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Abstract

In this paper, the uniform eventual stability of nonlinear impulsive differential equations
with fixed moments of impulse is examined using the vector Lyapunov functions which is
generalized by a class of piecewise continuous functions. Together with comparison results,
sufficient conditions for the uniform eventual stability are presented. Results obtained extends
the more restrictive scalar case in the literature to a more comprehensive framework for uniform
eventual stability analysis.
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1 Introduction
Many evolution processes display characteristics where abrupt state changes occur at specific in-
stances. These processes often experience short-lived disturbances, whose duration are minuscule
compared to the entire evolution of the system. As a result, it is reasonable to model such distur-
bances as instantaneous occurrences, commonly represented by impulses. This impulsive nature is
evident in various applications, such as biological events that involve threshold dynamics, burst-
ing rhythm models in medical and biological studies, optimal control models in economic theory,
pharmacokinetic models, and frequency-modulated systems [1].

Impulsive differential equations have become central in the study of dynamic systems that are
influenced by sudden, transient changes at discrete points in time. These abrupt shifts, such as
those seen in mechanical shocks, biological cycles, or economic fluctuations, introduce complexities
in stability analysis that traditional methods cannot fully address. In this framework, Lyapunov
stability theory has proven to be an essential tool for evaluating system stability, as documented
in [2–13]. However, classical approaches often fall short of capturing the unique and complex stabil-
ity behaviors inherent in nonlinear impulsive differential equations. Therefore, impulsive differential
equations offer a robust and realistic framework for modeling complex real-world phenomena that
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cannot be accurately described by ordinary differential equations. This framework provides an in-
valuable perspective on the stability and dynamics of systems where impulses significantly influence
the system’s behavior over time.

As discussed in [14], many perturbation and adaptive control problems involve scenarios where
the focus is not on an equilibrium or invariant point but rather on eventually stable sets that are
asymptotically invariant. This perspective allows us to view Lyapunov stability as a particular
instance within the broader category of eventual stabilities. For decades, there has been signif-
icant interest among researchers in examining the qualitative properties of impulsive differential
equations, as evidenced by studies in [1, 15–20].

Regarding the stability of perturbed differential equations, results in [26] address the eventual
stability of impulsive differential systems under bounded perturbations. In particular, [14] devel-
oped sufficient conditions for the preservation of uniform eventual stability in impulsive differential
systems with non-fixed impulse moments, utilizing vanishing perturbations and employing piecewise
continuous auxiliary functions that generalize traditional Lyapunov functions. Additional advance-
ments include the work in [21], which provided results on the uniform eventual stability for impulsive
differential systems with bounded perturbations and non-fixed impulse moments. Further, [27] in-
vestigated eventual stability and boundedness for impulsive systems with supremum norms by using
a class of piecewise continuous functions analogous to Lyapunov functions and employing the Razu-
mikhin technique. These developments underscore the critical role of eventual stability in impulsive
systems, where adaptive control and perturbation factors necessitate a broader analytical approach
beyond standard Lyapunov stability.

In this paper, we explore the uniform eventual stability of impulsive differential systems by em-
ploying vector Lyapunov functions, generalized through a class of piecewise continuous auxiliary
functions. By utilizing these generalized Lyapunov functions alongside comparison results, we es-
tablish sufficient conditions for the uniform eventual stability of solutions within these systems.
Furthermore, an illustrative example is provided to demonstrate the practical application and ef-
fectiveness of the proposed stability criteria.

Our approach introduces a more versatile stability analysis framework that accounts for impul-
sive effects and non-fixed moments within dynamic systems. This method extends traditional Lya-
punov stability theory, offering broader applicability for systems that exhibit complex perturbation
behaviors and transient impulses. The results obtained contribute to the theoretical understanding
of eventual stability and offer practical insights for control and stability assessment in real-world
impulsive systems.

