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Recognizing the important need for efficient plant disease detection in agriculture, this research evaluates and 
compares the performance of  three distinct deep learning models: Mobilenet_V2, Mobilenet_V3, and a custom-
built CNN model. As traditional methods fall short in addressing the evolving challenges of  crop health 
management, the study aims to discover the most effective model for accurate disease identification. Leveraging a 
dataset encompassing 20,639 images across 15 directories representing various plant diseases, the models 
undergo rigorous training and evaluation. Results reveal the CNN_model as the superior performer with a 
remarkable test accuracy of  94.48%, outshining Mobilenet_V2 and Mobilenet_V3. The comparative analysis 
sheds light on the strengths and weaknesses of  each model, providing valuable insights for the agricultural 
community. This research not only advances the understanding of  deep learning applications in precision 
agriculture but also lays the foundation for future innovations in sustainable crop management.
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exploration of  deep learning algorithms. This 
research addresses the existing gap in 
understanding the comparative performance of  
popular pre-trained models and custom-built 
CNN models for plant disease detection, focusing 
on performing experiments using a diverse dataset 
to evaluate the performance of  Mobilenet_V2, 
Mobilenet_V3, and a custom-built CNN model 
for plant disease detection, and analysing the 
results to determine the most effective model for 
early detection.

Plant Disease Detection
Farmers face a primary challenge in dealing with 
crop diseases, making the classification and 
analysis of  these illnesses pivotal for optimizing 
food yield in agriculture (Chen et al., 2021). The 
study of  detecting and recognizing plant disease is 
vital, especially as it can potentially monitor 
extensive crop fields and promptly identify disease 
symptoms on plant leaves ( ). 
Therefore, the quest for a quick, efficient, cost-
effective, and effective approach to determining 
instances of  crop diseases is of  utmost 
importance (Chen et al., 2021).

Artificial intelligence (AI) significantly contributes 
to the agricultural sector, enhancing a nation's 

 

Martinelli et al., 2015

INTRODUCTION
The agriculture sector plays a pivotal role in 
sustaining global food security, making the timely 
detection and management of  plant diseases 
crucial for ensuring optimal crop yield (Shiferaw et 
al., 2013). As technology continues to advance, 
machine-learning models have emerged as 
powerful tools for automating the process of  
plant disease detection, offering a promising 
solution to the challenges faced by traditional 
methods (Singh et al., 2016). The timely and 
accurate detection of  these diseases is crucial for 
effective management and mitigation strategies. 
This research delves into the comparison of  three 
deep learning models, specifically Mobilenet_V2 
and Mobilenet_V3 which are both types of  Single 
Shot Detectors, along with a custom-built 
Convolutional Neural Network (CNN) model, to 
determine the most efficient of  them which can 
enhance the early detection of  plant diseases.

Despite advancements in technology, plant 
diseases continue to impact crop health, leading to 
substantial economic losses and food shortages. 
Traditional methods of  disease detection are often 
time-consuming and prone to human error 
(Arsenovic et al., 2019). The need for efficient and 
automated solutions has prompted the 
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hardware enhancements, such as Raspberry Pi3 
with an Intel Movidius Neural Compute Stick, has 
resulted in superior metric accuracy performance 
(Sun et al., 2020).

As AI and DL technology continue to grow, 
computer vision (CV) has made significant strides. 
CV-based approaches, particularly those 
employing principle component analysis (PCA) 
and backpropagation methods, have proven 
useful in diagnosing grape leaf  diseases with high 
research accuracy (Xie et al., 2020). Validation 
accuracy using VGGNet on real-world datasets 
reached 91.83% (Xie et al., 2020).

