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This study focused on the performance of  Autoregressive Moving Average Polynomial Distributed Lag Model 
among all other distributed lag models. Four models were considered; Distributed Lag (DL) model, Polynomial 
Distributed Lag (PDL) model, Autoregressive Polynomial Distributed Lag (ARPDL) model and Autoregressive 
Moving Average Polynomial Distributed Lag (ARMAPDL) model. The parameters of  these models were 
estimated using least squares and Newton Raphson iterative methods. To determine the order of  the models, 
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used. To determine the best 
model, the residual variances attached to these models were studied and the model with the minimum residual 
variance was considered to perform better than others. Using numerical example, DL, PDL, ARPDL and 
ARMAPDL models were fitted. Autoregressive Moving Average Polynomial Distributed Lag Model 
(ARMAPDL) model performed better than the other models. 

Keywords: Distributed Lag Model, Selection Criterion, Parameter Estimation, Residual Variance.
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INTRODUCTION

Economic decisions have consequences that may 
last a long time. When the income tax is increased, 
consumers have less disposable income, reducing 
their expenditures on goods and services, which 
reduce profits of  suppliers, the demand for 
productive inputs and the profits of  the input 
suppliers. These effects do not occur 
instantaneously but are spread, or distributed, over 
future time periods.  Economic actions or 
decisions taken at one point in time, t, have effects 
on the economy at time t, but also at times t+1, 
t+2, and so on (Judge et al., 2000).

The reasons for lag in a model could be due 
topsychological, technological, institutional, 
political, business and economic decisions (Ojo, 
2013). Due to this underlining fact, Distributed 
Lag Model has been applied in various fields in the 
past few decades and a remarkable success in its 
application has been made which help in the 
diverse areas of  the economy (Kocky, 1954; 
Almon, 1965; Zvi, 1961; Robert and Richard, 
1968; Frank, 1972; Dwight, 1971; Krinsten, 1981 
and Wilfried, 1991). 

Econometric analysis of  long-run relations has 
been the focus of  much theoretical and empirical 

research in economics. In the case where the 
variables in the long-run relation of  interest are 
trend stationary, the general practice has been to 
de-trend the series and to model the de-trended 
series as stationary distributed lag or 
autoregressive distributed lag (ARDL) model 
(Hashem and Yongcheol, 1995).

In autoregressive distributed lag model, the 
regressors may include lagged values of  the 
dependent variable and current and lagged values 
of  one or more explanatory variables. This model 
allows us to determine what the effects are of  a 
change in a policy variable (Chen, 2010). It is 
imperative to see that adding an instrumental 
variable such as Moving Average (MA) to 
Autoregressive Polynomial Distributed Lag 
(ARPDL) model there is the likelihood of  having 
a better model. This study sought to critically 
examine the Autoregressive Moving Average 
Polynomial Distributed Lag (ARMAPDL) model 
in terms of  its residual variancerelative to that of  
the aforementioned distributed lag models  

MATERIALS AND METHODS

Distributed Lag Model
Distributed Lag Model is given as

        (1)
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Y  is an endogenous variable and X is exogenous t t  

variable, a is the intercept, b is the distributed lag 0  

weight, e is the error term. The parameters of  the t 

model can be estimated using least squares 
method. 
Assumptions of  the model are:

vThe model is linear in parameters: 

y  = b  + b x  + . . .+ bjx  + t 0 1 t1 tj

v There is the need to make a zero conditional 

mean assumption: E(e |X) = 0, t = 1, 2, …, n.  t 

vThe Xs are strictly exogenous

v e is independent with mean zero and variance t 

2
of  s

vThere is no serial correlation: Corr. (e e | t s 

X)=0 for t  ¹ s

Polynomial Distributed Lag Model
Polynomial Distributed Lag Model is obtained 
from a finite distributed lag given as

         (2)

where
    is approximated by polynomial of  lower 
degree. 