2 Preliminaries, Notations and Definitions
Let Rn denote the n-dimensional Euclidean space with norm ∥.∥, and let Ω represent a domain
within Rn that contains the origin. Define the sets R+ = [0,∞) and R = (−∞,∞), with an initial
time t0 ∈ R+ and t > 0.

Consider a subset J ⊂ R+. We define the class of functions PC[J,Ω] as those functions α : J →
Ω such that α(t) is piecewise continuous with potential points of discontinuity tk ∈ J , at which α(t)
is well-defined.

Now, consider the following impulsive differential system:

µ′ = Ξ(t, µ), t ≥ t0, t ̸= tk, k = 1, 2, . . . ,

∆µ = Ik(µ(tk)), k ∈ N, t = tk,

µ(t0) = µ0,

(2.1)

where µ, µ0 ∈ RN , Ξ : R+ × RN → RN , and t0 ∈ R+. Here, Ik : RN → RN denotes the impulsive
effect at moments tk.

We analyze this system under the following assumptions:
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(i) (A0) The impulse moments satisfy 0 < t1 < t2 < · · · < tk < . . . and tk → ∞ as k → ∞.

(ii) The function Ξ : R+ × RN → RN is continuous on each interval (tk−1, tk]. For every µ ∈ RN
and k = 1, 2, . . ., the limit lim

(t,y)→(t+k ,µ)
Ξ(t, y) = Ξ(t+k , µ) exists.

(iii) Each impulsive function Ik : RN → RN is well-defined and maps states at impulse moments.

In this paper, we assume that the function Ξ is Lipschitz continuous with respect to its second
argument. Furthermore, we specify that Ξ(t, 0) ≡ 0 and Ik(0) = 0 for all k, ensuring that the
trivial solution exists for system (2.1), see [22, 23]. The impulse times tk, where k = 1, 2, . . ., are
fixed and satisfy t0 < t1 < t2 < . . . with the property lim

k→∞
tk = ∞.

The system (2.1), together with the initial condition µ(t0) = µ0, is assumed to have a solution
µ(t; t0, µ0) ∈ PC([t0,∞),RN ). It is worth noting that sufficient conditions for the existence and
uniqueness of global solutions to system (2.1) have been established in [16], [24], [25], [18], and [28].

The second equation in (2.1) is called the impulsive condition, and the function Ik(µ(tk)) gives
the amount of jump of the solution at the point tk. Let V : R+ × RN → RN+ . Then V is said to
belong to class L if,

(i) V is continuous in (tk−1, tk]× RN and for each µ ∈ RN , k = 1, 2, ... and lim
(t,y)→(t+k ,µ)

V (t, y) =

V (t+k , µ) exists;

(ii) V is locally Lipschitz with respect to its second argument µ. For (t, µ) ∈ (tk−1, tk]× RN , we
define the upper right Dini derivative of V with respect to (2.1) as,

D+V (t, µ) = lim sup
h→0+

1

h
{V (t+ h, µ+ hΞ(t, µ))− V (t, µ)} (2.2)

Definition 2.1. A function Υ ∈ C[Rn,Rn] is said to be quasi-monotone non-decreasing in µ, if
µ ≤ y and µi = yi for 1 ≤ i ≤ n implies Υi(µ) ≤ Υi(y),∀i.

Definition 2.2. The set µ(t) ≡ 0 in system (2.1) is defined to be:

• (S1) Eventually stable: For every ϵ > 0, there exists a time T = T (ϵ) > 0 and a corresponding
δ = δ(t0, ϵ) for each initial time t0 ∈ R+ and each µ0 ∈ RN such that ∥µ0∥ < δ implies
∥µ(t; t0, µ0)∥ < ϵ for all t ≥ t0.

• (S2) Eventually uniformly stable: The stability condition in (S1) holds with δ independent of
the initial time t0.

Definition 2.3. A function a(r) is defined to belong to the class K if it satisfies the following
conditions: a ∈ C[R+,R+], a(0) = 0, and a(r) is strictly increasing with respect to r.

