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Abstract
The stability of the ordinary differential equations has been investigated and the investigation
is ongoing. In this paper we are concerned with note on Hyers-Ulam stability(HUs) criteria
for third order nonlinear differential equations with forcing term. The third order nonlinear
differential equations invesgated were transformed to integral equation, then, applied Bihari
inequality and Gronwall-Bellman-Bihari(GBB) type inequality to arrive at our results. New
criteria were established to prove HUs of nonlinear third order differential equations. Finally,
examples are given to illustrate correctness our results.
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1 Introduction
The equations of interest in this paper,are the following third order nonlinear differential equations:

u′′′(t) +R1(t, u(t), u
′(t))u′′(t) +R2(t, u(t), u

′(t))u′(t)

+p(t)γ(u(t)) +Q(t, u(t)) = P (t, u(t), u′(t))
(1.1)

and

u′′′(t) + β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t)

+p(t)γ(u(t)) = P (t, u(t), u′(t))
(1.2)

on setting initial conditions as
u(t0) = u′(t0) = u′′(t0) = 0, (1.3)

where R1(t0, 0, 0) = 0, R2(t0, 0, 0) = 0, Q(t0, 0) = 0, P (t0, 0, 0) = 0, R1, R2, P ∈ C(I ×
R2,R), Q ∈ C(I × R,R), g, f, γ ∈ C(R+,R+), I = (0,∞),R+ = [0,∞),R = (−∞,∞). Sev-
eral assumptions are given as follow:
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i P (t, u(t), u′(t)) = ϕ(t)κ(u(t))h(u′(t)4),

ii R1(t, u(t), u
′(t)) = α(t)ν(u(t))u′(t)n, where n ∈ N,

iii R2(t, u(t), u
′(t)) = a(t)u′(t)2 + b(t)ψ(u′(t)),

iv Q(t, u(t)) = v(t)r(t)ϖ(u(t)), where ϕ, α, a, b, v, r ∈ C(R+), κ, γ, ψ, h,ϖ ∈ C(R+).

Ulam [32] in 1940, gave a wide range of talk before the Mathematics Club of the University of
Winsconsin in which he discussed a number of important unsolved problems. A year later, the
solution to this question was given by Hyers [14] for additive functions defined on Banach space in
1941. Later, the result of Hyers [14] generalised by Rassias [26] in 1978.

Alsina and Ger [4] in 1988 were the first authors who investigated the HUs of the first order
linear differential equation

u′(t) = u(t). (1.4)

This result of Alsina and Ger has been generalised by Takahasiet al [29]. Takahasiet al [29] inves-
tigated that the HUs holds for the first order differential equation

u(t) = λu(t). (1.5)

Miura et al [23] proved the HUs of linear differential equation of the form

u′(t) + g(t)u(t) = 0. (1.6)

Jung [17] obtained the HUs of linear differential equations of the form

φ(t)u′(t) = u(t). (1.7)

Jung [15] investigated the HUs of the nonhomogenous linear differential equation of fist order

u′(t) + p(t)u(t) + q(t) = 0. (1.8)

From this work, the author improved the result of Jung [17] and Miura [23]. Jung [16] proved the
HUs of the differential equations of the form

tu′(t) + αu(t) + βtrx0 = 0. (1.9)

and
t2u′′(t) + αtu′(t) + αu(t) + βu(t) = 0. (1.10)

Wanget at [33] investigated the HUs of the first order nonhomogenous linear differential equation

p(t)u′(t) + q(t)u(t) + r(t) = 0. (1.11)

Li [19] proved the HUs to the differential equation of the form

u′′(t) + λ2u(t). (1.12)

Li and Shen [18] proved the stability of the homogenenous linear differential equation of second
order

u′′(t) + αu(t) + βu(t) = 0 (1.13)

and
u′′(t) + αu(t) + βu(t) = f(t) (1.14)

in the sense of Hyers-Ulam.
Furthermore, the following authors investigated the HUs of the third order linear differential

equations. These include: Abdollahpouet al [1], Murali and PonmanaSelva [21], [22], Tunc and
Bicer [30] and Tripathy and Satapathy [31]

56

https://doi.org/10.5281/zenodo.14710260


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(4), 2024, Pages 55 - 69
https://doi.org/10.5281/zenodo.14710260

The following authors went further in their discussion on HUs of nonlinear differential equations
these authors include Rus [27], [28], Qarawani [24], [25], Algfiary and Jung [3], Fakunle [8], [9],
[10], [11], [12], [13]. However,author such as Adeyanju et.al, [2] approached the proof of stability of
differential equations of third order by constructing a complete Lyapunov function, while Bishop
and Nnubia [6] investigated the stability of nonlocal stochastic Volterra equations through the sense
of Hyers-Ulam-Rassias. Bishop and Nnubia employed Gronwall lemma to established their result.

