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Abstract

In this paper, we introduce and study a modified iterative method for approximating a com-
mon solution of split variational inclusion problems and fixed point problems for nonexpansive
semigroup in real Hilbert spaces. We prove that the proposed method converges strongly to the
solution of the mentioned problem under some mild assuptions. A new inertial extrapolation
is introduced which is known to speed up the rate of covergence of iterative algorithms. Our
method uses self-adaptive stepsize that is generated at each iteration and does not depend norm
of the bounded linear operator which is difficult in practice. We give numerical illustrations
of the proposed scheme in comparison with other existing methods in the literature to further
justify the applicability and efficiency of our proposed algorithm.

Keywords: Split variational inclusion problem, Inertial method, Fixed point problem, Hilbert
spaces.
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1 Introduction
Let B1 and B2 be two maximal monotone mappings, A : H1 → H2 is a bounded linear operator
while H1 and H2 are two real Hilbert spaces. We are interested to study a problem with the
following architecture: find a point x∗ ∈ H1 such that

0 ∈ B1(x∗)

and y∗ = Ax∗ ∈ H2 solves 0 ∈ B2

and x∗ ∈ F (T ),

(1.1)

where T : H1 → H1 is a nonexpansive mapping. Problem (1.1) contains essential optimization
problems. Before we go in details with (1.1), we will highlight some important earlier results in this
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direction.
The problem of image reconstruction and signal processing from projections can be represented in
the following system of linear equations

Ax = b. (1.2)

Equation (1.2) is the typical inverse problem, where A is the measurement operator, b is the given
data and x is the unknown quantity, the problem of interest. A common property of a vast majority
of inverse problems is their ill-posedness. In the sense of Hadamard, a mathematical problem (we
can think of an equation or optimization problem) is well-posed if it satisfies the following proper-
ties:
1.Existence: for all (suitable) data, there exists a solution of the problem (in an appropriate sense).
2.Uniqueness: for all (suitable) data, the solution is unique.
3.Stability: the solution depends continuously on the data.

It is worth mentioning that most inverse problems fail to satisfy at least one of these criteria. There-
fore, a problem is ill-posed if one of these three conditions is violated. From the above definitions,
we see that, the system (1.2) is often inconsistent, and one usually seeks a point which minimizes
x ∈ RN by some predetermined optimization criterion. The problem is frequently ill-posed and
there may be more than one optimal solution. If the stability condition is violated, the numerical
solution of the inverse problem by standard methods is difficult and often yields instability, even if
the data are exact (since any numerical method has internal errors acting like noise). Therefore,
special techniques, so-called regularization methods have to be used in order to obtain a stable
approximation of the solution. Solving an inverse problem is the task of computing an unknown
physical quantity that is related to given, indirect measurements via a forward model. Inverse prob-
lems appear in a vast majority of applications, including imaging (Computed Tomography (CT),
Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), Electron Tomography
(ET), microscopic imaging, geophysical imaging), signal- and image-processing, computer vision,
machine learning and (big) data analysis in general, among others.

The well-known convex feasibility problem (CFP) is an appraoch of formulating an inverse problem.
It is of the form:

find a point x∗ ∈ C, (1.3)

where C := ∩iCi 6= ∅ and Ci = C1, ..., CN are finitely many closed convex subset of a real Hilbert
space H. An attempt to solve two inverse problems (IPs), the popular Split Feasibility Problem
(SFP) was introduced and has the following problem structure:

find x∗ ∈ C ⊆ RN such that Ax ∈ Q ⊆ RN . (1.4)

The SFP (1.4) was a novel article of Censor and Elfving [1] that was published in 1994, for model-
ing inverse problems which arises from phase retrievals and in medical image reconstruction. Since
then, the SFP has received much attention due to its applications in signal processing, image recon-
struction, with particular progress in intensity-modulated radiation therapy (IMRT), approximation
theory, control theory, biomedical engineering, communications, and geophysics. For examples, one
can refer to [1–4] and related literatures.