         (3)

r is the degree of  polynomial while j is the 
number of  lag of  the decay. Assuming j=3 and 
r=2, we have;

         (4)

Substituting the (3) into (4) and factorizing the 
equation, we obtain 

         (5)

where

Where Z   are constructed from the original lagged i

variable X , X , X and X . Therefore Y is t t-1 t-2 t-3

regressed on the constructed variable Z and not i  

et 

on the original variable X. OLS method is used to 
estimate the coefficient of  the model since the 
assumptions of  the disturbance term is satisfied.

The coefficients of  d , d , d  can be estimated by di 0 1 2
-1= (Z Z)  Z Y        (6) 

Thereafter the estimate the coefficients of  β can 
be estimated from the original model by equation 
3.

Autoregressive Polynomial Distributed Lag 
Model 

The model can be defined as:

        (7)

where b  is approximated by polynomial in the lag j

k as 

        (8)

where “j” is the number of  periods away from the 
current period “t” and “k” is the degree of  
polynomial. Assuming j=3 and k=2 and obtaining 

a new equation from 7 and by substituting b into i 

the new equation and factorizing the equation, we 
obtain:

        (9)
where

The sequence of  random deviation (e ) can be t 

estimated by:

      (10)

To obtain the unknown parameters of  the model, 
we make some assumption that random error is 
independently and identically distributed with 

1 1 2 2 0 1 1 2 2 3t t t tY Y Y d Z d Z d Zj j e- -= + + + + +

1 1 2 2 0 1 1 2 2 3t t t tY Y Y d Z d Z d Ze j j- -= - - - - -
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2
mean zero and variance of  s .
Minimizing the likelihood function, with respect 
to the parameters                               we can 
obtain estimate of  the parameters of  the model 
using least squares method; Chen (2010) and 
subsequently, we obtain the parameters of  β. 

Autoregressive Moving Average Polynomial 
Distributed Lag Model
The model is defined as

       (11)
where
                are the parameters of  the autoregressive 
component,          are the parameters of  the 
moving average component, β ....β are the 0 j 

parameters of  the polynomial distributed lag 
model, Y  and X  are the dependent and t t

independent variable respectively, v  is the error t

term and is assumed to be normally distributed 
2

with mean zero and variance s .

Estimation of  parameters of  Autoregressive 
Moving Average Polynomial Distributed Lag 
Model 

We consider Newton Raphson iterative method 
using the approach of  Ojo (2009) and Pascal 
(2001) to estimate the parameters of  the model. 
Representing the mean response as   the error 
term becomes

         (12)
The least square estimator of  of  G which 
minimizes the sum of  the square of  residual is 

We differentiate S(G) with respect to the 
parameter G (                                                      )
We shall write
The partial derivatives of  S(G) are

 

where i =1, 2, …, R and R= p+j+q (13)

  

where i =1, 2, …, R, m=1,2,…, R.       (14)

Where the partial derivatives satisfy the recursive 
equations

                                      where i = 2, …, p     (15)

where k =1, 2,…, j    (16)

  where r = 2,…,q.     (17)

The second derivative is given as 

where i =2, …, p.         (18)

where k =1, 2,…, j.       (19)

where r = 2, …, q.      (20)

where i = 2, …, p and k = 1, 2, …, j.      (21)

where i = 2, …, p and r = 2, …, q.      (22)
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where k = 1, 2, …, j and r = 2, …, q.      (23)

Set the gradient to be V(G) where 

And the Hessian is represented by H 

The approximate mean responses f(X ,G) for the n i

cases by the linear term in the Taylor series 
expansion we obtain

1 0 0 1 0V(G )»V(G )+H(G )(G -G )=0
1 0 -1 0 0G -G = -H (G )V(G )

thereby obtaining the iterative equation given by
(k+1) k -1 k kG =G -H (G )V(G ).
k th

G  is the set of  estimates obtained at the k  stage 
of  iteration. The estimates obtained by the above 
iterative equation usually converge. For starting 
the iteration, we need to have good sets of  initial 
values of  the parameters. This can be obtained by 
fitting the best autoregressive moving average 
model. 