Being motivated by the works of Fakunle and Arawomo [8],Bishop and Nnubia [6] and other
papers listed in the literature, we now study the HUs of equation (1.1) and (1.2) using Gronwall-
Bellman-Bihari type inequality.

2 preliminaries
The following definitions, lemmas and theorems are necessary for our results

Definition 2.1. Equation (1.1) has the HUs with the initial condition (1.3)if there exists a positive
constant K > 0 with the following properties: For every ϵ > 0, u(t) ∈ C2(R+) where t is sufficiently
large in I

|u′′′(t) +R1(t, u(t), u
′(t))u′′ +R2(t, u(t), u

′(t))u′(t) + q(t)γ(u(t))

+Q(t, u(t))− P (t, u(t), u′(t))| ≤ ϵ,
(2.1)

then, there exists some solutions u0(t) ∈ C2(R+) of equation (1.1) such that

|u(t)− u0(t)| ≤ Kϵ

and satisfies the initial conditions (1.3).

Definition 2.2. The differential equation (1.2) has the HUs with initial condition (1.3), if there
exists a positive constant K > 0 with the following property: for every u(t) ∈ C2(R+), which
satisfies

|u′′′(t) + β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t)

+p(t)γ(u(t))− P (t, u(t), u′(t))| ≤ ϵ,
(2.2)

then there exists a function u0(t) ∈ C2(R+) satisfies (1.2) with initial conditions (1.3) such that

|u(t)− u0(t)| ≤ Kϵ,

we call such K a Hyers-Ulam constant(HUc) for the differential equation.

Definition 2.3. A function ω : [0,∞) → [0,∞) is said to belong to a class Ψ if

i ω(u) is nondecreasing and continuous for u ≥ 0

ii ( 1v )ω(u) ≤ ω(uv ) for all u and v ≥ 1.

iii there exists a function ϕ, continuous on [0,∞) with ω(αu) ≤ ϕ(α)ω(u) for α ≥ 0

Lemma 2.4. [5] Let u(t), f(t) be positive continuous functions defined on t0 ≤ t ≤ b, (≤ ∞) and
K > 0, M ≥ 0, further let ω(u) be a nonnegative, nondecreasing continuous function for u ≥ 0,
then the inequality

u(t) ≤ K +M

∫ t

t0

f(s)ω(u(s))ds, t0 ≤ t < b, (2.3)

implies the inequality

u(t) ≤ Ω−1

(
Ω(k) +M

∫ t

t0

f(s)ds

)
, t0 ≤ t ≤ b′ ≤ b, (2.4)
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where
Ω(u) =

∫ u

u0

dt

ω(t)
, 0 < u0 < u. (2.5)

In the case ω(0) > 0 or Ω(0+) is finite, one may take u0 = 0 and Ω−1 is the inverse function of Ω
and t must be in the subinterval [t0, b′] of [t0, b] such that

Ω(k) +M

∫ t

t0

f(s)ds ∈ Dom(Ω−1).

Theorem 2.5. [20] If f(t) and g(t) are continuous in [t0, t] ⊆ I and f(t) does not change sign
in the interval, then there is a point ξ ∈ [t0, t] such that

∫ t

t0
g(s)f(s)ds = g(ξ)

∫ t

t0
f(s)ds

Theorem 2.6. [8, 10] Suppose u(t), r(t), h(t) ∈ C(I,R+) and ϖ(u), β(u) ∈ Ψ are nonnegative,
monotonic, nondecreasing, continuous and ω(u) be submultiplicative for u > 0. Let

u(t) ≤ K + T

∫ t

t0

r(s)β(u(s))ds+ L

∫ t

t0

h(s)ϖ(u(s))ds (2.6)

for K, T and L positive constants, then

u(t) ≤ Ω−1

(
Ω(K) + L

∫ t

t0

h(s)ϖ

(
F−1

(
F (1) + T

∫ s

t0

r(α)dα

))
ds

)
F−1

(
F (1) + T

∫ t

t0

r(s)ds

) (2.7)

where β(u) ̸= ϖ(u), Ω is defined in equation (2.5) and F (u) is defined as

F (u) =

∫ u

u0

ds

β(s)
, 0 < u0 ≤ u, (2.8)

