimperiana(Acanthaceae	-	-	-	-	-	-	16	400	1	3
Hochst.ex.Nees)1.											
Andres	C 1				100	12.02	-	011	2(20	2	G
K. pinnata	Crassulaceae	-	-	-	109	1363	2	211	2638	2	5
Kalanchoe sp.	Crassulaceae	54	27000	5	41	25000	4	-	-	-	H
Kleinia grantii	Asteraceae	-	-	-	-	-	-	17	21250	2	H
Lantana trifolia	Verbenaceae	-	-	-	-	-	-	2	50	1	S
Lippia adoensis Hoc	Verbenacae	-	-	-	86	107500	2	-	-	-	Н
hst. Ex Walp		_						_			_
Maesallanceolatafor	Myrsinaceae	9	75	3	-	-	-	5	125	1	Т
ssk											
Mangifera indica	Anacardiaceae	-	-	-	1	25	1	1	25	1	Т
Millettia ferruginea	Fabaceae	5	63	2	15	63	6	2	50	1	Т
(Hochst.) Bak											
Momordica foetida	Cucurbitaceae	-	-	-	1	25	1	-	-	-	Т
(Ao) Schumach											
Morus alba	Moraceae	-	-	-	-	-	-	3	75	1	S
Musa acuminata	Musaceae	32	800	1	13	325	1	-	-	-	Т
Nymphoides indica	Menyanthaceae	-	-	-	-	-	-	41	34166	3	Н
Ocimum lamiifolium	Labiatae	-	-	-	12	11325	3	4	100	1	Н
Hochst											
Pavonia urens	Malvaceae	41	5625	4	1	2500	1	47	538	3	Н
Pennisetum glaucum	Poaceae	196	61 250	8	-	-	-	-	-	-	Н
(Linn.) R Br											
Pennisetum	Poaceae	-	-	-	-	-	-	14	35000	1	Н
thunbergii Kunth											
Periploca linearifolia	Asclepiadaceae	-	-	-	-	-	-	30	37875	2	S
Quart. Dill. & A.											
Rich.											
Persea Americana	Lauraceae	-	-	-	-	-	-	5	25	5	Т
Phaseolus vulgaris L	Fabaceae	-	-	-	-	-	-	3	7500	1	Н
Phytolacca	Phytolaccaceae	15	37500	1	14	8750	4	-	-	-	Н
dodecandra											
Plantigo lanceolata	Plantaginaceae	-	-	-	9	11250	2	33	20625	4	Н
<i>L</i> .											
Psidium guajava	Myrtaceae	-	-	-	9	75	3	136	850	4	Т
Ricinus communis	Euphorbiaceae	4	50	2	6	75	2	37	154	6	S
Rumex nepalensis	Polygonaceae	6	15000	1	-	-	-	-	-	-	Н
Saccharum	Poaceae	-	-	-	-	-	-	6	150	1	S
officinarum L.											
Salvia nilotica/Ocim	Lamiaceae	-	-	-	-	-	İ	6	15000	1	Н
umbasilicum											

Senna	Fabaceae	_	-	-	7	17500	1	-	-	-	Н
sentemtrionalis (Viv.)	Tubuccuc				,	17500	-				
Irwin and Barnehy											
Senna didymohotrya	Fabaceae	6	150	1	2	50	1	-	_	-	S
(Fresen) Irwin and	Tubuccuc	0	150	1	2	50	1				5
Barnehy											
Setaria meganhylla	Poaceae	-	-	-	26	32500	2	-	_	-	н
(Steud) The Dur and	1 000000				-0	02000	-				
Schinz.											
Sida	Malvaceae	-	-	-	55	11 458	12	-	-	-	Н
schimperiana Hochst	1.141,40040				00						
. Ex A. Rich.											
Sida rhombifolia L.	Malvaceae	26	7222	9	-	-	-	-	-	-	Н
Snowdenia	Poaceae	200	5000	10	526	77 352	17	218	136250	4	Н
polystachya											
(Fresen.) Pilg											
Solanecio sp.	Asteraceae	-	-	-	-	-	-	1	25	1	Н
Solanum incanum	Solanaceae	-	-	-	5	4166	3	-	-	-	Н
Colonium tub anomum	Salamaaaaa	-		-				20	16666	2	II
solunum luberosum	Solallaceae	-	-	-	-	-	-	20	10000	3	п
Sorghum bicolor	Poaceae	-	-	-	135	1688	2	-	-	-	Н
Syzygium guineens	Mvrtaceae	-	-	-	-	-	-	2	50	1	Т
	<u> </u>										
Tinospora cordifolia	Menispermace	141	88125	4	-	-	-	-	-	-	Н
1 5	ae										
T : C 1: 11:	E 1				20	07500	1				
I rifolium rueppellian	Fabaceae	-	-	-	39	97500	1	-	-	-	н
um Fresen.											
Urera hypselodenron	Urticaceae	1	25	1	11	138	2		-	-	S
(A. Rich)											
Urtica simensis	Urticaceae	-	-	-	-	-	-	34	42500	2	Н
steud.											
Vernonia	Asteraceae	-	-	-	92	460	5	-	-	-	S
auriculifera Hiern											
5											
Vernonia leopoldi	Asteraceae	18	450	1	-	-	-	-	-	-	S
Vicia sativa	Fabacaaa	6	15000	1							и
	rabaceae	0	15000	1	_						11