A number of image reconstruction problems can be formulated as the SFP; see, e.g. [4] and the
reference therein. Recently, a wide variety of iterative methods have been used in signal processing
and image reconstruction and for solving the SFP; see, e.g., [3–11] and the references therein. Image
restoration and image reconstruction are the two main sub-branches of image recovery. The term
image restoration usually applies to the problem of estimating the original form h of a degraded
image x. Hence, in image restoration the data consist of measurements taken directly on the image
to be estimated, x being a blurred and noise-corrupted version of h. The blurring operation can be
induced by the image transmission medium, e.g., the atmosphere in astronomy, or by the recording
device, e.g., an out-of-focus or moving camera. On the other hand, image reconstruction refers to
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problems in which the data x are indirectly related to the form the original image h.
The SFP by Censor and Elfving [1] has been the foundation for solving numerous problems medical
imaging. A special case of (1.4) is the convex constrained linear inverse problem (CLIP), which was
studied by Landweber [12] in a finite dimensional real Hilbert space. It is characterized by:

find x∗ ∈ C such that Ax∗ = b, (1.5)

where C is a nonempty closed convex subset of a Hilbert space H1 while b is an element in another
Hilbert space H2. The Landweber iterative algorithm is given below:

xn+1 = xn + γAT (b−Axn), n ≥ 1. (1.6)

It is easy to see that x∗ ∈ C solves (1.4) if and only if it solves the following fixed point equation:

x∗ = PC(I − γA∗(I − PQ)A)x∗. (1.7)

where PC and PQ are the orthogonal projections onto nonempty closed and convex subsets C and
Q respectively of a Hilbert space, γ > 0, and A∗ is an adjoint of the matrix A.
The popular iterative method for solving the (1.4) is called the CQ algorithm and has the following
iterative step:

xk+1 = PC(xk + γAT (PQ − I)Axk), (1.8)

where γ ∈ (0, 2/L) with L the largest eigenvalue of the matrix ATA and PC and PQ denote the
orthogonal projeections onto C and Q, respectively; that is, PC(x) minimizes ‖c − x‖, over all
c ∈ C. The CQ algorithm converges to a solution of the SFP, or , more generally, to a minimizer
of ‖PQAc−Ac‖ over c ∈ C, whenever such exists.

Another important and more general problem is the Split Variational Inequality Problem (SVIP)
studied by Censor et al. [13]. Let H1 and H2 be two real Hilbert spaces. Let f : H1 → H1,
g : H2 → H2 be given operators, and a bounded linear operator A : H1 → H2. Let C and Q be
two nonnempty closed convex subets of H1 and H2 respectively. Then, the SVIP is formaluated as
follows:

find a point x∗ ∈ C such that 〈f(x∗), x− x∗〉 ≥ 0 ∀x ∈ C, (1.9)

and such that

the point y∗ = Ax∗ ∈ Q solves 〈g(y∗), y − y∗〉 ≥ 0 ∀ y ∈ Q. (1.10)

When we consider (1.9) and (1.10) separately, we observe that (1.9) is the well known Variational
Inequality Problem (VIP) and the solution set is denoted by SOL(f, C). Thus, the SVIP is made
up of a pair of VIP which has to be solved so that the image y∗ = Ax∗ under a given bounded
linear operator A, is the solution of another VIP in another space H2.

Remark 1: See that if the operator f and g are identically zero, that is, f ≡ 0 and g ≡ 0 in (1.9)
and (1.10) respectively, we recover the SFP (1.4).

Yet, another interesting problem of study is that of Split Zero problem (SZP) (see, Censor et
al. [13]). To construct this problem, we let H1 and H2 to be two real Hilbert spaces. Given
operators f : H1 → H1, g : H2 → H2, and a bounded linear operator A : H1 → H2, then, the SZP
is formulated as follows:

find a point x∗ ∈ H1 such that f(x∗) = 0 and g(Ax∗) = 0. (1.11)

We see that SZP is a special case of SVIP in which the bounded linear operator A is a surjective map-
ping. Consider C = H1 and Q = H2 in (1.9) and (1.10) respectively, choose x := x∗ − f(x∗) ∈ H1

in (1.9) such that y := Ax∗ − g(Ax∗) ∈ H2 in (1.10).
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The more general class of problem is the Split Monotone Inclusion Problem (SMVIP). Before we
introduce this problem, let us explain some concepts. Given a nonempty closed convex subset of a
real Hilbert space H, its indicator function is defined as:{

δC(x) = 0, if x ∈ C,
+∞, otherwise.

(1.12)

The normal cone to C at a point v is given by:

NC(v) = {d ∈ H : 〈d, y − v〉 ≤ 0}∀ y ∈ C, (1.13)

and a set valued mapping B is defined by:

B(v) =

{
f(v) +NC(v), v ∈ C
∅.