The models are applied to object detection and 
semantic segmentation tasks, with a new efficient 
segmentation decoder called Lite Reduced Atrous 
Spatial Pyramid Pooling (LR-ASPP) proposed for 
semantic segmentation. MobileNetV3-Large 
achieves 3.2% higher accuracy on ImageNet 
classification with a 20% reduction in latency 
compared to MobileNetV2 ( ). 
MobileNetV3-Small is 6.6% more accurate than a 
comparable MobileNetV2 model with similar 
latency. MobileNetV3-Large also demonstrates 
over 25% faster detection on COCO detection 
compared to MobileNetV2, and MobileNetV3-
Large LR-ASPP is 34% faster than MobileNetV2 
R-ASPP with similar accuracy for Cityscapes 
segmentation ( ). Table 1 shows 
a comparison between Mobilenet_V2 and 
Mobilenet_V3 architectures.

) emphasize the importance of  
efficient neural networks for on-device 
experiences, personal privacy, and battery life 
preservation. The development of  MobileNetV3 
Large and Small models is aimed at delivering 
high-accuracy, efficient neural network models for 
on-device computer vision. The models showcase 
a trade-off  between accuracy and latency, pushing 
the state of  the art forward and highlighting the 
effectiveness of  combining automated search 
with novel architecture advancements.

Sandler et al., 2018

Howard et al., 2019

Howard et al., (2019

gross domestic product (GDP). Applying edge 
intelligence to agriculture, particularly through the 
use of  deep learning models like the YOLOv3 
neural network on embedded systems such as the 
NVIDIA Jetson TX2, presents a novel approach. 
This involves implementing the system on a drone 
to capture plant images, identify pest positions, 
and apply pesticides as needed (Al-Hiary et al., 
2011).

Hyperspectral and multispectral knowledge 
acquisition techniques have proven valuable in 
improving agricultural production by providing 
crucial data on elements affecting crop condition 
and growth. Widely employed in various 
agricultural applications, including sustainable 
agriculture, these technologies offer essential 
insights for farmers and agricultural management 
(Ang, 2021).

Deep Learning in Agriculture
Predicting diseases at an early stage is crucial to 
preventing massive crop loss and ensuring higher 
crop production. Advances in high computing 
speed and power, along with improved access to 
massive datasets, contribute to the enhanced 
efficiency of  disease detection systems ( , 
2020). A hybrid combination of  classifier 
techniques demonstrated a recognition rate of  
91.11%, surpassing the performance of  serial, 
parallel, and deep learning approaches (Massi et al., 
2020).

Additionally, the application of  the CovNet 
algorithm for identifying weeds in crops and the 
use of  hybrid deep-learning models demonstrate 
promising results in terms of  accuracy and 
parameter reduction (Zhou et al., 2021). Deep 
transfer learning, utilizing pre-trained datasets like 
Inception and ImageNet modules, proves 
effective in identifying plant diseases, with support 
vector machine (SVM) and multi-layer perceptron 
contributing to higher accuracy. The deployment 
of  Deep Convolutional Neural Networks for 
recognizing corn dietary sickness and the use of  

Wei et al.
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inversion allows for the use of  linear bottlenecks, 
which further reduce the number of  parameters 
and computations required for each residual 
connection .( )

Mobilenet_V2 Architecture
The fundamental building block of  this model 
consists of  a bottleneck depth-separable 
convolution with residuals, offering a refined 
structure as seen in Figure 1 and outlined in Table 
2. This architecture is designed to transform input 
tensors from k to k' channels, with a specific stride 
(s) and an expansion factor (t).

Howard et al., 2017

MobileNet_V2

Chirasani et 
al., 2024

MobileNet_V2 uses a combination of  depth-wise 
separable convolutions and inverted residuals to 
achieve both efficiency and accuracy (

). Depth-wise separable convolutions 
factorize a standard convolution into two separate 
operations: depth-wise convolution and pointwise 
convolution. This factorization reduces the 
number of  parameters and computations required 
for each convolution, making the network more 
efficient. Inverted residuals are a type of  residual 
connection that inverts the order of  the 
operations in a standard residual connection. This 

Table 1: Comparison of  Mobilenet_V2 and Mobilenet_V3

FEATURE  Mobilenet_V2  Mobilenet_V3  

ACTIVATION FUNCTION  ReLU  Hardswish  
RESIDUAL CONNECTION  Standard residual  Inverted residual  
ATTENTION MECHANISM  None  SE modules  
TOP-1 ACCURACY (IMAGE NET)  72.00%  75.20%  
PARAMS  3.4M  5.4M  
MACS  300M  560M  

Figure 1: Architectural diagram of  MobileNetV2.