F−1, Ω−1 are the inverses of F, Ω respectively and t is in the subinterval (0, b) ∈ I so that

F (1) + T

∫ t

t0

r(s)ds ∈ Dom(F−1)

and

Ω(K) + L

∫ t

t0

h(s)ϖ

(
F−1

(
F (1) + T

∫ t

t0

r(α)dα

))
ds ∈ Dom(Ω−1)

Corollary 2.7. [8,10] Suppose ρ(t) is a nonnegative, monotonic, nondecreasing continuous function
on R+. Let

u(t) ≤ ρ(t) + T

∫ t

t0

r(s)β(u(s))ds+ L

∫ t

t0

h(s)ϖ(u(s))ds, (2.9)

for T and L be positive constants, then

u(t) ≤ ρ(t)Ω−1

(
Ω(1) + L

∫ t

t0

h(s)ϖ

(
F−1

(
F (1) + T

∫ t

t0

r(α)dα)

))
ds

)
F−1

(
F (1) + T

∫ t

t0

r(s)ds

)
, t ∈ I,

(2.10)

where Ω(u) and F (u) are defined as in (2.5) and (2.8) respectively.
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Theorem 2.8. [8, 10] If u(t), r(t), h(t), ρ(t), g(t) ∈ C(R+) and ω, f, γ ∈ Ψ be nonnegative, mono-
tonic, nondecreasing continuous functions. Let γ be submultiplicative. If

u(t) ≤ ρ(t) +A

∫ t

t0

r(s)β(u(s))ds+B

∫ t

t0

h(s)ϖ(u(s))ds+

L

∫ t

t0

g(s)γ(u(s))ds

(2.11)

for K,A,B,L > 0, then

u(t) ≤ ρ(t)Υ−1[
Υ(1) + L

∫ t

t0

g(s)γ

[
Ω−1

(
Ω(1) +B

∫ s

t0

h(α)ϖ (T (α)) dα

)
T (s)

]
ds

]
Ω−1

(
Ω(1) +B

∫ t

t0

h(s)ϖ (T (s)) ds

)
T (t)

(2.12)

where T (t) is given as

T (t) = F−1

(
F (1) +A

∫ t

t0

r(s)ds

)
(2.13)

and
Υ(r) =

∫ r

r0

ds

γ(s)
, 0 < r0 ≤ r, (2.14)

and F−1, Ω−1 and Υ−1 are the inverses of F, Ω, Υ respectively t ∈ (0, b) ⊂ (I). So that

Υ(1) + L

∫ t

t0

g(s)γ

[
Ω−1

(
Ω(1) +B

∫ s

t0

h(α)ϖ (T (α)) dα

)
T (s)

]
ds ∈ Dom(Υ−1

Remark 2.9. Lemma 2.4 is known as Bihari inequality while Theorem 2.6, Corollary 2.7 and
Theorem 2.8 are called GBB type inequalities. Theorem 2.6, Corollary 2.7 and Theorem 2.8 are
extensions of Lemma 2.4.They are used based on nonlinear terms that exist in the integral equations
which our nonlinear third order ordinary differential equations are transformed.

3 Main results
In addition to the assumptions imposed on functions R1, R2, Q and P appearing in (1.1) and
(1.2),the following hypothesis are required:

i Let
∫∞
t0

|u′(ρ)|dρ ≤ L, where L is a positive constant.

ii limt0→∞
∫ t

t0
ϕ(s)ds ≤ n1 <∞, where n1 > 0,

iii limt0→∞
∫ t

t0
b(s)ds ≤ n2 <∞, where n2 > 0,

iv limt0→∞
∫ t

t0
v(s)r(s)ds ≤ n3 <∞, where n3 > 0,

v limt0→∞
∫ t

t0
a(s)ds ≤ n4 <∞, where n4 > 0,

vi limt0→∞
∫ t

t0
α(s)ds ≤ n5 <∞, where n5 > 0,

vii limt0→∞
∫ t

t0
β(s)ds ≤ n6 <∞ where n6 > 0,

viii |Φ(u(t))| ≥ |u(t)|,
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ix |u′(t)| ≤ λ where λ > 0

where ϕ, p, v,m, α, q, b, β ∈ C(R+). We also investigate (1.1) and (1.2) when the forcing term
P (t, u(t), u′(t)) = 0.