(1.14)

where f is a given operator with some imposed continuity assumptions. The operator B is proven
to be a maximal monotone by Rockafellar ( [14], Theorem 3) and B−1 = {x ∈ C : 0 ∈ B(x)} =
SOL(f, C). This motivated Moudafi [15] to introduce the popular SMVIP which is formulated
below:

find x∗ ∈ H1 such that 0 ∈ f(x∗) +B1(x∗), (1.15)

and such that
a point y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗) +B2(y∗), (1.16)

whereB1 : H1 → 2H1 andB2 : H2 → 2H2 are multi-valued mappings, f : H1 → H1 and g : H2 → H2

are two single valued operators and A : H1 → H2 is a bounded linear operator.
We quickly observe that if we set B1 = NC and B2 = NQ, we recover the SVIP (1.9)-(1.10).
The SMVIP is a generalization of the SFP, SVIP, SZP. It has widely been used to model inten-
sity modulated radiation therapy treatment, for details kindly see [1, 3]. It has also been used to
model significally many inverse problems, in particular, the phase retrieval and among others, for
instance, in sensor networks, in computerized tomography and data compression; for details see,
e.g. [8, 14,16,17].

Furthermore, another problem of interest is the Split Variational Inclusion Problem (SVIP). Suppose
f ≡ 0 and g ≡ 0, then the SMVIP ((1.15)- (1.16)) reduces to the following SVIP defined as follows:

find x∗ ∈ H1 such that 0 ∈ B1(x∗) (1.17)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (1.18)

Notice that (1.17) is the classical variational inclusion (VI). We denote the solution set of (1.17)
by SOLVIP(B1). Hence, SVIP (1.17)-(1.18) is made up a pair of variational inclusion problems.
Let the solution set of (1.17)-(1.18) be denoted by Γ := {x∗ ∈ H1 : x∗ ∈ SOLV IP (B1) and
Ax∗ ∈ SOLV IP (B2)}. Observe also that (1.17)-(1.18) is one part of (1.1). Moreso, problem (1.1)
involves the study of fixed point problem (FPP) which have widely study in the literature and finds
valuable applications in edifferent fields of study.
The weak convergence of the problems (1.16)-(1.17) was recently studied by Byrne et al [18]. They
provided the following iterative algorithm: for an initial guess, choose x0 ∈ H1, then the iterative
sequence {xn} is defind by:

xn+1 = JB1

λ (xn + γA∗(JB2

λ − I)Axn), (1.19)

where A∗ is the adjoint of A, L is the spectral radius of the operator A∗A and γ ∈ (0, 2/L) for some
λ > 0.
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The result of [18] recieved a great improvement in 2014 by the work of Kazmi and Rizvi [19]. This
is due to the fact that strong convergence is desirable in applications. They considered the following
iterative method: {

un = JB1

λ (xn + γA∗(JB1

λ − I)Axn),

xn+1 = αnf(xn) + (I − αnD)Snun,
(1.20)

where γ ∈ (0, 1/L), L is the spectral radius of the operator A∗A and A∗ is the adjoint of A while λ
is a positive number and αn is a sequence of positive number. They proved that the sequence {xn}
converged strongly to the solution set Γ of (1.17)-(1.18).
In 2015, Sithithakerngkiet et al [20] in the same line of research, proposed the hybrid steepest decent
method and constructed the following iterative method:{

un = JB1

λ (xn + γA∗(JB2

λ − I)Axn),

xn+1 = αnβf(xn) + (I − αnT )Snun,
(1.21)

where Sn is a sequnce of nonexpansive mappings, T is a positive operator, A∗ is the adjoint of the
bounded linear operator A, λ > 0, γ ∈ (0, 1/L), where L is the spectral radius of A∗A. They proved
that the iterative sequnce {xn} strongly converges to a point p, where p = PΩ(I − T + βf)(p) is a
unique solution of the variational inequality:

〈(T − βf)p, p− x〉 ≤ 0, x ∈ Ω. (1.22)

Remark 1: We notice that the algorithms (1.19), (1.20) and (1.21) have two major drawbacks.
1). To excute the algorithms, one needs to compute the operator norm or at least, estimate it. This
is generally difficult to implement and in most cases, it is impossible. In numerical and practical
sense, it is time consuming. To circumvent this challenge, some authors [21] and [22] provided a tip
on how to choose step sizes that do not depend on the operator norm.