In this paper, we define the following sets:

S̄ψ = {µ ∈ RN : ∥µ∥ ≤ ψ}
Sψ = {µ ∈ RN : ∥µ∥ < ψ}

Suffice to say here that the inequalities between vectors are understood to be component-wise in-
equalities.

Alongside (2.1) we shall consider a comparison system of the form

u′ = Υ(t, u), t ≥ t0, t ̸= tk, k = 1, 2, ...

∆u = ψk(u(tk)), k ∈ N, t = tk

u(t+0 ) = u0,

(2.3)

72

https://doi.org/10.5281/zenodo.14710364


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(4), 2024, Pages 70 - 80
https://doi.org/10.5281/zenodo.14710364

existing for t ≥ t0, where u ∈ Rn, R+ = [t0,∞), Υ : R+ × Rn+ → Rn continuous in (tk−1, tk],
ψk : Rn → Rn and Υ(t, u) is quasimonotone nondecreasing in u, and Υ(t, 0) ≡ 0, where Υ is the
continuous mapping of R+ × Rn+ into Rn. The function Υ ∈ C[R+ × Rn+,Rn] is such that for any
initial data (t0, u0) ∈ R+ × Rn, the system (2.3) with initial condition u(t0) = u0 is assumed to
have a solution u(t; t0, u0) ∈ PC([t0,∞),Rn). Note that some sufficient conditions for the existence
of solution of (2.3) has been examined in [16], [18], [20] and [28].

Lemma 2.1. Assume that conditions A0(i), (ii), (iii) hold, and that Ξ(t, 0) = 0 and that Ik(0) = 0.
Then the interval J can be extended to the maximal interval of existence [t0,∞).

Proof. Given that conditions A0(i), (ii), and (iii) are satisfied, along with Ξ(t, 0) = 0 and Ik(0) = 0,
it follows from the existence theorem for the impulsive differential equation µ′ = Ξ(t, µ(t)) [18] that
the solution µ(t) = µ(t, t0, µ0) of the initial value problem (2.1) is well-defined on each interval
(tk−1, tk], where k = 1, 2, . . ..

Furthermore, since t0 < t1 < . . . and lim
k→∞

tk = ∞, we conclude that the interval J can be

extended to [t0,∞) for t ≥ t0.

3 Main Results
In this section, we begin by proving the comparison results, then proceed to establish the necessary
conditions for the uniform eventual stability of the set x(t) ≡ 0 of impulsive differential systems
with fixed moments of impulse.

(Comparison results) Assume that

Υ ∈ C[R+ × Rn+,Rn] and Υ(t, u) is quasimonotone nondecreasing in u for each u ∈ Rn and
lim

(t,y)→(t+k ,u)
Υ(t, y) = Υ(t+k , u) exists;

V ∈ C[R+ × RN ,RN+ ] and V ∈ L such that
D+V (t, µ) ≤ Υ(t, V (t, µ)), t ̸= tk, (t, µ) ∈ R+ × RN and V (t+k , µ + Ik(µ(tk))) ≤ ρk(V (t, µ)), t =
tk, µ ∈ Sψ and the function ρk : RN

+ → RN+ is nondecreasing for k = 1, 2, ...

Let r(t) = r(t; t0, u0) ∈ PC([t0, T ],Rn) be the maximal solution of the initial value problem (IVP)
for the impulsive differential equation (IDE) (2.3) existing on [t0,∞).
Then,

V (t, µ(t)) ≤ r(t), t ≥ t0 (3.1)

where µ(t) = µ(t; t0, µ0) ∈ PC([t0, T ],RN ) is any solution of (2.1) existing on [t0,∞), provided that

V (t+0 , µ0) ≤ u0. (3.2)

Proof. Let µ(t) = µ(t, t0, µ0) be any solution of (2.1) existing on t ≥ t0, such that V (t+0 , µ0) ≤ u0.