Note: $T = T_1$	ree; S = Shrul	b; H = Herb;	Density is per ha
-----------------	----------------	--------------	-------------------

3.5. Diversity and composition of honeybee forages Herbs, trees, shrubs, and different species of grass are among the plant growth forms that honeybees use as forages. Herbs were the most dominant bee flora, accounting for 62 (44%) of a total of 141 honeybee plant species, followed by trees at 48 (34%) and shrubs at 31 (22%), respectively (Figure 3). This finding is consistent with previous findings, as herbs are the most dominant bee flora plants in Kaffa Zone, Gera district (Addi, 2018; Bareke and Addi, 2019; Bareke and Addi, 2020), North Shewa zone of Amhara region (Abebe and Temam, 2016), and Tigray region (Teklay, 2011) The predominant of herbs are due to disturbance and existence of gaps in the forest (Bareke and Addi, 2019). The families with the highest number of species were Fabaceae 18(12.8%), Asteraceae 11 (7.8%), Poaceae 9 (6.4%), Solanaceae 6(4.3%), Acanthaceae 4(2.8%) and Euphorbaceae 4 (2.8%) in the study area (Figure 4). The Fabaceae and Asteraceae families have the highest number of species. The study conducted in the Gera forests also revealed that the Fabaceae family had the dominant species composition, followed by Asteracea, which is consistent with current findings (Mulgeta *et al.*, 2015). This study was focused on the overall floristic composition of Gera forest rather than identifying specific species of honeybee flora.The present findings, on the other hand, contradict previous reports, as Asteraceae family has the highest species composition in Kaffa Zone and Gera forests (Addi, 2018; Bareke and Addi, 2019; Bareke and Addi, 2020). Not all Fabaceae species are plants that attract honeybees. As a result, it is not a dominating honeybee plant family in different study sites. However, the Asteraceae family is the most common bee foraging family in many forest areas (Bareke and Addi, 2020). The Asteraceae family's dominance may be ascribed to the ability of certain species to produce honey (Bareke and Addi, 2019).

Among a total of one hundred forty-one honeybee plant species, one hundred fifteen (81.6%) were both sources of pollen and nectar, whereas fifteen (10.6%) were pollen sources and the remaining eleven (7.8%)

were nectar source plant species. Forage sources (pollen/nectar) were confirmed with published and pollen specimen accounts. The present study revealed that bee plant species were the main source of both pollen and nectar rather than a single source of nectar or pollen. The findings also demonstrated that species of pollen-producing plants are more numerous than nectar-producing ones. This finding is aligned with those reported by Bareke and Addi (2020). Nectar and pollen are used for honey production and colony multiplication, respectively. Not all honeybee plants are similarly significant to bees and honey production. Only 16% of flowering plants are the origins of the majority of the honey in the world (Crane, 1990). This shows that there are only a handful of significant honey source plants in each geographical area.

Figure 3: Growth forms of bee plant species

Plant family

Figure 4: Number of species within each family

3.6. Species diversity, richness and evenness of *honeybee* plant species

The Shannon diversity index analysis revealed that the midland Agro-ecosystem had the most species diversity in sample plots compared to the highland and lowland Agro-ecosystem. The species diversity in highland and lowland ecosystems was the same (Table 5). The species richness varied by ecosystem. Midland ecology had comparatively the most species (59 species in 34 families), followed by highland (50 species in 29 families) and lowland (47 species in 26 families) ecologies. The midland Agro-ecology moderately has the most species diversity, richness, and evenness in sample plots compared to the highland and lowland agro-ecologies. These findings, however, contradicted the findings of Wubie et al. (2014), who indicated that highland agro-ecology had more species diversity and richness than midland and

lowland ecological systems. This variation could be attributed to differences in the geographical location, soil type, and climatic conditions of the study areas. Nevertheless, this doesn't mean that areas with a higher quantity of plant diversity are good for honey production since the productivity of the beekeeping sector is reliant on the abundance and density of plants. The Shannon diversity index and evenness were found to be 2.8 and 0.6, respectively. The higher the evenness and Shannon index values, the more even the species and the diversity in the ecology or plots. The current finding further supported the notion that the species diversity and evenness in sample plots fell within acceptable bounds of 1.5 and 3.5 (Kent and Coker, 1992).