Motivated by this, we construct a new stepsize {γn} which does not depend on the operator as
follows:

γn ∈ {ε,
‖(JB2

λ − I)Axn‖2

‖A∗(JB2

λ − I)Axn‖2
− ε}. (1.23)

With this variable stepsize, we do not need the knowledge of operator norm and the sequence con-
verges strongly as expected. Following the work of Che and Li [23] , Moudafi [24], Byre et al. [25]
and Kazmi and Rizvi [19], we study an iterative method for approximating a common solution of
split variotional inclusion problem and fixed point problem for nonexpansive semigroups in Hilbert
spaces. Further, it is desirable in applications to have a speedy convergence of iterations. Based on
this, inertial extrapolation [35] has been of interest due to the fact that it improves rate convergence
(see e.g, [26–29,36–40]) and references therein. Based on the forgoing, we introduce an inertial term
in the propose algorithm to speed up the rate of conversgence.

We organize the remaining part of the paper as follows: In section 2, we present some Lemmas,
Theorems and basic definitions relevant to our reseult. In section 3, we present our algorithm and
some standard assumptions and the convergence analysis is discuss in section 4. The numerical
examples are provide in section 5 while the conclusion is in section 6.

2 Preliminaries
Let C denote a nonempty closed convex subset of a real Hilbert space H. Let "→" and "⇀" denote
a strong and weak convergence of a sequence respectively. Let T : H → H be a mapping. Then,
a point x ∈ H is called the fixed point of T if Tx = x. The set of fixed point of T is denoted by
F (T ) := {x ∈ H : Tx = x}. Let ωn(xn) = {x : ∃ xnj ⇀ x} be the weak ω−limit set of xn.
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We recall some important properties of a projection operator associated with C. For any x ∈ C,
there exists a unique point PC(x) ∈ C such that

‖x− PC(x)‖ ≤ inf{‖x− y‖,∀y ∈ C}.

PC is called the metric projection of H onto C, that is, PC : H → C. It is well known that PC has
the following properties

〈x− y, PC(x)− PC(y)〉 ≥ ‖PC(x)− PC(y)‖2,∀x, y ∈ C.

More so, for PC(x) ∈ C,
〈x− PC(x), PC(x)− y〉 ≥ 0,∀y ∈ C.

The following basic definitions are important to our study:
Definition 2.1: A map T : H → H is called a contraction if there exists α ∈ (0, 1) such that

‖Tx− Ty‖ ≤ α‖x− y‖,∀x, y,∈ H

If α = 1, then it is called a nonexpansive mapping.
Definition 2.2: A one-parameter family Γ = {T (t) : 0 ≤ t < ∞} on H is called a nonexpansive
semigroup if it satisfies the following conditions:
i) T (0)x = x, ∀x ∈ H,
ii) T (s+ t) = T (s)T (t),∀s, t ≥ 0,
iii) for each x ∈ H, the mapping T (t)x is continous,
iv) ‖T (t)x− T (t)y‖ ≤ ‖x− y‖, for all x, y ∈ H and t > 0.
Example 2.3 [23] Let H = R and Γ := {T (t) : 0 ≤ t <∞} : H → H defined by T (t)x = (1/10t).
Then, F is nonexpansive semigroup. Thus, we see below that Γ satusfies the four conditions:
i) T (0)x = (1/100)x = x for all x ∈ H,
ii) T (s+ t) = (1/10s)(1/10t) = T (s)T (t) for all t, s ≥ 0,
iii) for each x ∈ H, the mapping T (t)x = (1/10t)x is continous,
iv) ‖T (t)x− T (t)y‖ = ‖(1/10t)x− (1/10t)y‖ = ‖(1/10t)(x− y)‖ = (1/10t)‖x− y‖ ≤ ‖x− y‖ for all
x, y ∈ H and t ≥ 0.
Definition 2.4: An operator T is said to be:
(i) α− inverse strongly monotone, if there exists α > 0 such that

〈Tx− Ty, x− y〉 ≥ α‖Tx− Ty‖2 ∀x, y ∈ H,

(ii) Monotone, if
〈Tx− Ty, x− y〉 ≥ 0 ∀x, y ∈ H,

Remark 2.5: It is clear that every α−inverse strongly monotone operators are monotone.
Definition 2.6: A multi-valued map T : H → 2H , is called monotone, if

〈x− y, u− v〉 ≥ 0, ∀ x, y ∈ H,u ∈ T (x), v ∈ T (y).

