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Abstract

Let [n] = {1, 2, . . . , n} be a finite chain, and ODCPn be the semigroup of order-preserving
and order-decreasing partial contraction mappings on [n]. In this paper, we study the rank
properties of the two-sided ideals of ODCPn. We show that the rank of Kp = {α ∈ ODCPn :
|im α| ≤ p}, for 2 ≤ p ≤ n, is

n∑
k=p

(
n

k

)(
k − 1

p− 1

)
and hence, the rank of ODCPn is 2n.

Keywords: Transformation semigroup, Contraction mappings, Order-preserving, Generating sets,
Ideals.
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1 Introduction
Let [n] = {1, 2, . . . , n} be a finite chain and α : dom(α) ⊆ [n] → im(α) ⊆ [n]. α is said be full
or total transformation if dom(α) = [n] otherwise is referred to as strictly partial transformation.
The set of all strictly-partial and full transformation formed the partial transformation semigroup
which is denoted by Pn. It is worthy to note that, the empty map serves as zero in Pn.

A transformation α ∈ Pn is said to be order preserving (resp., order reversing) if (for all
x, y ∈ dom α) x ≤ y implies xα ≤ yα (resp. xα ≥ yα); is order decreasing if (for all x ∈ dom α)
xα ≤ x; an isometry (i.e., distance preserving) if (for all x, y ∈ dom α) |xα − yα| = |x − y|; a
contraction if (for all x, y ∈ dom α) |xα− yα| ≤ |x− y|.

This work is licensed under a Creative Commons Attribution 4.0 International License.
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An element a of a semigroup S is called regular if there exists x ∈ S such that axa = a. The
semigroup S is called regular if all its elements are regular.

For non-empty subset A of a semigroup S, A is called a left ideal if SA ⊆ A, a right ideal if
AS ⊆ A, and (two-sided) ideal if it is both a left and a right ideal. Ideals in semigroups possesses
certain algebraic properties, closely related to the notion of normality in groups. They provide us
with the powerful tool to analyze the internal structure of semigroups, revealing intricate pattern
and capturing essential information about the elements behaviour under multiplication.

Let x ∈ S, then Sx, xS, and SxS are ideals generated by x in S. They are known as the
principal left, principal right, and principal two sided ideal of S, respectively.

Green’s relations are equivalence relations defined on a semigroup based on the principal ideals
its elements generate. These relations are vital in understanding the algebraic structure of any
semigroup more especially regular semigroups. There are five of these equivalences, namely, L, R,
J , D and H relation, defined as follows: for a, b ∈ S,

(a, b) ∈ L ⇐⇒ S1a = S1b;

(a, b) ∈ R ⇐⇒ aS1 = bS1;

(a, b) ∈ J ⇐⇒ S1aS1 = S1bS1;

D = L ◦ R;

H = L ∩R.

The symbol S1 denote a semigroup S with adjoint identity if S does not have one. It is worth
mentioning that the relations L and R always commute (i.e., L ◦ R = R ◦ L). If a semigroup
is non-regular, then, there is also need to understand its starred Green’s relation (which is the
generalization of the Green’s relations) in order to classify such a semigroup or study its rank
properties. The starred Green’s equivalences are also five, they are L∗, R∗, J ∗, D∗, and H∗ defined
as follows: Given any semigroup S, aL∗b (resp., aR∗b) if and only if a and b are Green’s L-related
(resp., Green’s R-related) in some over-semigroup of S. D∗ is a meet of L∗ and R∗, while H∗ is their
joint. For more properties of Green’s relation, starred Green’s relation, or any other unexplained
term we refer the reader to [8, 9, 16,18,19].

Let
POn = {α ∈ Pn : (for all x, y ∈ dom α) x ≤ y ⇒ xα ≤ yα};

CPn = {α ∈ Pn : (for all x, y ∈ dom α) |xα− yα| ≤ |x− y|}

and
DCPn = {α ∈ CPn : (for all x ∈ dom α) xα ≤ x}.

Then, ODCPn = POn ∩ DCPn, called the semigroup of order-preserving, order-decreasing
partial contraction mappings.

Let S be a semigroup, a non-empty subset G of S is said to be a generating set of S (denoted
as ⟨G⟩ = S) if for every x ∈ S, x can be written as a finite product of some elements in G. S
is said to be a finitely generated semigroup if it is generated by a finite subset. The rank of a
finitely generated semigroup measures the smallest number of elements required to generate the
entire semigroup. That is,

rank(S) = min{|G| : G ⊆ S and ⟨G⟩ = S}.