Table 2: Structure of  the bottleneck residual block, emphasizing its role in channel transformation.

The overal l  MobileNetV2 architecture 
encompasses an initial fully convolutional layer 
featuring 32 filters. This is succeeded by 19 

residual bottleneck layers, as illustrated in Table 2. 
ReLU6 is employed as the non-linearity due to its 
resilience in low-precision computations (Howard 
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Table 4. Provides insight into the maximum 
number of  channels/memory for different 
architectures, considering 16-bit floats for 
activations. Notably, our model employs 
bottlenecks strategically, optimizing memory 
requirements and overall performance (Howard et 
al., 2017).

MobileNet_V3
) 

Mobilenet_V3 Architecture

Howard et al., (2019 MobileNet_V3 builds on the 
success of  MobileNet_V2 by introducing several 
new features, including:

· Hardswish activation function: The hardswish 
activation function is a more efficient 
alternative to the ReLU activation function. It 
is a piecewise linear function that 
approximates the behavior of  ReLU while 
being cheaper to compute.

· Squeeze-and-excitation (SE) modules: SE 
modules are a type of  attention mechanism 
that is used to improve the feature 
representations of  the network. They 
dynamically adjust the weight of  each feature 
channel based on its importance.

· MISH activation function: The MISH 
activation function is a combination of  the 
hardswish and sigmoid activation functions. It 
is designed to have the benefits of  both 
activation functions, namely, being more 
efficient than ReLU and having a smooth 
output.

The MobileNetV3 architecture as shown in Figure 
2, is designed to optimize the accuracy-latency 
trade-off  on mobile devices while introducing two 
new models,  Mobi leNetV3-Large and 
MobileNetV3-Small, designed to target high and 
low-resource use cases and adapted and applied to 
tasks such as object detection and semantic 

et al., 2017). Throughout the network, a standard 
3x3 kernel size is consistently utilized, and training 
incorporates dropout and batch normalization.

Except for the initial layer, a constant expansion 
rate is maintained across the network. Through 
experimentation, expansion rates ranging from 5 
to 10 yield comparable performance, with smaller 
networks benefiting from slightly reduced 
expansion rates and larger networks showcasing 
improved performance with larger expansion 
rates.
In the primary experiments, Howard et al employ 
an expansion factor of  6, applied to the size of  the 
input tensor. For instance, for a bottleneck layer 
transforming a 64-channel input tensor into one 
with 128 channels, the intermediate expansion 
layer comprises 64 × 6 = 384 channels.

Howard et al (2017), enable customization of  the 
architecture for different accuracy/performance 
trade-offs. Tunable parameters include input 
image resolution and width multiplier. 

The cost of  computation of  the primary network, 
with a width multiplier of  1 and a resolution of  
224 × 224, is 300 million multiply-adds, utilizing 
3.4 million parameters. Howard et al, explored 
various performance trade-offs by adjusting input 
resolutions from 96 to 224 and width multipliers 
from 0.35 to 1.4. Computational costs range from 
7 million to 585 million multiply-adds, while 
model sizes vary between 1.7 million and 6.9 
million parameters.

Table 3. The architecture of  MobileNetV2, 
illustrating a sequence of  identical layers repeated 
n times, with each layer having the same number 
of  output channels c (Howard et al., 2017).