Performance of  the Model Indicator

Residual Variance
Residual variance or unexplained variance is part 
of  the variance of  any residual. In analysis of  
variance and regression analysis, residual variance 
is that part of  the variance which cannot be 
attributed to specific causes. The unexplained 
variance can be divided into two parts. First, the 
part related to random, everyday, normal, free will 
differences in a population or sample. Among any 
aggregation of  data these conditions equal out. 
Second, the part that comes from some condition 
that has not been identified, but that is systematic. 
That part introduces a bias and if  not identified 
can lead to a false conclusion (Ojo et al., 2008).

Selection of  the Length of  the Lag
Numerous procedures have been suggested for 
selecting the length n of  a finite distributed lag in 
Judge et al. (2000).Two goodness-of-fit measures 
that are more appropriate are Akaike's 
Information Criterion (AIC)

        (24)

Schwarz criterion known as Bayesian 
Information Criterion (BIC)

        (25)

For each of  these measures we seek that lag length 
 that minimizes the criterion can be used.  Since 

adding more lagged variables reduces SSE, the 
second part of  each of  the criteria is a penalty 
function for adding additional lags. These 
measures weigh reductions in sum of  squared 
errors obtained by adding additional lags against 
the penalty imposed by each.  They are useful for 
comparing lag lengths of  alternative models 
estimated using the same number of  observations 
Ojo (2013). In this study we shall use AIC and 
BIC criteria for selecting best order for the 
models under study.

RESULTS AND DISCUSSION

Numerical Example
To present the application of  these models we will 
use a real time series dataset, monthly rainfall and 
temperature series between 1979 and 2008 
obtained from Forestry Research Institute of  
Nigeria (FRIN), Ibadan, Nigeria (see the 
appendix). Rainfall series is the endogenous 
variable while temperature series is the exogenous 
variable. For the fitted model, the estimation 
technique in the previous section were used

Fitted Distributed Lag Model 

Fitted Polynomial Distributed Lag Model

Fitted Autoregressive Polynomial Distributed Lag Model
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Fitted Autoregressive Moving Average Polynomial 
Distributed Lag Model 

5432

1121

17331.623038.406779.231444.0

91633.273789.5826939.0400669.0179189.1ˆ

----

----

+++-

----=

tttt

tttttt
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XXYYY e

Table 1: Model Performance

Model  Order 
Determination 

AIC BIC Residual 
Variance 

DL 5 11.6777 11.7540 6655.2833 

PDL (5,2) 11.6552 11.6879 6655.8739 

ARPDL (4,5,2) 11.5076 11.5845 5611.8556 

ARMAPDL (2,1,5,2) 11.4913 11.5570 5553.7937 

CONCLUSION

In this study, four types of  distributed lag models 
were considered namely: Distributed Lag (DL) 
model, Polynomial Distributed Lag (PDL) model, 
Autoregressive Polynomial Distributed Lag 
(ARPDL) model and Autoregressive Moving 
Averag e  Po lynomia l  D i s t r ibu ted  Lag  
(ARMAPDL) model. These models were studied 
with a view to determiningthe best among them. 
The parameters of  these models were estimated 
using least squares and Newton Raphson iterative 
methods. Selection criteria were used to determine 
the order of  these models. The residual variances 
attached to these models were studied using a 
numerical example and it was found out that the 
residual variance attached toAutoregressive 
Moving Average Polynomial Distributed Lag 
Model (ARMAPDL) was the least. It implied that 
ARMAPDL model was the best among these 
models. We suggest that ARMAPDL model be 
used in further studies when fitting distributed lag 
model.
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APPENDIX

Rainfall Statistics (January, 1979 – December, 2008)

1979 1980 1981 1982 1983 1984 1985 1986 1987

Jan. 0

 
3.7

 
0

 
0

 
0

 
0

 
0

 
0

 
2.1

Feb. 5.5
 

60
 

0
 

78.4
 

5.5
 
3.5

 
0

 
45.8

 
26.1

Mar. 79.6
 

21.8
 

66.2
 

181.9
 

0
 
148.7

 
29

 
127.3

 
35.1

Apr. 136.6 116.6 172.9 185.2  105.8  70  118.2  101.5  0

May 123.8 123.2 115.7 141  250.7  223  181.8  146.8  122.1

Jun. 162.8
 

306
 

184.3
 

180.7
 
172.9

 
233.6

 
200.6

 
312.9

 
195.8

Jul. 291.2
 

176.7
 

75.4
 

112.8
 
114.9

 
136.8

 
307.2

 
174.7

 
246.8

Aug. 280.1

 
427.4

 
62.1

 
21.5

 
21.1

 
156.6

 
232.2

 
52.7

 
357.1

Sept. 269

 