The notion of rank is of fundamental importance when studying semigroups. It helps us understand
the structure of a given semigroup. It will also helps us to classify and characterized the complexity
of a semigroup.

Several scholars have examined the combinatorial, algebraic and rank properties of various
transformation semigroups, see for example, [5, 11, 13, 14, 17, 20, 23, 26]. On the other hand, the
semigroup of partial contractions, which is relatively new has many interestingly open problems
that are yet to be explored; see [27] for a comprehensive overview of such problems.
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Recently, Toker [24] investigated the ranks of the semigroup of order-preserving or order-
reversing full contractions, ORCT n, and its subsemigroup OCT n, consisting of all order-preserving
elements. Bugay [6] extended Toker’s work by considering the ranks of ideals of the semigroups
ORCT n and OCT n, respectively. The study of nilpotent elements in OCPn and its subsemigroup
OCIn, consisting of all partial one-to-one transformations was presented in [2], and ranks of the
subsemigroups generated by the nilpotents in the two semigroups were also determined. Alkharousi
et al., [3,4] also study the rank and combinatorial properties of the semigroups of partial isometries
on [n]. More studies on rank properties of isometries were further exploited in [1, 7].

Our aim in this paper is to investigate the rank properties of the two-sided ideal of the semigroup
of order-preserving and order-decreasing partial contraction mappings on a finite chain.

2 Preliminaries
Let α be an element of CPn. Define dom α, im α, and h(α) as the domain, image, and |im α| of α,
respectively. The kernel of α denoted by ker α, is defined as

ker α = {(x, y) ∈ dom α× dom α : xα = yα}.

Additionally, for α, β ∈ CPn, the composition of α and β is defined as x(α ◦ β) = ((x)α)β for all x
in dom α. To avoid ambiguity, we use the notation αβ for α ◦ β, and xα represents the image of
x under α instead of the notation α(x). This ensures our composition of maps reads from left to
right, i.e., xαβ is equivalent to β(α(x)).

A non-empty subset A of [n] is said to be a convex subset if for every x, y ∈ A with x < y and
if there exists z ∈ [n] such that x < z < y then z ∈ A. We use 1A to denote a partial identity map
of A ⊆ [n] on A.

Given any transformation α in ODCPn, α can be expressed as

α =

(
A1 A2 . . . Ap

x1 x2 . . . xp

)
(1 ≤ p ≤ n). (2.1)

The blocks Ai (1 ≤ i ≤ p) are equivalence classes under the relation ker α, and the collection
of all the equivalence classes of the relation ker α partitioned the domain of α called the kernel
partition of α, denoted by kp(α). Moreover, kp(α) is ordered under the usual ordering, that is,
A1 < A2 < · · · < Ap, where Ai < Aj means a < b for all a ∈ Ai and b ∈ Aj . Furthermore, by
order-preserving and order-decreasing properties of α, we have xi ≤ xi+1 (for all 1 ≤ i ≤ p − 1)
and xi ≤ minAi (for all 1 ≤ i ≤ p), respectively. Through out the paper, we refer to α as defined
in (2.1) unless otherwise specified.

We begin by quoting the following results from related literature which shall be needed in
subsequent discussions.

The first results is from [28] concerning the starred Green’s relation of some semigroup of
contraction mappings.

Theorem 2.1. [28, Theorem 2.1] Let S ∈ {CPn,OCPn,ORCPn} for α, β ∈ S

(i) αL∗β if and only if im α = im β;

(ii) αR∗β if and only if ker α = ker β;

(iii) αH∗β if and only if im α = im β and ker α = ker β;

(iv) αD∗β if and only if |im α| = |im β|.

Remark 2.2. It is an easy exercise to show that if S = ODCPn, then Theorem 2.1 above holds.

The next result is derived from Umar and Zubair [27]. It was established in [27] among many
other results that, the semigroup ODCPn has a cardinal number of (2+

√
2)n+(2−

√
2)n

2 , while the set
of its nilpotents and that of idempotent elements has cardinalities of |ODCPn−1| and (1 + n2n−1),
respectively. Now using some algebraic simplifications we deduce the following lemma:
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Lemma 2.3. Let S = ODCPn, N(S) be the set of all nilpotents in S and E(S) be the set of all
idempotents in S. Then:

(i) |S| =
∑⌊n

2 ⌋
k=0

(
n
2k

)
2n−k

(ii) |N(S)| =
∑⌊n−1

2 ⌋
k=0

(
n−1
2k

)
2n−k−1

(iii) |E(S)| = 1 + n2n−1.