Nwaneto and Yinka-Banjo: Harnessing Deep Learning Algorithms for Early Plant Disease Detection



559

other applications ( ). CNNs are 
preferred in deep learning architecture 
because they utilize perceptrons for breaking 
down the gathered information. CNNs 
consists of  a series of  layers, including 
convolution layers, pooling layers, and 
normalization layers as shown in Figure 3.

· Convolution Layer: This layer involves the 
convolution of  feature maps of  the previous 
layer with a kernel. The output feature map of  
the convolution layer is computed using Eq. 
(1), which involves the convolution operator, 
sigmoid function, and input of  the non-linear 
sigmoid function.

· Pooling Layer: In this layer, sub-sampling of  
input features takes place to reduce the 
resolution of  feature maps and increase the 
invariance of  those features. The output 
feature map of  the pooling layer is computed 
using Eq. (2), which involves the sub-
sampling function for average pooling.

Li et al., 2016segmentation, achieving state-of-the-art results 
for mobile classification, detection, and 
segmentation ( .

The architecture search for MobileNetV3 involves 
platform-aware NAS for block-wise search and 
NetAdapt for layer-wise search (

. This process is repeated until the latency 
reaches its target, and then the new architecture is 
re-trained from scratch.

The efficient building blocks used for 
MobileNetV3 include depth-wise separable 
convolutions, linear bottlenecks, inverted residual 
structures, and lightweight attention modules 
based on squeeze and excitation. These building 
blocks are combined to create the most effective 
models, and layers are upgraded with modified 
swish nonlinearities. The architecture also uses a 
combination of  these layers as building blocks to 
build the most effective models. 

Howard et al., 2019

Howard et al., 
2019

)

)

CNN Architecture
Convolutional Neural Networks (CNNs) are a 

type of  deep learning architecture that is 
extensively used for image and video 
recognition, natural language processing, and 

Figure 2: Architectural Diagram of  MobileNet V3.
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MATERIALS AND METHODS

Dataset Collection
To support our investigation in the realm of  image 
collection, we accessed the PlantVillage dataset 
o n l i n e  a t  h t t p s : / / w w w. k a g g l e . c o m /  
datasets/emmarex/plantdisease in October 2023. 
This dataset, encompassing 3 crops namely, 
Potato, Pepper and Tomato, 15 directories of  
20,639 high-quality JPEG images in a 5471x3648 
pixel format. In the preprocessing phase, which 
includes noise removal and segmentation, the 
images are resized to 256x256 pixels (Gandhi et al., 
2018). Recognized as a prominent dataset for crop 
disease research, the PlantVillage dataset has been 
widely used, featuring images captured in a 
controlled laboratory environment, serving as 
training datasets of  20,639 plant leaf  images, 
categorizing diseases within 15 sub-directories.

Our choice of  collection focuses on disease-
affected and healthy images, with examples such 
as Potato Blight, Tomato Spider, Tomato Mosaic, 
Pepper Bacteria spots, healthy spots, mosaic virus, 
septoria leaf  spot, bacterial spot, early blight, late 
blight, septoria leaf  spot, and spider mites, 
specifically in the context of  potato, pepper and 
tomato imagery. This approach ensures that our 

research incorporates real-world scenarios and 
diverse environmental conditions, enhancing the 
robustness and applicability of  our findings 
(Gandhi et al., 2018). 

The conceptual representation in Figure 4 
outlines the research approach for the 
classification and analysis of  multi-crop leaf  
diseases. The initial step involves the collection of  
plant leaf  disease images, which are then 
categorized. Various image processing techniques 
such as filtering, sharpening, grey-transforming 
and scaling the picture are employed in the 
preprocessing phase. Data enhancement methods 
were applied to enhance and prepare the dataset 
which led to the generation of  new sample photos 
from the existing ones. Techniques like rotation, 
translation, and randomized transformation were 
utilized to expand the dataset's size. Subsequently, 
these augmented images serve as input for training 
the proposed model in the next stage.

The newly trained architectural models are then 
tested to predict outcomes for previously unseen 
images.  Then the results from testing these 
models are juxtaposed, analyzed and documented.