333.5

 

233.9

 

96.3

 

219

 

112.9

 

214.7

 

374.1

 

252.5

Oct. 223.6

 

196.8

 

225.1

 

134.1

 

45.5

 

157.5

 

132.3

 

216.7

 

200.9

Nov. 261.4

 

44

 

60

 

1.5

 

44

 

30.7

 

49

 

14.3

 

10

Dec. 0 0 0 0 75.5 2.5 0 0 23

1988 1989 1990 1991 1992 1993 1994 1995 1996

Jan. 0 0 32 3.8  0  0  1.3  0 0

Feb. 51.7 18.4 40.3 47.6  0  60.1  3  0 61.1

Mar. 180.9
 

57
 

11.7
 

21
 

30.6
 

80.4
 

15.4
 

105.9 107.9

Apr. 173.2
 

97.8
 

233.8
 

108.9
 
112.7

 
48.8

 
73.8

 
142.7 153.3

May 121.1

 
259.2

 
123.6

 
258.2

 
67.4

 
153.2

 
214.7

 
334.3 114.9

Jun 242.9

 

338.7

 

118.3

 

191.1

 

168.2

 

203.9

 

129.8

 

162.3 193.3

Jul. 240.9

 

210.6

 

293.6

 

306.6

 

147.2

 

261

 

169.7

 

125.3 175.5

Aug. 108.6

 

275

 

60.3

 

118.4

 

29.9

 

237.7

 

83.5

 

304.2 224.7

Sept. 225.1

 

145.6

 

164.6

 

115.2

 

275.4

 

255.5

 

236

 

113.2 304.1

Oct. 180.4 160.2 255.4 217.6 276.3 200.3 148.8 155.7 171.7

Nov. 14.2 6 0 1.5 47.9 56.7 19.9 25.8 0

Dec. 0 0 30 6.4 0 17.2 0 3.7 0
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1997 1998 1999 2000 2001 2002

Jan. 41 0 0 14.2 0 0

Feb. 0 2 68.7 0 0 0

Mar. 122.2

 

12.7

 

67.9

 

48.8

 

15

 

61.3

Apr. 261.7

 

136

 

185

 

87.7

 

98

 

140.7

May 184.9

 

245.4

 

129.7

 

101.2

 

265

 

122.7

Jun 160.5

 

135.8

 

278.3

 

135.4

 

178

 

112

Jul. 70

 

95.7

 

300.6

 

220.4

 

139.3

 

118

Aug. 122

 

65

 

154.5

 

263.8

 

62.4

 

95.2

Sept. 179.8

 

259.3

 

157.1

 

155.1

 

275.2

 

187.8

Oct. 154.6

 
131.4

 
268.4

 
151.8

 
80.8

 
265

Nov. 19.4
 

40
 

30.3
 

30
 

19.9
 

93.7

Dec. 35.3 24.8 0 0  0  0
2003 2004 2005  2006  2007  2008

Jan. 16.8
 

0
 

0
 

0
 

0
 
0

Feb. 40.5

 
84.1

 
43.8

 
43.8

 
0

 
12.3

Mar. 20

 

1.5

 

67.7

 

67.7

 

2

 

73

Apr. 110

 

176.4

 

124.7

 

55.5

 

28.6

 

108

May 69

 

181.4

 

186.8

 

68.7

 

178.8

 

129.9

Jun 275.3

 

146.1

 

238

 

130

 

174.6

 

234.9

Jul. 164.6

 

92.1

 

207.7

 

190.3

 

177.6

 

177.7

Aug. 28.2

 

68.8

 

9

 

143.1

 

65.9

 

224.8

Sept. 226 75.7 304.3 250.8 159.5 289.9

Oct. 254.9 180.5 132 214.9 248.7 156.6

Nov. 99.2 0 0 33.7 36.6 0

Dec. 0 0 0 0 7 28.7

Temperature Statistics (January, 1979 – December, 2008)