Proof. (i) When the two expressions (2 +
√
2)n and (2 −

√
2)n are expanded using Binomial

expansion and added together, the term with
√
2 will cancel out due to negative sign. The

resulting expression will contain only terms with powers of two. Thus,
(
2 +

√
2
)n

+
(
2−

√
2
)n

= 2

[(
n

0

)
2n +

(
n

2

)
2n−2

(√
2
)2

+

(
n

4

)
2n−4

(√
2
)4

+ · · ·+
(

n

2⌊n
2 ⌋

)
2(n−2⌊n

2 ⌋)
(√

2
)2⌊n

2 ⌋
]

= 2

[(
n

2(0)

)
2n +

(
n

2(1)

)
2n−22 +

(
n

2(2)

)
2n−422 + · · ·+

(
n

2⌊n
2 ⌋

)
2(n−2⌊n

2 ⌋)2(⌊
n
2 ⌋)

]
= 2

[(
n

2(0)

)
2n +

(
n

2(1)

)
2n−1 +

(
n

2(2)

)
2n−2 + · · ·+

(
n

2⌊n
2 ⌋

)
2(n−⌊n

2 ⌋)
]

= 2

⌊n
2 ⌋∑

k=0

(
n

2k

)
2n−k.

Therefore,

(2 +
√
2)n + (2−

√
2)n

2
=

⌊n
2 ⌋∑

k=0

(
n

2k

)
2n−k.

(ii) By substituting n with n− 1 in (i), we have

|ODCPn−1| =
⌊n−1

2 ⌋∑
k=0

(
n− 1

2k

)
2n−k−1,

and the result follows.

Let α be in POn, for 2 ≤ i ≤ p− 1, define hα
i = minAi+1 −maxAi and dαi = bi+1 − bi. Then

Lemma 2.4. [1, Lemma 1] For 2 ≤ p ≤ n, let α be in POn. Then, α is a contraction if and only
if minAi+1 −maxAi ≤ bi+1 − bi (i.e., dαi ≤ hα

i ) for all i ∈ {1, 2, . . . , p− 1}.

We also defined the following terms which we used in describing the generating set of the two-
sided ideals of ODCPn.

Definition 2.5 (Relations). Let α, β ∈ ODCPn such that αR∗β. Suppose im α = {x1, x2, . . . , xp}
and im β = {y1, y2, . . . , yp}. We say α exceeds β if xi ≥ yi for all 1 ≤ i ≤ p.

Definition 2.6 (Comparability). Let α and β be R∗−related. Then α and β are said to be com-
parable if either α exceeds β or β exceeds α.

Definition 2.7 (Maximality). An element α is called a maximum element in its R∗−class if it
exceed every elements in that R∗−class.
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For the purpose of illustration, consider the following elements of ODCP8.

α1 =

(
{1, 2} 5 8
1 2 3

)
, α2 =

(
{1, 2} 5 8
1 2 4

)
, α3 =

(
{1, 2} 5 8
1 2 5

)
,

α4 =

(
{1, 2} 5 8
1 3 4

)
, α5 =

(
{1, 2} 5 8
1 3 5

)
, α6 =

(
{1, 2} 5 8
1 3 6

)
,

α7 =

(
{1, 2} 5 8
1 4 5

)
, α8 =

(
{1, 2} 5 8
1 4 6

)
, α9 =

(
{1, 2} 5 8
1 4 7

)
.

Then we have the following observations:

• all the elements belongs to the same R∗−class;

• α2 exceeds α1, while α3 exceeds both α1 and α2;

• α4 exceeds α2 and α1 but non-comparable to α3;

• α9 is a maximum element since is comparable to all the elements and exceeds each and every
of them.

The following remark is also immediate.

Remark 2.8. Observe that

i If α ̸= β and α exceeds β, then there exists i ∈ {1, 2, . . . , p} such that xi > yi.

ii if α and β are non-comparable, then there exists i, j ∈ {1, 2, . . . , p} such that xi+1 − xi >
yi+1 − yi and yj+1 − yj > xj+1 − xj.

We now have the following theorem.

Theorem 2.9. Let α ∈ ODCPn (n ≥ 2) be as expressed in (2.1). Then α is a maximum element
in its R∗-class if and only if x1 = minA1 and xi+1 = xi + hα

i .