Figure 2: Architectural Diagram of  MobileNet V3.

Figure 4. Research Approach Flow Diagram.
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Data Augmentation
Data augmentation was done using specific 
augmentation parameters which include rotation, 
width shift, height shift, shear, zoom, horizontal 
flip, and fill mode which enhanced generalization, 
and decreases model overfitting, thereby 
improving model performance and aiding in the 
learning of  robust characteristics by models, 
improving accuracy and resistance to noise and 
changes in the actual world.

Rationale for Choosing Models
An extensive review of  existing literature and 
previous research studies informed the selection 
process, emphasizing models that have 
demonstrated success in similar contexts. 
Additionally, the decision to employ transfer 
learning and pre-trained models was motivated by 
the desire to leverage knowledge gained from 
large-scale datasets, enhancing the models' ability 
to generalize effectively to our dataset.

Model Building and Evaluation
In the case of  the PlantVillage dataset being used, 
the images are standardized to a size of  224x224 
pixels to train the Mobilenet_V2, Mobilenet_V3 
and a custom-built CNN model. By modifying the 
pooling size, a smaller image seamlessly fit into the 
network. Proper preparation of  the images 
ensured effective transfer learning with the multi-
cropped image dataset.

A CNN_Model (Convolutional Neural Network) 
was trained using the Keras library in the following 
steps:

1. Model Initialization: A Sequential model 
is instantiated from Keras. The Sequential 
model allows for the creation of  a linear 
stack of  layers. 

2. Input Layer and Convolutional Layers: 
The first layer added to the model is a 2D 
convolutional layer (`Conv2D`). This 
layer is responsible for learning spatial 
hierarchies from the input images. 
Additional convolutional layers are added 
with increasing complexity, employing the 
rectified linear unit (ReLU) activation 
function and batch normalization for 
improved training stability. 

3. Max Pooling and Dropout: Max pooling 

layers was introduced to down-sample the 
spatial dimensions of  the feature maps, 
reducing computation and preventing 
overfitting.

4. Flatten and Dense Layers: We employed 
the Flatten layer to flatten the 3D feature 
maps to 1D, enabling the connection to 
densely connected layers. Next, Dense 
layers (fully connected layers) are added to 
the model for classification.

5. Model Compilation: We compiled the 
model with an optimizer, loss function 
(binary cross-entropy for binary 
classification), and metrics (accuracy). 
Next, we displayed a summary of  the 
model architecture and parameters.

6. Model Training: During training, the 
model is trained using the training data 
and evaluated on the validation data.

7. Evaluation and Saving: The model's 
performance is evaluated on the test data, 
and the trained model is saved to disk. The 
sequential construction of  layers, 
activation functions, and optimization 
settings defines the architecture and 
behaviour of  our cnn_model.

Platform Utilization: Kaggle
The experimental setup took advantage of  
Kaggle's platform for its computational resources 
and collaborative environment. By creating a 
dedicated notebook on Kaggle, the research 
harnessed the platform's capabilities for seamless 
model development, training, and evaluation. 
Kaggle's accessible computing power allowed for 
the efficient execution of  complex deep learning 
algorithms, ensuring the scalability of  the 
experiments. Kaggle is a cloud-based computing 
platform for data science and can be found at 
www.kaggle.com.

EXPERIMENT AND RESULTS
Experiment 1: Mobilenet_V2 Model
The first experiment was carried out on the 
Mobilenet_V2 model

Training Results
Ÿ Training and Validation Loss Curves
The Mobilenet_V2 model underwent an extensive 
training process to learn the intricate patterns 
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within the plant disease dataset. The training loss 
curves depict the model's convergence during the 
training phase. These curves illustrate the 
progression of  the loss function over successive 
epochs as shown in Figure 5, providing insights 
into the model's ability to minimize errors and 
improve its predictive capabilities.