1979 1980 1981 1982 1983 1984 1985 1986 1987

Jan. 32

 

32

 

33

 

33

 

35

 

33

 

35

 

34

 

34

Feb. 36

 
35

 
37

 
34

 
37

 
35

 
36

 
35

 
36

Mar. 35
 

34
 

34
 

33
 

37
 

36
 

34
 
33

 
35

Apr. 33
 

35
 

31
 

33
 

34
 

33
 

33
 
34

 
35

May 30 31 32 31 31  32  32  33  34

Jun 30 31 32 30 30  30  31  31  32

Jul. 29 28 31 28 28  30  30  27  30

Aug. 29
 

28
 

29
 

26
 

28
 

32
 

30
 
28

 
30

Sept. 29
 

29
 

30
 

28
 

29
 

29
 

30
 
29

 
31

Oct. 31

 
30

 
31

 
30

 
31

 
29

 
31

 
30

 
31

Nov. 32

 

31

 

32

 

33

 

33

 

32

 

33

 

35

 

35

Dec. 30 32 33 33 32 29 31 33 33
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  1988  1989  1990  1991  1992  1993  1994  1995 1996

Jan.  34  33  34  34  34  34  33  34 34

Feb.
 

35
 

35
 
35

 
35

 
36

 
33

 
35

 
36 36

Mar.
 

34
 

35
 
37

 
35

 
35

 
34

 
36

 
34 34

Apr.

 
33

 
34

 
33

 
32

 
34

 
34

 
34

 
33 33

May

 

33

 

32

 

32

 

32

 

32

 

32

 

32

 

31 31

Jun

 

30

 

31

 

31

 

31

 

30

 

30

 

31

 

31 31

Jul.

 

29

 

29

 

29

 

29

 

28

 

29

 

28

 

28 28

Aug.

 

28

 

29

 

28

 

28

 

27

 

29

 

29

 

29 29

Sept.

 

30

 

29

 

30

 

30

 

29

 

30

 

30

 

30 30

Oct.

 

31

 

31

 

31

 

30

 

31

 

31

 

31

 

31 31

Nov. 33 34 32 32 32 32 32 32 32

Dec. 32 34 32 33 33 32 34 33 33

        

        
 

  

1997

 

1998

 

1999

 

2000

 

2001 2002

Jan. 

 

34

 

34

 

34

 

34

 

35

 

32

Feb.

 

36

 

36

 

35

 

36

 

37

 

37

Mar.

 

35

 

37

 

34

 

37

 

37

 

36

Apr.

 

32

 

36

 

34

 

34

 

35

 

37

May

 

32

 

34

 

33

 

33

 

33

 

35

Jun

 

30

 

32

 

31

 

31

 

31

 

32

Jul.

 

29

 

33

 

30

 

29

 

31

 

31

Aug. 28 32 29 29 28 30

Sept. 31 34 29 31 29 30

Oct. 31 32 30 31 31 29

Nov. 33 34 33 33 34 33

Dec. 33 33 34 34 34 32

  

2003

 

2004

 

2005

 

2006

 

2007 2008

Jan. 

 

33.8

 

34.3

 

21.8

 

34.9

 

21

 

22.3

Feb.

 

35.1

 

34.9

 

27.8

 

36.5

 

24.7

 

24

Mar.

 

33.7

 

35.8

 

26.8

 

35

 

25.1

 

24.8

Apr.

 

33.1

 

33.7

 

28.3

 

34

 

24.9

 

24.6

May

 

33.8

 

32.3

 

27.2

 

30.8

 

24

 

27.8

Jun 30.6 31 25.3 30.6 23.5 23.9

Jul. 29.7 30 25.1 29.1 22.8 24

Aug. 29.4 28.7 23.7 30.1 23 23.5

Sept. 30.8 30.7 21.5 30.4 23.2 23.9

Oct. 32 31 26.3 31.1 23.2 23.6

Nov. 34 32.1 26 33.1 24.5 26.5

Dec. 33.9 33.9 25.6 34.6 24 24.7
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