Proof. Let α ∈ ODCPn be as expressed in (2.1). Suppose that x1 = minA1 and xi+1 = xi + hα
i

(i.e., xi+1 − xi = minAi+1 −maxAi). Our goal here is to show that α is a maximum element. Let

γ =

(
A1 A2 · · · Ap

z1 z2 · · · zp

)
be an arbitrary element in R∗

α. We show that α exceeds γ. By order-decreasing property of γ, we
have z1 ≤ minA1 = x1, which implies that z1 ≤ x1. Now using induction hypothesis, suppose (for
some 1 ≤ k < p) zk ≤ xk, then by Lemma 2.4, we have

zk+1 − zk ≤ minAk+1 −maxAk = xk+1 − xk

which implies that zk+1 − xk ≤ xk+1 − xk. Therefore zk+1 ≤ xk+1, and hence zi ≤ xi (for all
i = 1, 2, . . . , p), as required.

Conversely, suppose by way of contradiction that there exists a maximum element

β =

(
A1 A2 · · · Ap

y1 y2 · · · yp

)
̸= α

in R∗
α. Then by Remark 2.8, there exists i ∈ {1, 2, . . . , p} such that yi > xi. If i = 1, then y1 > x1 =

minA1 contradicting the order-decreasing property of β. Suppose yj = xj (for some 1 ≤ j ≤ n− 1)
and yj+1 > xj+1, then, from the definition of α, we have xj+1 − xj = minAj+1 −maxAj , which
implies yj+1 − xj > minAj+1 −maxAj which implies yj+1 − yj > minAj+1 −maxAj . This (by
Lemma 2.4) contradicts the fact that α is a contraction, and the result follows.

Theorem 2.10. In each R∗ class of Kp, there exists a maximum element.

Proof. It is clear that for any given kernel partition, one can define an element of ODCPn using
the criteria outlined in Theorem 2.9, and this element is the maximum element.
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3 Rank of Ideals in ODCPn

In this section, we compute the rank of the two-sided ideals of the semigroup ODCPn. However,
before we begin the investigation, we first of all define the ideals in ODCPn as follows:

For 1 ≤ p ≤ n, let
Jp = {α ∈ OCPn : |im α| = p} (3.1)

and
Kp = {α ∈ ODCPn : |im α| ≤ p} (3.2)

be the two-sided ideal of ODCPn for all 1 ≤ p ≤ n. Observe that when p = n, we have Kn =
ODCPn.

The following proposition is needed in finding the rank of Kp.

Proposition 3.1. For n ≥ 4, and p ≤ n − 2, α ∈ Jp can be written as product of elements in
⟨Jp+1⟩.

Proof. Let α be in Jp. We proceed the proof using a case-by-case analysis.
Case I: Suppose im α is convex. Then α is of the form(

A1 A2 . . . Ap

k k + 1 . . . k + p− 1

)
(3.3)

for some 1 ≤ k ≤ n− p+ 1.

(i) If dom(α) = [n], then α is a full transformation. Moreover, given that p ≤ n− 2, there must
exist a block say Aj (1 ≤ j ≤ p) such that |Aj | ≥ 2. Notice that, due to the order-preserving
and order-decreasing properties of α, minA1 must be 1. This condition results in k being
equal to 1 in Equation (3.3), as such α can be reexpressed as:(

A1 A2 . . . Ap

1 2 . . . p

)
.

Define the mappings:

γ =

(
A1 . . . Aj\{x} {x} Aj+1 . . . Ap

1 . . . j j + 1 j + 2 . . . p+ 1

)
and

τ =

(
1 . . . {j, j + 1} j + 2 . . . p+ 1 p+ 2
1 . . . j j + 1 . . . p p+ 1

)
,

respectively, where x = maxAj . Then clearly, γ, τ ∈ Jp+1 and γτ = α.

(ii) Suppose dom α ⊂ [n], then there exists an element c ∈ [n] such that c /∈ dom α.

If c < minA1 and k ≤ 2, then α can be expressed as:(
minA1 − 1 A1 . . . Ap

1 2 . . . p+ 1

)(
2 3 . . . p+ 1 p+ 2
k k + 1 . . . k + p− 1 k + p

)
which is obviously a product of two elements in Jp+1.