Theorem 3.1. If the assumptions (i)-(iv) are satisfied together with hypothesis (i)-(vi),(viii) then
the equation (1.1) is Hyers-Ulam stable with HUc given as

K1 =

(
L

σ
+ n3

λψ

σ
+ n4

λ4

σ

)
Υ−1

[
Υ(1) + n1κ

[
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

1 )

)
T ∗
1

]]
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

1 )

)
T ∗
1 ,

(3.1)

where

T ∗
1 = F−1

(
F (1) + n5

δλn+1

σ

)
.

Proof. Inequality (2.1) and assumptions (i),(ii), (iii) and (vi) are used to obtain

u′′′(t) + α(t)ν(u(t))u′(t)nu′′(t) +
(
a(t)u′(t)2 + b(t)ψ(u′(t))

)
u′(t)

+q(t)γ(u(t)) + v(t)r(t)ϖ(u(t))− ϕ(t)κ(u(t))h(u′(t)4) ≤ ϵ.
(3.2)

Let u′′(t) be differentiable function on R+, if u′′′(t) ≥ 0 ∀ t ∈ R+, then u′′(t) is nondecreasing on
R+ and u′′(t) ≥ δ where δ > 0. (3.2) when multiplying by u′(t) becomes

α(t)ν(u(t))u′(t)n+1δ +
(
a(t)u′(t)2 + b(t)ψ(u′(t))

)
u′(t)2 + q(t)γ(u(t))u′(t)

+v(t)r(t)ϖ(u(t))u′(t)− ϕ(t)κ(u(t))h(u′(t)4)u′(t) ≤ u′(t)ϵ.

With the application of Theorem 2.6 implies that there exists ξ, τ, π, χ, τ ∈ [t0, t] such that

δu′(ξ)n+1

∫ t

t0

α(s)ν(u(s))ds+ u′(τ)4
∫ t

t0

a(s)ds+ u′(π)2
∫ t

t0

b(s)ψ(u(s))ds

+

∫ t

t0

q(s)γ(u(s))u′(s)ds+ u′(τ)ϖ(u(τ))

∫ t

t0

v(s)r(s)ds

−h(u′(χ)4)u′(χ)
∫ t

t0

ϕ(s)κ(u(s))ds ≤ ϵ

∫ t

t0

u′(s)ds.

Setting

Φ(u(t)) =

∫ u(t)

u0

γ(u(s))ds. (3.3)

Applying equation (3.3), if q′(t) ≥ 0, let q(t) be nondcreasing function on R+, then q(t) ≥ σ where
σ > 0. We arrive at

σΦ(|u(t)|) ≤ ϵ

∫ t

t0

|u′(s)|ds+ δ|u′(ξ)|n+1

∫ t

t0

α(s)ν(|u(s)|)ds

+|u′(τ)|4
∫ t

t0

a(s)ds+ |u′(π)|2
∫ t

t0

b(s)ψ(|u(s)|)ds

+|u′(τ)||ϖ(|u(τ)|)
∫ t

t0

v(s)r(s)ds

+|h(u′(χ)4)||u′(χ)|
∫ t

t0

ϕ(s)κ(|u(s)|)ds,
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Let the function ϖ be bounded function on R+, then there exists positive constant ψ such that
ϖ(|u(τ)|) ≤ ψ and using hypotheses (i),(vii),(viii) and (ix) to obtain

|u(t)| ≤ ϵ

(
L

σ
+
λψ

σ

∫ t

t0

v(s)r(s)ds+
λ4

σ

∫ t

t0

a(s)ds

)
+
δλn+1

σ∫ t

t0

α(s)ν(|u(s)|)ds+ λ2

σ

∫ t

t0

b(s)ψ(|u(s)|)ds

+
|h(λ4)|λ

σ

∫ t

t0

ϕ(s)κ(|u(s)|)ds.

By applying Theorem 2.8, we obtain

|u(t)| ≤ ϵ

(
L

σ
+
λψ

σ

∫ t

t0

v(s)r(s)ds+
λ4

σ

∫ t

t0

a(s)ds

)
Υ−1

[
Υ(1) +

∫ t

t0

ϕ(s)κ

[
Ω−1

(
Ω(1) +

λ2

σ

∫ s

t0

b(α)ψ (T1(α)) dα

)
T1(s)

]
ds

]
Ω−1

(
Ω(1) +

λ2

σ

∫ t

t0

b(s)ψ (T1(s)) ds

)
T1(t),

(3.4)

where

T1(t) = F−1

(
F (1) +

δλn+1

σ

∫ t

t0

α(s)ds

)
.