Set m(t) = V (t, µ(t)) for t ̸= tk so that for small h > 0, we have

m(t+ h)−m(t) = V (t+ h, µ(t+ h))− V (t, µ)

m(t+h)−m(t) = V (t+h, µ(t+h))−V (t+h, µ(t)+hΞ(t, µ(t)))+V (t+h, µ(t)+hΞ(t, µ(t)))−V (t, µ)

Since V (t, µ) is locally Lipschitzian in µ for t ∈ (tk, tk+1], we have

m(t+ h)−m(t) ≤ k∥µ(t+ h)− (µ(t) + hΞ(t, µ(t)))∥e+ V (t+ h, µ(t) + hΞ(t, µ(t)))− V (t, µ)
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Dividing by h > 0 and taking the limsup as h→ 0+ we have

lim sup
h→0+

1

h
[m(t+ h)−m(t)] ≤ lim sup

h→0+

1

h
[k∥µ(t+ h)− µ(t)− hΞ(t, µ(t))∥]e

+ lim sup
h→0+

1

h
[V (t+ h, µ(t) + hΞ(t, µ(t)))− V (t, µ)]

where k is the local Lipschitz constant and e = (1, 1, ...1)T

D+m(t) = D+V (t, µ(t)) ≤ Υ(t, V (t, µ(t)))

Using condition (ii) of Theorem 3.1 we arrive at

V (t, µ(t)) ≤ r(t), t ̸= tk (3.3)

V (t+0 , µ0) ≤ u0

Also,
m(t+k ) = V (t+k , µ(tk) + Ik(µ(t

+
k ))) ≤ ψk(m(t+k )) (3.4)

Hence, by Cor. 1.7.1 in [17], we obtain the desired estimate of 3.1.

Corollary 3.1. Assume that

(i) Υ ∈ C[R+ × Rn,Rn] and Υ(t, u) is quasimonotone nondecreasing in u for each u ∈ Rn and
lim

(t,y)→(t+k ,u)
Υ(t, y) = Υ(t+k , u) exists;

(ii) V ∈ C[R+ × RN ,RN+ ] and V ∈ L such that
D+V (t, µ) ≥ Υ(t, V (t, µ)), t ̸= tk, (t, µ) ∈ R+ × RN and V (t, µ + Ik(µ(tk))) ≥ ρk(V (t, µ)), t =

tk, µ ∈ Sψ and the function ρk : RN
+ → RN+ is nondecreasing for k = 1, 2, ...

(iii) Let p(t) = p(t; t0, u0) ∈ PC([t0, T ],RN+ ) be the minimal solution of the IVP for the IDE (2.3)
existing on [t0,∞).
Then,

V (t, µ(t)) ≥ p(t), t ≥ t0 (3.5)

where µ(t) = µ(t; t0, µ0) ∈ PC([t0, T ],RN ) is any solution of (2.1) existing on [t0,∞), provided that

V (t+0 , µ0) ≥ u0. (3.6)

Proof. Let µ(t) = µ(t, t0, µ0) be any solution of (2.1) existing on t ≥ t0, such that V (t+0 , µ0) ≥ u0.

Set m(t) = V (t, µ(t)) for t ̸= tk so that for small h > 0, we have

m(t+ h)−m(t) = V (t+ h, µ(t+ h))− V (t, µ)

m(t+h)−m(t) = V (t+h, µ(t+h))−V (t+h, µ(t)+hΞ(t, µ(t)))+V (t+h, µ(t)+hΞ(t, µ(t))))−V (t, µ)

Since V (t, µ) is locally Lipschitzian in µ for t ∈ (tk, tk+1], we have

m(t+ h)−m(t) ≥ k∥µ(t+ h)− (µ(t) + hΞ(t, µ(t)))∥e+ V (t+ h, µ(t) + hΞ(t, µ(t)))− V (t, µ)