Figure 5. Graph showing training and Validation 
Loss Curves for experiment 1

Evaluation Results
Validation and Test Accuracy Trends 

As shown in Figure 5 and Figure 6, the validation 
accuracy trends offer a glimpse into the model's 
generalization performance. Monitoring accuracy 
on a separate validation set during training helps 
identify potential overfitting or under-fitting 
issues. This section analyzes how the 
Mobilenet_V2 model's accuracy evolves on the 
validation set across training epochs shown in 
Table 5.

Table 5 below, summarily, shows and documents 
the training progress of  our MobileNet_V2 
model, demonstrating improvements in training 
and validation metrics over 25 epochs. The model 
is learning well and generalizing effectively to our 
image data.

Table 5: Epoch Result for Mobilenet_V2.

EPOCH Time to run Loss Accuracy  Value Loss Value Accuracy 
1/25 52s 674ms/step 1.2002 0.6239 0.7096 0.7716 
2/25 48s 660ms/step 0.5858 0.7986 0.5402 0.8105 
3/25 48s 651ms/step 0.4512 0.8480 0.4809 0.8376 
4/25 49s 675ms/step 0.3744 0.8716 0.5715 0.8003 
5/25 49s 670ms/step 0.3929 0.8600 0.5655 0.8071 
6/25 49s 666ms/step 0.3350 0.8832 0.5231 0.8190 
7/25 50s 687ms/step 0.3154 0.8897 0.4098 0.8596 
8/25 49s 667ms/step 0.2588 0.9141 0.4077 0.8666 
9/25 49s 677ms/step 0.2646 0.9038 0.4392 0.8545 
10/25 49s 675ms/step 0.2353 0.9158 0.4390 0.8494 
11/25 51s 692ms/step 0.2357 0.9193 0.3848 0.8680 
12/25 49s 673ms/step 0.2011 0.9326 0.4299 0.8443 
13/25 48s 661ms/step 0.2079 0.9304 0.3670 0.8782 
14/25 49s 670ms/step 0.1695 0.9420 0.4324 0.8596 
15/25 49s 673ms/step 0.1613 0.9489 0.3732 0.8799 
16/25 50s 688ms/step 0.1892 0.9373 0.3798 0.8579 
17/25 50s 683ms/step 0.1541 0.9459 0.3980 0.8646 
17/25 50s 683ms/step 0.1541 0.9459 0.3980 0.8646 
18/25 49s 671ms/step 0.1846 0.9390 0.4637 0.8494 
19/25 50s 678ms/step 0.1724 0.9403 0.4722 0.8511 
21/25 49s 670ms/step 0.1315 0.9541 0.4323 0.8579 
22/25 49s 668ms/step 0.1631 0.9429 0.5080 0.8376 
23/25 50s 683ms/step 0.1157 0.9562 0.5225 0.8409 
24/25 50s 683ms/step 0.1278 0.9575 0.3486 0.8866 
25/25 49s 673ms/step 0.1070 0.9648 0.3591 0.8883 
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Figure 6. Graph showing validation and test 
accuracy for experiment 1.

Figure 7. Graph showing training and validation 
accuracy for experiment 1.

Experiment 2: Mobilenet_V3 Model

Training Results

· Training Loss Curves
The training process of  the Mobilenet_V3 model 
involved the optimization of  model parameters to 
minimize the training loss. The training loss 
curves as shown in Figure 8, depict the 
convergence of  the model during this process, 
providing insights into its ability to learn and adapt 
to the complexities of  the plant disease dataset.

Figure 8. Graph showing Training and Validation 
Loss Curves for Experiment 2

· Test and Validation Accuracy Trends
Validation accuracy trends (as shown in Figure 9) 
illustrate how well the Mobilenet_V3 model 
performs to data during the training phase. 
Monitoring these trends helps identify potential 
overfitting or under fitting issues, offering a 
deeper understanding of  the model's robustness.