Employing the hypotheses (ii)- (vi), we arrive at

|u(t)| ≤ ϵ

(
L

σ
+ n3

λψ

σ
+ n4

λ4

σ

)
Υ−1

[
Υ(1) + n1κ

[
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

1 )

)
T ∗
1

]]
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

1 )

)
T ∗
1 ,

where

T ∗
1 = F−1

(
F (1) + n5

δλn+1

σ

)
.

Hence,
|u(t)− u(t0)| ≤ |u(t)| ≤ K1ϵ.

Therefore, we arrive at the result.

Remark 3.2. The result of Theorem 3.1 is an extension of the result of Theorem 6 in Fakunle and
Arawomo [8]. GBB type inequality of Theorem 2.8 is used to arrive at our result.

Theorem 3.3. Suppose that the assumptions (i),(ix) is satisfied. Let u′′(t) be differentiable func-
tion on R+, if u′′′(t) ≥ 0 ∀ t ∈ R+, then u′′(t) is nondecreasing on R+, furthermore, u′′ ≥ δ where
δ a positive constant. Equation (1.2) is Hyers-Ulam stable with HUc determined as K2.

Proof. From inequality (2.2), we use the assumption (i) and hypotheses of Theorem 3.3 to obtain

β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t) + p(t)γ(u(t))− ϕ(t)κ(u(t))h(u′(t)4) ≤ ϵ,

It is clear from Theorem 2.6, there exists ξ, ϱ, ρ ∈ [t0, t] such that

δu′(ξ)

∫ t

t0

β(s)f(u(s))ds+ u′(ϱ)2
∫ t

t0

α(s)g(u(s))ds+

∫ t

t0

p(s)γ(u(s))u′(s)ds

−u′(ρ)h(u′(ρ)4)
∫ t

t0

ϕ(s)κ(u(s))ds ≤ ϵ

∫ t

t0

u′(s)ds
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and apply equation (3.3) to obtain

σΦ(|u(t)|) ≤ ϵ

∫ t

t0

|u′(s)|ds+ δ|u′(ξ)|
∫ t

t0

β(s)f(|u(s)|)ds

+|u′(ϱ)2|
∫ t

t0

α(s)g(|u(s)|)ds+ |u′(ρ|)|h(u′(ρ)4)|
∫ t

t0

ϕ(s)κ(|u(s)|)ds.

From hypotheses (i), (vii) and (ix) we have

|u(t)| ≤ Lϵ

σ
+
λδ

σ

∫ t

t0

β(s)f(|u(s)|)ds

+
λ2

σ

∫ t

t0

α(s)g(|u(s)|)ds+ λh(λ4)

σ

∫ t

t0

ϕ(s)κ(|u(s)|)ds.

Applying Theorem 2.8, we obtain

|u(t)| ≤ Lϵ

σ
Υ−1

[
Υ(1) +

λh(λ4)

σ∫ t

t0

ϕ(s)κ

[
Ω−1

(
Ω(1) +

λ2

σ

∫ s

t0

α(τ)g (T2(τ)) dτ

)
T2(s)

]
ds

]
Ω−1

(
Ω(1) +

λ2

σ

∫ t

t0

α(s)g (T2(s)) ds

)
T2(t),

(3.5)

where T2(t) is given as

T2(t) = F−1

(
F (1) +

λδ

σ

∫ t

t0

β(s)ds

)
.

We used hypotheses (v)- (x)to arrive at

|u(t)| ≤ Lϵ

σ
Υ−1

[
Υ(1) +

λh(λ4)

σ
n1κ

[
Ω−1

(
Ω(1) +

λ2

σ
n5g (T

∗
2 )

)
T ∗
2

]]
Ω−1

(
Ω(1) +

λ2

σ
n5g (T

∗
2 )

)
T ∗
2 ,

where T ∗
2 is given as

T ∗
2 = F−1

(
F (1) + n6

λδ

σ

)
.

Hence,
|u(t)− u(t0)| ≤ |u(t)| ≤ K2ϵ.

