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CHAOTIC DYNAMICS OF THE COUPLED SINGLE-WELL QUINTIC, HENON-
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The behaviour of  a body subjected to three coupled potentials, those of  a single-well quintic potential, the 
Henon-Heiles potential and that of  the hydrogen atom in a uniform magnetic field were investigated. The 
parameter under interest was the parameter that characterised the chaotic dynamics of  the hydrogen atom in a 
uniform magnetic field. The body exhibited regular behaviour for values of  the coupling parameter less than a 
threshold value, after which it abruptly became chaotic, with the degree of  chaoticity increasing with the 
coupling parameter.
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INTRODUCTION
The Henon-Heiles potential was proposed by 
Henon and Heiles (1964) as a model for the 
motion of  a star in a plane around a galactic 
centre. The resulting motion became so important 
in the development of  dynamical chaos because 
this simple system gave the spectrum of  
behaviour for chaotic dynamics in a two-
dimensional system. There is only one constant of  
motion, the Hamiltonian of  the system. For 
values of  the energy less than a certain threshold, 
the system behaves like an integrable system, as 
the Poincare surface consists only of  invariant 
curves. In other words, it is as if  each of  the two 
oscillators holds its energy. At higher energies, it is 
obvious that the system is not integrable as the 
two component oscillators no longer share energy 
in a predictable way. Thus, the Poincare surface 
from a single initial point generates a chaotic sea.

Various forms of  the modified Henon-Heiles 
system had also been explored (Vesely and 
Podolsky, 2000; Brack et al., 1999; Choudhury and 
Kalita, 2008). Kasperczuk, S. (1995) working on 
generalised Henon-Heiles systems used 
Melnikov's method to prove the existence of  
nondegenerate homoclinic orbits near two 
integrable cases.

The Henon-Heiles problem has transcended the 
boundaries of  classical mechanics. Brack et al. 
(1993) observed that the quantum density of  
states of  the Henon-Heiles Hamiltonian 
exhibited prominent low-frequency beats as a 

function of  energy. These they interpreted in 
terms of  interferences of  the three simplest 
isolated classical periodic orbites by a calculation 
of  their amplitudes in the Gutzwiller trace 
formula. They introduced a parameter governing 
the anharmonicity of  the potential. Periodic orbit 
theory was applied to approximate the oscillating 
part of  the resonance spectrum of  the quantum 
spectrum of  the Henon-Heiles potential up to 
twice the barrier energy (Kaidel et al., 2005). Gupta 
and Deb (2006) studied the quantum dynamics of  
an electron moving under the Henon-Heiles 
potential in the presence of  external time 
dependent laser fields of  varying intensities by 
evolving in real time the unperturbed ground-
state wave function of  the Henon-Heiles 
oscillator. They also analysed the similarity 
between the Henon-Heiles potential and 
atoms/molecules in intense laser fields.

Chaoticists had also put a lot of  attention on the 
hydrogen atom in a uniform magnetic field as an 
example of  a chaotic system. Examples include 
the classical electronic motion of  the atom near a 
metal surface (Simonovic, 1997), hydrogen atom 
in the presence of  uniform magnetic and 
quadrupolar electric fields (Inarrea and Salas, 
2002) and the hydrogen atom in weak electric and 
magnetic fields (Turbiner, 1983).

Wintgen and Friedrich (1986) studied the 
spectrum of  the hydrogen atom in a uniform 
magnetic field by exact numerical calculations in a 
complete basis. Kravchenko et al. (1996) 
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developed a highly accurate series solution for a 
hydrogen atom in a uniform magnetic field of  
arbitrary strength, a power series in terms of  the 
radius and the sine of  the cone angle. In addition, 
Bachmann et al. (2000) extended the Feynman-
Kleinert variational approach to calculate the 
temperature-dependent effective classical 
potential governing the quantum statistics of  a 
hydrogen atom in a uniform magnetic field at all 
temperatures. 

More recently, Popov and Karnakov (2014) 
studied the energy spectrum of  atomic hydrogen 
in strong and ultra-strong magnetic fields in which 
the hydrogen electron started to move 
relativistically and quantum electrodynamics 
effects became important. Also, Amdouni and 
Eleuch (2014) analysed the relativistic corrections 
on the energy spectra of  a hydrogen atom with 
realistic nucleus mass in a strong magnetic field. 

The Duffing oscillator is a nonlinear second-order 
ordinary differential equation which has found 
application in many real-life situations. These 
include magneto-elastic mechanical systems 
(Guckenheimer and Holmes, 1983), sinusoidally 
excited buckled beam (Pezeshki and Dowell, 
1987), nonlinear vibration of  beams and plates 
(Ahmadian et al., 2009), and flow-induced 
vibration (Srinil and Zanganeh, 2012).

Coupled Duffing oscillators have also been 
investigated for signal detection. Yue et al. (2006) 
detected periodic signals under the background of  
strong coloured noise by using two coupled 
Duffing oscillators. Wu et al. (2014) worked on the 
stochastic resonance of  two coupled Duffing 
oscillators, applying this to weak signal detection 
(Wu et al., 2014). 