Figure 9. Training and Validation Accuracy for 
Experiment 2
The evaluation of  the Mobilenet_V3 model on a 
previously unseen test dataset is summarized by 
the test accuracy metric (see Figure 9). This 
provides a comprehensive measure of  the model's 
performance in accurately classifying plant 
diseases in real-world scenarios. 

In summary, Table 6 documents the training 
progress of  our MobileNet_V3 model, 
showcasing trends in training and validation 
metrics over 25 epochs.

Nwaneto and Yinka-Banjo: Harnessing Deep Learning Algorithms for Early Plant Disease Detection



Experiment 3: CNN Model

Training Results

· Training Loss Curves
Similar to the pre-trained models, the cnn_model 
underwent training, and the training loss curves 
illustrate the model's learning dynamics (See 
Figure 10). These curves provide insights into 
how well our trained CNN model adapts to the 

unique characteristics of  the plant disease dataset.

· Validation Accuracy Trends
The validation accuracy trends for our cnn_model 
showcase its ability to generalize to new instances 
during the training phase. Monitoring these trends 
is crucial for understanding the model's capacity 
to recognize patterns in the data.

564

Table 6: Epoch Result for Mobilenet_V3.

EPOCH  Time to Run  Loss  Accuracy  Value Loss  Value 
Accuracy  

Epoch 1/25  46s 577ms/step  2.7798  0.0653  2.7269  0.0643  
Epoch 2/25  41s 558ms/step  2.7197  0.0666  2.7132  0.0558  
Epoch 3/25  39s 532ms/step  2.7099  0.0691  2.7097  0.0558  
Epoch 4/25  39s 538ms/step  2.7069  0.0734  2.7092  0.0558  
Epoch 5/25  39s 532ms/step  2.7073  0.0700  2.7046  0.0558  
Epoch 6/25  41s 558ms/step  2.7038  0.0704  2.7045  0.0745  
Epoch 7/25  40s 553ms/step  2.7011  0.0717  2.6988  0.0981  
Epoch 8/25  40s 551ms/step  2.6977  0.0769  2.6942  0.0778  
Epoch 9/25  39s 532ms/step  2.6910  0.0940  2.6999  0.0694  
Epoch 10/25

 
41s 556ms/step

 
2.6891

 
0.0910

 
2.6824

 
0.0880

 
Epoch 11/25

 
41s 558ms/step

 
2.6807

 
0.1091

 
2.6696

 
0.1235

 
Epoch 12/25

 
40s 541ms/step

 
2.6725

 
0.1061

 
2.6598

 
0.1218

 
Epoch 13/25

 
40s 552ms/step

 
2.6629

 
0.1108

 
2.6476

 
0.1100

 
Epoch 14/25

 
40s 552ms/step

 
2.6514

 
0.1073

 
2.6361

 
0.1472

 Epoch 15/25
 

41s 553ms/step
 

2.6425
 

0.1103
 

2.6194
 

0.0998
 Epoch 16/25

 
39s 532ms/step

 
2.6233

 
0.1280

 
2.6130

 
0.0948

 Epoch 17/25
 

40s 553ms/step
 

2.6124
 

0.1159
 

2.5896
 

0.1100
 Epoch 18/25

 
41s 557ms/step

 
2.6001

 
0.1202

 
2.5643

 
0.1184

 Epoch 19/25
 

40s 552ms/step
 

2.5865
 

0.1292
 

2.5489
 

0.1489
 Epoch 20/25

 
39s 536ms/step

 
2.5729

 
0.1219

 
2.5358

 
0.1286

 Epoch 21/25
 

40s 552ms/step
 

2.5628
 

0.1237
 

2.5376
 

0.0931
 Epoch 22/25

 
41s 557ms/step

 
2.5587

 
0.1318

 
2.5435

 
0.0880

 Epoch 23/25
 

40s 545ms/step
 

2.5456
 

0.1387
 

2.4977
 

0.1675
 Epoch 24/25

 
41s 558ms/step

 
2.5409

 
0.1301
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Evaluation Results

· Test Accuracy
The evaluation of  our cnn_model on the test 
dataset is summarized by the test accuracy metric. 
This metric reflects the model's overall 
performance in identifying plant diseases and 
provides a basis for comparison with other 
models.