Therefore,

K2 =
L

σ
Υ−1

[
Υ(1) +

λh(λ4)

σ
n1κ

[
Ω−1

(
Ω(1) +

λ2

σ
n5g (T

∗
2 )

)
T ∗
2

]]
Ω−1

(
Ω(1) +

λ2

σ
n5g (T

∗
2 )

)
T ∗
2 ,

Remark 3.4. The result of Theorem 3.3 extended the result of Theorem 6 in Fakunle and Arawomo
[8]. GBB type inequality of Theorem2.8 is applied to obtain our result.
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Theorem 3.5. Supposed the assumptions (ii)-(vi) are satisfied . If P (t, u(t), u′(t)) = 0 in equation
(1.1) is assumed. Then

u′′′(t) +R1(t, u(t), u
′(t))u′′(t) +R2(t, u(t), u

′(t))u′(t)

+q(t)γ(u(t)) +Q(t, u(t)) = 0,
(3.6)

equation (3.4) has HUs with HUc which is determined as

K3 =

(
L

σ
+ n4

λ4

σ

)
Υ−1

[
Υ(1) + n3

λ

σ
ϖ

[
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

3 )

)
T ∗
3

]]
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

3 )

)
T ∗
3 ,

(3.7)

where

T ∗
3 = F−1

(
F (1) + n5

δλn+1

σ

)
.

Proof. Inequality (2.1) with assumption on function P i.e P (t, u(t), u′(t)) = 0 and multiplication
by u′(t) to have

u′′′(t)u′(t) +R1(t, u(t), u
′(t))u′′(t)u′(t)

+R2(t, u(t), u
′(t))u′(t)2 + q(t)γ(u(t))u′(t) +Q(t, u(t))u′(t) ≤ ϵu′(t).

(3.8)

By the hypothesis of Theorem 3.3 to get

δR1(t, u(t), u
′(t))u′(t) +R2(t, u(t), u

′(t))u′(t)2

+q(t)γ(u(t))u′(t) +Q(t, u(t))u′(t) ≤ ϵu′(t).

Due to the assumptions (ii)-(iv) we obtain

δα(t)ν(u(t))u′(t)n+1 +
(
a(t)u′(t)2 + b(t)ψ(u(t))

)
u′(t)2

+q(t)γ(u(t))u′(t) + v(t)r(t)ϖ(u(t))u′(t) ≤ ϵ.

The application of Theorem 2.6 implies that there exists ξ, ρ, τ, π, χ ∈ [t0, t] such that

δu′(ξ)

∫ t

t0

α(s)ν(u(s))u′(s)n+1ds+ u′(ρ)4
∫ t

t0

a(s)ds

+u′(τ)2
∫ t

t0

b(s)ψ(u(s))ds+

∫ t

t0

q(s)γ(u(s))u′(s)ds

+u′(π)

∫ t

t0

v(s)r(s)ϖ(u(s))ds ≤ ϵ

∫ t

t0

u′(s)ds.

Applying (3.3) and let q(t) be nondcreasing function on R+ then q′(t) ≥ 0, q(t) ≥ σ for σ > 0

σΦ(|u(t)|) ≤ ϵ

∫ t

t0

|u′(s)|ds+ δ|u′(ξ)|n+1

∫ t

t0

α(s)ν(|u(s)|)ds

+|u′(τ)|4
∫ t

t0

a(s)ds+ |u′(π)|2
∫ t

t0

b(s)ψ(|u(s)|)ds

+|u′(τ)|
∫ t

t0

v(s)r(s)ϖ(|u(s)|)ds,
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Using the hypotheses (i),(vii) and (ix) to obtain

|u(t)| ≤ ϵ

(
L

σ
+
λ4

σ

∫ t

t0

a(s)ds

)
+
δλn+1

σ∫ t

t0

α(s)ν(|u(s)|)ds+ λ2

σ

∫ t

t0

b(s)ψ(|u(s)|)ds+ λ

σ

∫ t

t0

v(s)r(s)ϖ(|u(s)|)ds.

We use Theorem 2.8 to obtain

|u(t)| ≤ ϵ

(
L

σ
+
λ4

σ

∫ t

t0

a(s)ds

)
Υ−1

[
Υ(1) +

λ

σ

∫ t

t0

v(s)r(s)ϖ

[
Ω−1

(
Ω(1) +

λ2

σ

∫ s

t0

b(α)ψ (T3(α)) dα

)
T3(s)

]
ds

]
Ω−1

(
Ω(1) +

λ2

σ

∫ t

t0

b(s)ψ (T3(s)) ds

)
T3(t),

where T3(t) is given as

T3(t) = F−1

(
F (1) +

δλn+1

σ

∫ t

t0

α(s)ds

)
.