Dividing by h > 0 and taking the limsup as h→ 0+ we have

lim sup
h→0+

1

h
[m(t+ h)−m(t)] ≥ lim sup

h→0+

1

h
[k∥µ(t+ h)− µ(t)− hΞ(t, µ(t))∥]e

+ lim sup
h→0+

1

h
[V (t+ h, µ(t) + hΞ(t, µ(t)))− V (t, µ)]
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where k is the local Lipschitz constant and e = (1, 1, ...1)T

D+m(t) = D+V (t, µ(t))

Using condition (ii) of Cor 3.2 we arrive at

D+V (t, µ) ≥ Υ(t,m(t)), t ̸= tkm(t+0 ) ≥ u0 (3.7)

Also,
m(t+k ) = V (t+k , µ(tk) + Ik(µ(t

+
k ))) ≤ ψk(m(t+k )) (3.8)

Hence, by Cor. 1.7.1 in [17], we obtain the desired estimate of 3.5.

[Uniform Stability] Assume the following

(i) Υ ∈ C[R+×Rn+,Rn] satisfies (A0)(ii) and Υ(t, u) is quasi-monotone non-decreasing in u with
Υ(t, 0) ≡ 0.

(ii) V : R+ × Sψ → RN+ , V ∈ L is locally Lipschitzian in µ with V (t, 0) ≡ 0 such that

D+V (t, µ) ≤ Υ(t, V (t, µ)), t ̸= tk, (t, µ) ∈ R+ × Sψ (3.9)

holds for all (t, µ) ∈ R+ × Sψ.

(iii) there exists a ψ0 > 0 such that µ0 ∈ Sψ implies that

µ+ Ik(µ) ∈ Sψ and V (t+k , µ+ Ik(µ(tk))) ≤ ψk(V (t, µ)), t = tk, µ ∈ Sψ

and the function ψk : RN+ → RN+ is nondecreasing for k = 1, 2, ...

(iv) b(∥µ∥) ≤ V0(t, µ) ≤ a(∥µ∥), where a, b ∈ K and V0(t, µ) =
∑N
i=1 Vi(t, µ)

Then the uniform eventual stability of the set u(t) ≡ 0 of the IDE (2.3) implies the uni-
form eventual stability of the set µ(t) ≡ 0 of (2.1).

Proof. Let 0 < ϵ < ψ and t0 ∈ R+ be given.
Assume that the solution u = 0 of (3.5) is uniformly stable. Then, for each b(ϵ) > 0 and t0 ∈ R+,

there exists a positive function δ1 = δ1(ϵ) > 0 such that, whenever

u0 =

n∑
i=1

ui0 ≤ δ, we have
n∑
i=1

ui(t; t0, u0) < b(ϵ), t ≥ t0, (3.10)

where u(t; t0, u0) represents any solution of (3.5).
Let us choose V (t+0 , µ0) ≤ u0 and

n∑
i=1

ui0 = a(t0, ∥µ0∥)

Since a(t,K) and a ∈ C[R+ × R+,R+] we can find a positive function δ = δ(t0, ϵ) > 0 such that

a(t0, ∥µ0∥) < δ1 and ∥µ0∥ < δ (3.11)

hold simultaneously. We claim that if

∥µ0∥ ≤ δ, then ∥µ(t, t0, µ0)∥ ≤ ϵ, t ≥ t0.

Assume, for contradiction, that this claim is false. Then, there would exist a point t1 > t0 and a
solution µ(t) with ∥µ0∥ < δ such that
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∥µ(t1)∥ = ϵ and ∥µ(t)∥ < ϵ, for t ∈ [t0, t1). (3.12)

This implies that µ(t) + Ik(µ(tk)) ∈ Sψ for t ∈ [t0, t1).
From equation (3.1) we have that

V0(t, µ(t)) ≤ r0(t, t0, u0) for t ∈ [t0, t1). (3.13)

Combining condition (iv) and (3.13) we have

b(ϵ) ≤
n∑
i=1

Vi(t1, µ(t1)) ≤
n∑
i=1

ri(t; t0, u0) (3.14)

Using equations (3.14), (3.13) and (3.10) we have,

b(ϵ) ≤
n∑
i=1

Vi(t1, µ(t1)) ≤
n∑
i=1

ri(t; t0, u0) < b(ϵ)

which leads to an absurdity that b(ϵ) < b(ϵ).
Hence, the uniform eventual stability of the set u(t) = 0 of (2.3) implies the uniform eventual
stability of µ(t) = 0 of (2.1).