Agro ecology	Richness	Shannon	H'max (lns)	Shannon Evenness =H'/lnS
Highland	50	2.7	3.9	0.6
Lowland	47	2.6	3.8	0.6
Midland	59	3	4.1	0.7

Table 5: Shannoi	ı diversity	indices	of honeybee	plant species
------------------	-------------	---------	-------------	---------------

4. Conclusion and Recommendation

The study area has a diverse range of floral species, which may aid in the production of honey for national and international markets. A total 141 pollen and/or nectar source honeybee plant species belonging to sixty-two families were identified in the study area. The Fabaceae and Asteraceae families have the highest number of species. Herbaceous plant species had a greater density value of plant species per plot than did trees and shrubs. There are two main flowering periods of bee plants and two main harvesting periods in the study area. The identification of bee plant species as well as their floral calendar helps the beekeepers in planning various beekeeping activities. Therefore, beekeepers should follow a floral calendar of honeybee plants to exploit the potential of the area for honey production.

Funding statement

This research received financial and material supports from Ethiopian Institute of Agriculture Research and Holeta Bee Research Center, respectively.

Data availability statement

Data will be made available on request.

Declaration of interest's statement

The authors declare no competing interests.

References

- Abebe, D. and Temam, T.D. (2016). Floristic Composition and Structure of Zerat Forest, Central Ethiopia. American Scientific Research Journal for Engineering Technology, and Sciences, 18(1): 326–342.
- Addi, A. (2018). The Ecology, Carbon Stock, Bee Forage Diversity in a Moist Afromontane Forest of Gesha and Sayilem Districts in Kaffa

Zone, South West Ethiopia. *Biomass Chemical Engineering*, 3(2): 1–272.

- Admasu, A., Debissa, L. and Amssalu, B. (2004).
 Botanical inventory and phenology of bee plants in rift valley regions of East Showa Zone: Proceedings of the 13th annual conference of the Ethiopian Society of Animal Production (ESAP), 25-27 August, 2004, Addis Ababa, Ethiopia. Pp. 31-40.
- Amssalu, B. (2004). Nature and phenology of honey plants in central highlands of Ethiopia, Proceedings of 12th National Annual Conference of Ethiopian Society of Animal production, 12-14 August, .Addis Ababa, Ethiopia. pp. 93-96.
- Amsalu B (2007). Seasonal intensity of flowering and pollen-forage selectivity by honeybees, *Apis* mellifera bandasii in central highlands of Ethiopia. Proceedings of the 14th annual conference of the Ethiopian Society of Animal Production (ESAP), Addis Ababa, Ethiopia pp.3-10.
- Bareke, T. and Addi, A. (2019). Bee flora resources and honey production calendar of Gera Forest in Ethiopia. *Asian Journal of Forestry*, 3(2): 69–74.
- Bareke, T. and Addi, A. (2020). Bee flora diversity in different vegetation communities of Gesha-Sayilem forest in Kaffa Zone, south-western Ethiopia. *Plants and Environment*, 2(4): 138– 148.
- Crane, E. (1990). Bees and beekeeping: Science, practice and world resources. Heinnmann Newness
- Façade, T. and Paul, S. (2006). Bee Flora. *Heritage*, April, 1–9.
- FAO (1986). Tropical and sub-tropical Apiculture.FAO Agricultural Services Bulletin 68, FAO, Rome, Italy. 285p.
- Fenet, B. and Alemayehu, O. (2016). The significance of honey production for livelihood in Ethiopia. *Journal of Environment and Earth*

Science, 6(4): 46–53.