Comparative Analysis

· Performance Metrics across Models
In this section, we tabulate the performance 
metrics across Models in Table 5, presenting a 
comparative analysis of  performance metrics, 
including accuracy, precision, recall, and F1 score, 
across the Mobilenet_V2, Mobilenet_V3, and 
CNN_model. Examining these metrics 
collectively provides a holistic view of  each 
model's capabilities.
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Figure 10. Shows both training and validation loss and accuracy curves for experiment 3.

Table 7. Showing Comparison of  performance between Mobilenet_V2, Mobilenet_V3 and our 
CNN_model

Model  Test Accuracy  precision  recall  f1 score  
Mobilenet_V2      88.83%         0.87       0.89  0.88  
Mobilenet_V3      17.94%         0.18       0.18  0.18  
CNN_Model   94.48%         0.95  0.94  0.94  

DISCUSSION
The custom-built CNN model achieved the 
highest test accuracy of  94.48%, surpassing 
MobileNet_V2 (88.83%) and MobileNet_V3 
(17.94%). Its superior precision (0.95), recall 
(0.94), and F1-score (0.94) align with literature 
emphasizing CNNs' strength in image-based tasks 
(Xie et al., 2020). This performance also exceeds 
benchmarks from models like VGGNet (91.83%, 
Xie et al., 2020) and other standard classifiers, 
highlighting the effectiveness of  tailored 
architectures for specific datasets.

MobileNet_V2 demonstrated competitive 

performance, reflecting its efficiency in simpler 
use cases, consistent with findings by Howard et al. 
(2017). However, MobileNet_V3's low accuracy 
(17.94%) contrasts sharply with its expected 
results from other studies (Howard et al., 2019). 
This underperformance likely stems from 
challenges in fine-tuning and adapting its 
advanced features, such as SE modules and 
Hardswish, to the dataset. These results show the 
importance of  custom models in achieving 
superior performance for domain-specific tasks. 
While MobileNet architectures are efficient for 
general-purpose mobile applications, the CNN 
model's adaptability and robustness make it more 
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suitable for the agricultural context studied here. 
Further exploration of  tailored and hybrid models 
could enhance future performance and practical 
applicability.

CONCLUSION

Summary of  Findings
The findings of  the research are summarized, 
providing a comprehensive overview of  the 
outcomes from the experiments conducted on 
Mobilenet_V2, Mobilenet_V3, and our CNN 
model for plant disease detection. The key 
takeaways from the training and evaluation results 
have been outlined, emphasizing the performance 
variations among the models. Our CNN model 
emerged as the most effective, achieving a test 
accuracy of  94.483%, outperforming both 
Mobilenet_V2 and Mobilenet_V3.

Future Research Directions
As we conclude this research journey, several 
promising avenues for future exploration emerge:

Model Ensemble Techniques: Investigate the 
integration of  ensemble techniques to combine 
the strengths of  multiple models, potentially 
enhancing overall performance and robustness in 
plant disease detection.

Explainability and Trustworthiness: Delve 
deeper into the development of  explainable AI 
models to enhance the interpretability and 
transparency of  complex models. Building trust in 
decision-making processes is critical for the 
adoption of  machine learning in agriculture.

Continuous Dataset Evolution: Explore 
strategies for continuous dataset augmentation 
and evolution to ensure that machine learning 
models remain adaptive to evolving disease 
patterns and environmental conditions in real-
world agricultural settings.

Collaboration with Domain Experts: Foster 
collaboration between machine learning 
practitioners and domain experts, including plant 
pathologists and agronomists, to refine models 
based on practical insights and ensure their 
alignment with the needs of  the agricultural 
community.
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