4 Application
Let the points tk, tk < tk+1, limk→∞tk → ∞ be fixed. Consider the vector impulsive differential
equations

x′1 = −4x1 + x2sinx1 + x1secx2, t ̸= tk

x′2 = x1cosx2 − 2x2secx1 − x2sinx1, t ̸= tk

∆x1 = ck,∆x2 = dk, k = 1, 2, ..

(4.1)

for t ≥ t0, with initial conditions

x1(t
+
0 ) = x0 and x2(t

+
0 ) = x0

Consider a vector V = (V1, V2)
T , where

V1(t, x1, x2) = |x1| and V2(t, x1, x2) = |x2|, with x = (x1, x2) ∈ R2, and its associated norm defined
by ∥x∥ = |x1|+ |x2|.
Now

V0(t, x) =

2∑
i=1

Vi(t, x1, x2) = |x1|+ |x2| (4.2)

and so b(∥x∥) ≤ V0(t, x) ≤ a(∥x∥) with b(r) = r and a(r) = r2, implying that a, b ∈ K. From (2.2)
we compute the Dini derivative for V1 = |x1| for t > 0, t ̸= tk as follows:

D+V1(t;x1, x2) = lim sup
h→0+

1

h

{
V (t+ h, x+ hf(t, x))− V (t, x)

}

D+V1 = lim sup
h→0+

1

h

{
|x1 + hf1(t, x1)| − |x1|

}
(4.3)
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= lim sup
h→0+

1

h

{
hf1(t, x1)

}
≤ f1(t, x1)

= −4x1 + x2sinx1 + x1secx2

= x1(−4 + secx2) + x2sinx1

≤ |x1|(−4 +
1

|cosx2|
) + |x2|(|sinx1|)

where trigonometric functions are bounded by 1

≤ |x1|(−4 + 1) + |x2|(1)

D+V1 ≤ −3V1 + V2 (4.4)

Also, for x0 ∈ Sψ, for t = tk, k = 1, 2, .., we have

V (t, x(t) + ck) = |ck + x(t)| ≤ V (t, x(t))

Again, for V2 = |x2|, wehave

D+V2 ≤ f2(t, x2)

= x1cosx2 − 2x2secx1 − x2sinx1

= x1cosx2 − x2(2secx1 − sinx1)

≤ |x1|(|cosx2|)− |x2|(
2

|cosx1|
+ |sinx1|)

≤ |x1| − |x2|(2 + 1)

D+V2 ≤ V1 − 3V2 (4.5)

Also, for x0 ∈ Sψ, for t = tk, k = 1, 2, .., we have

V (t, x(t) + dk) = |dk + x(t)| ≤ V (t, x(t))

Combining (4.5) and (4.4) we have

D+V ≤
(
−3 1
1 −3

)(
V1
V2

)
= g(t, V ) (4.6)

Now consider the comparison system

u′ = g(t, u) = Au (4.7)
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where A =

(
−3 1
1 −3

)
.

The vectorial inequality (4.7) and all other conditions of Theorem (3) are satisfied since the eigen-
values of A are all negative real parts. Hence, the system (4.1) is uniformly eventually stable .
Therefore, the set x(t) ≡ 0 is uniformly eventually stable.

5 Conclusion
In this paper, the uniform eventual stability of impulsive differential system is examined by employ-
ing the vector Lyapunov functions which is generalized by a class of piecewise continuous auxilliary
functions. Together with comparison results, sufficient conditions for the uniform eventual stability
solution is established with illustrative example.
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