A search of  the literature did not reveal any work 
done on these three systems having been coupled 
together before. This work was therefore 
undertaken to study the chaotic dynamics of  a 
particle in such a potential well depending on how 
much of  the hydrogen potential is added to the 
coupling. 

METHODOLOGY
In this work, the oscillators under consideration 
have coordinates  and , with corresponding 1q 2q

momenta  and . In this respect, the Henon-
Heiles potential, , is given as,

        (1)

The resulting Hamiltonian, , is,

        (2)

Referring to Friedrich and Wintgen (1989) 
treatment of  the hydrogen atom in a uniform 
magnetic field (of  strength ) described by the 
Hamiltonian,

        (3)

where H  is the Hamiltonian,  is the direction of  2

the field,  is the reduced mass of  the electron 

and the nucleus, and  is half  the cyclotron 
frequency, equal to           , where e is the 

electronic charge and c the speed of  light. It has 
been shown that the dynamics is equivalent to that 
given by the potential:

        (4)

where the scaled energy,                    , determines 

the degree of  chaoticity of  the system and 
                , the value of  the magnetic field 
strength at which the oscillator energy equals the 
Rydberg energy,    .         and  are the 
coordinates and momenta of  the equivalent 
system. The last term in Eq. (4) is the diamagnetic 
coupling term.
The system described by Eq. (4) has been been 

found by the authors to be fully chaotic for 

The double-well cubic potential which has 
attracted much attention (Flocken et al., 1989; 
Visco and Sen, 1998; Turbiner, 2005; and Olusola 
et al., 2010) has the form,

  (5) 

where , and  an arbitrary constant.

Along these lines, the quintic potential can be 
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written in terms of  the parameters,

         (6)

With the right choice of  the parameters , and , 
the potential could be a single well, a double well 
or triple well, single hump, double well with 
double hump or an inverted single well. In 

particular, in this work we set              ,

and           . This choice of  values gives a single-

well potential and ensures the simplicity of  the 
equations of  motion due to the Hamilton 
equations for this conservative system.

We consider two nonlinearly coupled undamped 
and unforced Duffing oscillators, such that the 
resulting potential is,

           (7)

The coupling term,                   has been chosen 
to ensure that the potential is symmetric for  and 

.

When coupled together, the resulting potential 
is, 

           (8)

The resulting Hamiltonian is,

          (9)

The Hamilton equations of  motion are,

         (10)

         
         (11)

m g h

q1

q2

        (12)

        (13)

The equations (10) to (13) were solved using the 
Fourth-order Runge-Kutta method with the 
check on errors such that the percentage error in 
the energy is less than 0.1% to obtain the 
bifurcation diagram. The Lyapunov spectrum was 
also taken to corroborate the bifurcation 
structure. Moreover, a few Poincare surfaces of  
section for chosen values of  the coupling constant 
were plotted.

RESULTS AND DISCUSSION
Figure 1 is the bifurcation diagram of  the system. 
The motion of  the oscillators is regular for values 
of  the coupling constant up to around 0.8. 
Thereafter, the system bursts into chaotic motion. 
The degree of  chaoticity increases as the coupling 
parameter increases.

The Lyapunov diagram (Fig. 2) is in agreement 
with the bifurcation diagram as the system makes 
a sudden transition to chaotic motion. The 
Lyapunov diagram of  a Hamiltonian system is 
such that the sum of  all the Lyapunov exponents 
is zero. Unlike in the case of  dissipative systems in 
which regular behaviour is signified by negative 
Lyapunov exponent, a regular region in 
Hamiltonian systems are characterised by their 
smoothness relative to the chaotic regime. Yet 
again, the degree of  chaoticity increases as the 
coupling parameter increases.

Figure 3 shows the Poincare surface of  section for 
some chosen values of  the coupling parameter. It 
is observed that for values less than the threshold 
of  0.8, the system exhibits regular behaviour. It 
suddenly becomes chaotic at 0.8 and for a value as 
low as 1.0, the whole of  the Poincare surface of  
section is completely covered by a single chaotic 
sea.
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Fig. 1: Bifurcation Diagram with 2qVersus s, the Coupling Parameter

Fig. 2: Lyapunov Exponent Versus s, the Coupling Parameter

(a)   s = -0.3 (b)  s = 0.1
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CONCLUSION
The results of  this investigation has shown that 
two coupled oscillators subjected to the three 
potentials, Henon-Heiles, single-well quintic 
potential modified by the potential of  the 
hydrogen atom in a uniform magnetic field, 
through a coupling parameter, exhibit regular 
motion until a threshold value of  the coupling 
constant. Thereafter, chaotic motion sets in 
abruptly. The degree of  chaoticity increases as the 
coupling constant increases. Thus, in the regular 
mode, each oscillator more or less keeps its energy, 
while in the chaotic regime, there is an inter-
exchange of  energy which cannot be predicted 
apriori. 
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