If c < minA1 and k > 2, then by order-decreasing property of α we must have minA1 > 2;
therefore, α can be expressed as:(

minA1 − 2 A1 . . . Ap

k − 2 k . . . k + p− 1

)(
k − 1 k . . . k + p− 1
k − 1 k . . . k + p− 1

)
(3.4)

a product of two elements in Jp+1.
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If c > maxAp and k = 1, then since p+ 2 ≤ n, we can express α as:(
A1 A2 . . . Ap maxAp + 1
1 2 . . . p p+ 1

)(
1 . . . p p+ 2
1 . . . p p+ 1

)
a product of two elements in Jp+1.

If c > maxAp and k ≥ 2, then α can be expressed as:(
A1 A2 . . . Ap maxAp + 1
k k + 1 . . . k + p− 1 k + p

)(
k − 1 k . . . k + p− 1
k − 1 k . . . k + p− 1

)
a product of two elements in Jp+1.

If maxAj < c < minAj+1 for some j ∈ {1, . . . , p− 1} and k = 1, then α can be written as:(
A1 · · · Aj c Aj+1 · · · Ap

1 · · · j j + 1 j + 2 · · · p+ 1

)(
1 · · · j j + 2 · · · p+ 1 p+ 2
1 · · · j j + 1 · · · p p+ 1

)
a product of two elements in Jp+1.

If maxAj < c < minAj+1 for some j ∈ {1, . . . , p− 1}, and k > 1, then α can be written as a
product of (

A1 · · · Aj c Aj+1 · · · Ap

k · · · k + j − 1 k + j k + j + 1 · · · k + p

)
and (

k − 1 k · · · k + j − 1 k + j + 1 · · · k + p
k − 1 k · · · k + j − 1 k + j · · · k + p− 1

)
.

If minAj < c < maxAj for some j ∈ {1, . . . , p} and k ≤ 2, then k + p + 1 ≤ n; therefore, α
can be written as a product of(

A1 · · · {minAj , . . . , c− 1} {c+ 1, . . . ,maxAj} Aj+1 · · · Ap

k · · · k + j − 1 k + j k + j + 1 · · · k + p

)
and (

k · · · {k + j − 1, k + j} k + j + 1 · · · k + p k + p+ 1
k · · · k + j − 1 k + j · · · k + p− 1 k + p

)
.

If minAj < c < maxAj for some j ∈ {1, . . . , p} and k > 2, then we express α as in Equa-
tion (3.4).

Case II: Suppose Im α is not convex, i.e., there exists j such that xj+1 − xj ≥ 2. Then by
property of contraction we must have minAj+1 −maxAj ≥ 2. Define a mapping γ as:

γ =

(
A1 · · · Aj maxAj + 1 Aj+1 · · · Ap

x1 · · · xj xj + 1 xj+1 · · · xp

)
.

Notice that since p ≤ n − 2, then there exists c ∈ [n] such that c /∈ im γ. Define τ as 1A,
where A = im(α) ∪ {c}. Then, γ and τ are in Jp+1 and α = γτ . Hence, the proof.

Corollary 3.2. ⟨Jp⟩ = Kp for all 2 ≤ p ≤ n− 1

Proof. Since ⟨K1⟩ ⊆ ⟨K2⟩ ⊆ · · · ⊆ ⟨Kp⟩, then
⋃p

i=1⟨Ki⟩ ⊆ ⟨Kp⟩ (i.e., ODCPn,p ⊆ ⟨Kp⟩). However,
Kp ⊆ ODCPn,p (by definition). Therefore, ODCPn,p = ⟨Kp⟩.

In the next theorem, we show that the maximum elements generates ⟨Jp⟩.
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Theorem 3.3. Let G be the set of all maximum elements in R∗ classes of Jp. Then, G is the
minimal generating set of ⟨Jp⟩.

Proof. We proof the theorem in the following steps: Firstly, we show that necessarily, any generating
set of ⟨Jp⟩ must contain G. Then, we show that G is sufficient in generating ⟨Jp⟩.

Let W be any generating set of ⟨Jp⟩. By way of contradiction, suppose there exists a maximum
element say

α =

(
A1 A2 · · · Ap

x1 x2 · · · xp

)
which is not in W . Then W being a generating set of ⟨Jp⟩ means α can be written as α = λ1λ2 · · ·λk

(for some k ∈ N). Let β1 = λ1 · · ·λk−1 and β2 = λk. Notice that since |im α| = |im βi| (i = 1, 2),
we must have ker(α) = ker(β1) and im(α) = im(β2). Therefore, β1 is R∗-related to α. Without
lost of generality, we may assume that

β1 =

(
A1 A2 · · · Ap

b1 b2 · · · bp

)
and β2 =

(
B1 B2 · · · Bp

x1 x2 · · · xp

)
.