By using the hypotheses (iii),(iv),(v) and (vi) we obtain

|u(t)| ≤ ϵ

(
L

σ
+ n4

λ4

σ

)
Υ−1

[
Υ(1) + n3

λ

σ
ϖ

[
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

3 )

)
T ∗
3

]]
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

3 )

)
T ∗
3 ,

where T ∗
3 is given as

T ∗
3 = F−1

(
F (1) + n5

δλn+1

σ

)
.

Hence,
|u(t)− u(t0)| ≤ |u(t)| ≤ K3ϵ,

where,

K3 =

(
L

σ
+ n4

λ4

σ

)
Υ−1

[
Υ(1) + n3

λ

σ
ϖ

[
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

3 )

)
T ∗
3

]]
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

3 ) ds

)
T ∗
3

Remark 3.6. Again GBB stated in Theorem 2.8is used to arrive at the result of Theorem 3.5.This
result is compared with the result of Theorem 3.1 it seems as if there is no difference in HUc.

Theorem 3.7. Let P (t, u(t), u′(t)) = 0 then (1.2) becomes

u′′′(t) + β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t) + p(t)

γ(u(t)) = 0
(3.9)
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is Hyers-Ulam stable with HUc given as

K4 =
L

σ
Ω−1

(
Ω(1) + n5

λ2

σ
g

(
F−1

(
F (1) + n6

λδ

σ

)))
F−1

(
F (1) + n6

λδ

σ

)
.

(3.10)

Proof. Using inequality (2.2) in the form

u′′′(t) + β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t) + p(t)γ(u(t)) ≤ ϵ.

By hypothesis of Theorem 3.3 we obtain

β(t)f(u(t))u′′(t) + α(t)g(u(t))u′(t) + p(t)γ(u(t)) ≤ ϵ. (3.11)

Multiplying inequality (3.11) by u′(t) and by the application of Theorem 2.6 implies there exists
ξ, ϱ, ρ ∈ [t0, t] such that

δu′(ξ)

∫ t

t0

β(s)f(u(s))ds+ u′(ϱ)2
∫ t

t0

α(s)g(u(s))ds

+

∫ t

t0

p(s)γ(u(s))u′(s)ds ≤ ϵ

∫ t

t0

u′(s)ds,

(3.12)

Using equation (3.3) to obtain

σΦ(|u(t)|) ≤ ϵ

∫ t

t0

|u′(s)|ds+ δ|u′(ξ)|
∫ t

t0

β(s)f(|u(s)|)ds

+|u′(ϱ)2|
∫ t

t0

α(s)g(|u(s)|)ds.

From hypotheses (i),(vii),(ix),we have

|u(t)| ≤ Lϵ

σ
+
λδ

σ

∫ t

t0

β(s)f(|u(s)|)ds+ λ2

σ

∫ t

t0

α(s)g(|u(s)|)ds.

By Theorem 2.7 we arrive at

|u(t)| ≤ Lϵ

σ
Ω−1

(
Ω(1) +

λ2

σ

∫ t

t0

α(s)g

(
F−1

(
F (1) +

λδ

σ

∫ t

t0

β(µ)dµ)

))
ds

)
F−1

(
F (1) +

λδ

σ

∫ t

t0

β(s)ds

)
, t ∈ I,

Using hypotheses (vi)- (vii) to get

|u(t)| ≤ Lϵ

σ
Ω−1

(
Ω(1) + n5

λ2

σ
g

(
F−1

(
F (1) + n6

λδ

σ

)))
F−1

(
F (1) + n6

λδ

σ

)
.

Hence,
|u(t)− u(t0)| ≤ |u(t)| ≤ K4ϵ.

Therefore,

K4 =
L

σ
Ω−1

(
Ω(1) + n5

λ2

σ
g

(
F−1

(
F (1) + n6

λδ

σ

)))
F−1

(
F (1) + n6

λδ

σ

)
.
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Remark 3.8. GBB type inequality in Corollary 2.7 is used to arrive at the result.