- Fichtl, R. and Admasu, A. (1994). Honey bee flora of Ethiopia. The National Herbarium, Addis Ababa University and Deutscher Entwicklungsdienst (DED) Mergaf Verlag, Germany. 510p.
- Gebretsadik, T. (2016). Assessment of major Honey bee flora resources on selected districts of Sidama and Gedeo zones of South nations nationalities and peoples regional state, Ethiopia. *Journal of Agricultural Economics*, 4(2): 368–381.
- Genet, W. (2002). Identification of Honey Bee Floras and Their Flowering Times in Wondo Genet, Southern Ethiopia. *Journal of Resources Development and Management*, 59: 1–11.
- Gezahegn, T. (2001). Agriculture Development Strategies, Ministry of Agriculture and Rural Development, Addis Ababa, Ethiopia.
- Gidey, Y. and Mekonen, T. (2010). Participatory Technology and Constraints Assessment to Improve the Livelihood of Beekeepers in Tigray Region, Northern Ethiopia. *MEJS* 2(1): 76-92.
- Haftom, G., Tesfay, Z., Murutse G. and Estifanos A.
 (2013). Seasonal honeybee forage availability, swarming, absconding and honey harvesting in Debrekidan and Begasheka Watersheds of Tigray, Northern Ethiopia. *Livestock Research* for Rural Development. 25
- Jenberie, A., Tsegaye, A. and Bihonegn, A. (2016). Identification and Characterization of Honeybee Flora in Wag-Lasta area, Amhara Region. 9th Annual Regional Conference on Completed Livestock Research Activities, 339.
- Kebede, H. and Gebrechirstos, S. (2016). Floral establishment of major honey plants in north western zone of Tigray, Ethiopia. International Journal of Scientific and Engineering Research, 7(9): 543–550.
- Kent, M. and Coker, R. (1992). Vegetation description and analysis: A practical approach. CRC Press, Inc., London. Kent.
- Lemessa, D. (2006). The Roles of Apiculture in Vegetation Characterization and Household Livelihoods in Walmara District, Central Ethiopia. M.Sc thesis, Hawassa University, Hawassa, Ethiopia.
- Lemessa, D. and Addi A. (2009). Identification and

Evaluation of Bee Flora resources in arid and Semiarid Agro-ecological Zones of Southeast of Oromia. In proceedings of 17th Annual Conference of Ethiopia society of Animal production, 24 to 26 September, Addis Ababa, Ethiopia. Pp.181-191.

- Mulugeta, Y., Tamrat, B. and Ensermu, K. (2015).
 Floristic Composition, Species Diversity and Vegetation Structure of Gera Moist Montane Forest, Jimma Zone of Oromia National Regional State, Southwest Ethiopia. *Ethiopian Journal of Biological Sciences*, 14(1): 45-68.
- Pande, R. and Gi, R. (2018). Diversification of Honey bees ' flora and bee flora calendar for Nagpur and Wardha districts. *Journal of Entpmology and Zoology Studies*, 6(2): 3102– 3110.
- Pearson, W.D. and Braiden, V. (1990). Seasonal Pollen Collection by Honeybees from Grass/Shrub Highlands in Canterbury, New Ze aland. *Journal of Apicultural Research*, 29(4): 206-213.
- Ramirez-Arriaga, E., Navarro-Calvo, L.A. and Diaz-Carbajal, E. (2011). Botanical characterization of Mexican honeys from a subtropical region (Oaxaca) based on pollen analysis. *Grana*, 50(1): 40-54.
- Rijal, S.P., Thapa, R.B., Sharma, M.D., Sah, S.K. and Yubak Dhoj G.C. (2018). Bee Floral Calendar of Cultivated and Wild Plants available in Different Agroecosytems of Chitwa. *International Journal of Research-Granthaalayah*, 6(11): 222–245.
- Shegaw, T. and Giorgis, D.H. (2021). Identi fi cation , characterization and evaluation of honeybee fl oras in Kafa , Sheka and Benchi Maji Zones of Southern Nations Nationalities and Peoples Region (SNNPR), Ethiopia. *Journla of Agricultural Science and Food technology*, 7(3), 310–326.
- Teklay, A. (2011). Seasonal Availability of Common Bee Flora in Relation to Land Use and Colony Performance in Gergera Watershed Atsbi Wembwrta District, Eastern Zone of Tigray, Ethiopia. M.Sc.thesis, Hawassa University, Hawassa, Ethiopia.
- Tesfaye, B., Kitessa, H. and Ensermu, K. (2013). Floristic Composition and Structural Analysis of Jibat Humid Afromontane Forest, West

Shewa Zone, Oromia National Regional State, Ethiopia. *Ethiopian Journal of Education and Science*. 8(2):12-33.

- Tilahun, A. (2003). Natural Resources Degradation and Environmental Concerns in the Amhara National Regional State: Impact on Food Security, Proceedings of the Natural Resource Management Conference, 24- 26 July, Bahir Dar, Ethiopia, pp. 33-50.
- Wubie, A.J., Bezabeh, A. and Kebede, K. (2014). Floral phenology and pollen potential of honey

bee plants in NorthEast dry land areas of Amhara region, Ethiopia. *IOSR Journal of Agriculture and Veterinary Science*, 7(5): 36–49.

Zeleke, B., Debara, M., Negash, D. and Bekele, B. (2019). Assessment and Establishment of Honey Bee Flora Calendar to Increase Honey Production in Selected Areas of SNNPR State, Ethiopia. *Finance and Economics Review*, 1(1): 2019.