Since α is a maximum in R∗
β1

, then by Remark 2.8, we must have bj < xj for some 1 ≤ j ≤ p.
Now, bj < xj = bjβ2 implies bjβ2 > bj . This contradicts the order-decreasing property of β2.
To show the sufficient condition, let

τ =

(
A1 A2 · · · Ap

a1 a2 · · · ap

)
be an arbitrary element in Jp, and let

α =

(
A1 A2 · · · Ap

x1 x2 · · · xp

)
be a maximum element in R∗

τ .
Let ηi = dαi − dτi . Observe that since α exceed τ , then

ηi ≥ 0, for all i ∈ {1, 2, . . . , p− 1} (3.5)

Define β as (
{a1, . . . , x1} {x2 − η1, . . . , x2} · · · {xp − ηp−1, . . . , xp}

a1 a2 · · · ap

)
.

Clearly, αβ = τ . So, we show that β is a maximum element. But before then, we need to show
that β ∈ ODCPn.

Now, for 1 ≤ i ≤ p− 1,

(xi+1 − ηi)− xi = xi+1 − [dαi − dτi ]− xi

= xi+1 − [(xi+1 − xi)− (ai+1 − ai)]− xi

= xi+1 − [xi+1 − xi − ai+1 + ai]− xi

= ai+1 − ai.

Therefore,
(xi+1 − ηi)− xi = ai+1 − ai (for all 1 ≤ i ≤ p− 1) (3.6)

which implies (by Lemma 2.4) that β is an order-preserving partial contraction mapping. For the
order-decreasing property, notice that a1 is the minimum of the first block of β. Moreover, using
Equation (3.6), we have (x2 − η1) − x1 = a2 − a1 which implies (x2 − η1) − a1 ≥ a2 − a1, which
implies by Equation (3.5) that x2 ≥ a2. In general, if ak ≤ xk, then (xk+1 − ηk)− xi = ak+1 − ak
will imply (xk+1 − ηk)− ak ≤ ak+1 − ak. Thus, ak+1 ≤ xk+1, and therefore, β ∈ ODCPn. Finally,
using Theorem 2.9, Equation (3.6) and the fact that a1 equals to the minimum of the first block of
β, we obtain that β is a maximum element, as required.
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Theorem 3.4. The rank of ⟨Jp⟩ is
n∑

k=p

(
n

k

)(
k − 1

p− 1

)
Proof. Since the maximum elements cover all the R∗−classes of Jp, by Theorem 3.3 we only need
to count the number of R∗−classes in Jp. Furthermore, we observe that the number of R∗−classes
in Jp is the number of all possible ordered partition of n−element set into p classes, which is∑n

k=p

(
n
k

)(
k−1
p−1

)
. This number also coincide with the number of R−classes of the semigroup POn

see [22, Lemma 4.1]. The result now follows.

Corollary 3.5. The rank of Kp is
n∑

k=p

(
n

k

)(
k − 1

p− 1

)
.

Proof. It follows from Corollary 3.1 and Theorem 3.3.

By substituting n− 1 for p, we readily have the following corollary.

Corollary 3.6. Rank(Kn−1) = 2n− 1.

It should be noted that, Kn−1∪{1[n]} = ODCPn. Therefore, The rank ODCPn is rank(Kn−1)+
1. Consequently, we have proved the following result.

Theorem 3.7. The rank of ODCPn is 2n.

4 Conclusion
The paper examines the rank properties of two-sided ideals of the semigroup of order-preserving
order-decreasing partial contraction mappings on a finite chain [n]. The rank of such an ideal is a
measure the size of its generating set in a combinatorial sense, and the paper’s derivation of these
ranks is based on combinatorial methods.

The paper’s findings significantly advance the understanding of the algebraic structure of semi-
groups by leveraging Green’s relations and their starred counterparts. The conditions outlined in
Theorem 2.1, regarding the characterization of Green’s relations offer a comprehensive framework
for classifying elements within the semigroup. Additionally, the exploration of two-sided ideals and
their rank properties provides valuable insights into the combinatorial structure of these subsets.

The lemmas and theorems presented throughout the paper are critical for establishing the main
results. They help clarify the conditions under which elements can be considered maximum within
their respective R-classes, and how these maximal elements contribute to generating the entire
ideal or even the entire semigroup. The thorough analysis presented in the paper thus not only
enhances the theoretical understanding of semigroups but also contributes to the broader field of
algebra through its detailed exploration of ideals and Green’s relations.
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