Example 3.9. Consider the following equation

u′′′(t) +
1

t2
u4(t)(u′(t))6u′′(t) +

1

t4
u2(t)(u′(t))6 + t4u2(t) +

1

t4
u2(t) =

1

t4
u2(t)(u′(t))4, t > 0,

by using the appropriate hypotheses (ii)-(vii) and allowing the following: ϕ(t) = 1
t4 , b(t) =

1
t5 , α(t) =

1
t4 , a(t) =

1
t2 and v(t)r(t) = 1

t4 ,. Substituting the above parameters into the inequality (3.4) in the
proof of Theorem 3.1 to have

|u(t)| ≤ ϵ

(
L

σ
+
λψ

σ

∫ t

t0

1

s4
ds+

λ4

σ

∫ t

t0

1

s2
ds

)
Υ−1

[
Υ(1) +

∫ t

t0

1

t4
κ

[
Ω−1

(
Ω(1) +

λ2

σ

∫ s

t0

1

α5
ψ (T1(α)) dα

)
T1(s)

]
ds

]
Ω−1

(
Ω(1) +

λ2

σ

∫ t

t0

1

s5
ψ (T1(s)) ds

)
T1(t),

where

T1(t) = F−1

(
F (1) +

δλn+1

σ

∫ t

t0

1

s4
ds

)
.

By making use of these following estimations:

i limt0→∞
∫ t

t0
1
s4 ds ≤ n3

ii limt0→∞
∫ t

t0
1
s2 ds ≤ n4

iii limt0→∞
∫ t

t0
1
s5 ds ≤ n1

iv limt0→∞
∫ t

t0
1
s5 ds ≤ n2

v limt0→∞
∫ t

t0
1
s4 ds ≤ n5

The result is given as

|u(t)| ≤ ϵ

(
L

σ
+ n3

λψ

σ
+ n4

λ4

σ

)
Υ−1

[
Υ(1) + n1κ

[
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

1 )

)
T ∗
1

]]
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

1 )

)
T ∗
1 ,

where

T ∗
1 = F−1

(
F (1) + n5

δλn+1

σ

)
.

then, the HSc is given as

K =

(
L

σ
+ n3

λψ

σ
+ n4

λ4

σ

)
Υ−1

[
Υ(1) + n1κ

[
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

1 )

)
T ∗
1

]]
Ω−1

(
Ω(1) + n2

λ2

σ
ψ (T ∗

1 )

)
T ∗
1 .
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Example 3.10. Consider the following equation

u′′′(t) +
1

t2
u2(t)u′′(t) +

1

t5
u4(t)(u′(t)) +

1

t4
u2(t) =

1

t4
u2(t)(u′(t))4, t > 0.

Let β(t) = 1
t2 , α(t) =

1
t5 , ϕ(t) =

1
t4 , by using the appropriate hypotheses (ii)-(vii), we substitute to

(3.5) to arrive at

|u(t)| ≤ Lϵ

σ
Υ−1

[
Υ(1) +

λh(λ4)

σ∫ t

t0

1

s4
κ

[
Ω−1

(
Ω(1) +

λ2

σ

∫ s

t0

1

τ5
g (T2(τ)) dτ

)
T2(s)

]
ds

]
Ω−1

(
Ω(1) +

λ2

σ

∫ t

t0

1

s5
g (T2(s)) ds

)
T2(t),

where T2(t) is given as

T2(t) = F−1

(
F (1) +

λδ

σ

∫ t

t0

1

s2
ds

)
.

Furthermore, we have

|u(t)| ≤ Lϵ

σ
Υ−1

[
Υ(1) +

λh(λ4)

σ
n1κ

[
Ω−1

(
Ω(1) +

λ2

σ
n5g (T

∗
2 )

)
T ∗
2

]]
Ω−1

(
Ω(1) +

λ2

σ
n5g (T

∗
2 )

)
T ∗
2 ,

where T ∗
2 is given as

T ∗
2 = F−1

(
F (1) + n6

λδ

σ

)
.

where

i limt0→∞
∫ t

t0
1
s4 ds ≤ n1

ii limt0→∞
∫ t

t0
1
s5 ds ≤ n5

iii limt0→∞
∫ t

t0
1
s2 ds ≤ n6

then, HSc is calculated as

K =
L

σ
Υ−1

[
Υ(1) +

λh(λ4)

σ
n1κ

[
Ω−1

(
Ω(1) +

λ2

σ
n5g (T

∗
2 )

)
T ∗
2

]]
Ω−1

(
Ω(1) +

λ2

σ
n5g (T

∗
2 )

)
T ∗
2 .

4 Conclusion
In this study, GBB has been used to investigate the HUs of non-autonomous nonlinear third order
ordinary differential equations. The results obtained extended some of the results in the literature,
we also considered third order differential equations without the forcing term, the equations are
also Hyers-Ulam stable and Hyers-Ulam constants are obtained. However, the results obtained are
slightly different in terms of HUc from those that are with forcing term.
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