Definition 2.7: The operator T : H → 2H , is called maximal monotone, if the graph G(T ) of T
defined by

G(T ) := {(x, y) ∈ H ×H : y ∈ T (x)}

is not properly contained in the graph of any other monotone operator. It is well known that T is
maximal monotone if and only if for (x, u) ∈ H ×H, 〈x− y, u− v〉 ≥ 0 for all (y, v) ∈ G(T ) implies
u ∈ T (x).
Definition 2.8: The resolvent operator JTλ associated with a multivalued operator T and λ > 0
is the map JTλ : H → 2H defined by JTλ (x) = (I + λT )−1(x), x ∈ H,λ > 0, where I is the identity
operator in H. It is known that if T is monotone, then JTλ is a singlevalued, nonexpansive and
firmly nonexpansive mapping.
Definition 2.9: A map T : H → H is said to be demiclosed at the origin if for each sequence {xn}
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converges weakly to x, and the sequnce {Txn} converges strongly to 0, then Tx = 0.
Definition 2.10: T is said to be semicompact, if for any bounded sequence {xn} ⊂ H, limn→∞ ‖xn−
Txn‖ = 0, then there exists a subsequence {xnj} ⊂ {xn} such that {xn} converges strongly to some
point x∗ ∈ H.

The following Lemmas will be relevant in our work.
Lemma 2.1(see [30]): Let H be a real Hilbert space. Then, for x, y ∈ H the following results
hold:
(a) 2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2,
(b) ‖x− y‖2 ≤ ‖x‖2 + 2〈y, x− y〉.
(c) for any λ ∈ [0, 1]; ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Lemma 2.2 (see for details [31]:) Let C be a nonempty bounded closed and convex subset of a
real Hilbert space H. Let {T (s) : s ≥ 0} defined C to itself be a nonexpansive semigroup. Then
for all h ≥ 0,

lim sup
t→∞

, x∈C‖
1

t

∫ t

0

T (x)xds− T (h)(
1

t

∫ t

0

T (s)xds)‖ = 0.

Lemma 2.3(see [24]:). The SVIP defined in (1.17) and (1.18) is equivalent to finding x∗ ∈ H1 such
that y∗ = Ax∗ ∈ H2,

x∗ = JB1

λ (x∗),

y∗ = JB2

λ (y∗)

for some λ > 0.
Lemma 2.4( [31]:) Let C be a nonempty bounded closed and convex subset of a real Hilbert
space H, let {xn} be a sequence, and let {T (s) : s ≥ 0} defined on C into itself be a nonexpansive
semigroup. Suppose the following conditions hold:
(i) {xn}⇀ z,
(ii) lim sups→∞ lim supn→∞ ‖T (s)xn − xn‖ = 0,
then, z ∈ F (T ).
Lemma 2.5(see [32]) Let H be a Hilbert space and let {un} be a sequence in H such that there
exists a nonempty set W ⊂ H satisfying the following conditions:
(i) for every w ∈W, limn→∞ ‖un − w‖ exists.
(ii) Each weak cluster point of the sequence {wn} is in W .
Then, there exists w∗ ∈W such that {un} weakly converges to w∗.
Lemma 2.6:(see [23]) Let Γ = {T (s) : s ≥ 0} be a one parameter family of nonexpansive semigroup
defined on H, then for p ∈ F (Γ), x ∈ H and t ≥ 0,

‖1

t

∫ t

0

T (s)xds− x‖2 ≤ 2〈x− p, x− 1

t

∫ t

0

T (s)xds〉.

Lemma 2.7:( [33]) Let {αn} be a sequence of non-negative real numbers, {βn} be a sequence
of real numbers in (0, 1) with condition

∑∞
n=1 βn = ∞ and {dn} be a sequence of real numbers.

Assume that
αn ≤ (1− βn)αn + βndn, n ≥ 0.

If the lim supn→∞ dn ≤ 0 and
∑∞
n=1 βn =∞, then limn→ αn = 0.

Lemma 2.8( [34]) Let {αn} be a sequence of non-negative real numbers satisfying the following:

αn ≤ (1− βn)αn + σn + γn, n ≥ 1,

where {βn} is a sequnece in (0, 1) and {σn} is a real sequence. Suppose that
∑∞
n=1 γn < ∞ and

σn ≤ βnM for some M ≥ 0. Then, {αn} is a bounded sequence.
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3 The Main Result
In this section, we present our algorithm and the conditions for the strong convergence.
Assuptions 3.1: H1 and H2 are taken to be real Hilbert spaces. We assume that the following
hold:
i) B1 : H1 → 2H1 and B2 : H1 → 2H2 are maximal monotone operators.
ii) A : H1 → H2 is a bounded linear operator such that A 6= 0 and A∗ : H2 → H1, the adjoint of A
such that 〈Ax, y〉 ≤ 〈x,A∗y〉.
iii) T : H1 → H1 is a nonexpansive semigroup.
iv) Φ = F (T ) ∩ Ω 6= ∅, where Ω := {x∗ ∈ H1 : x∗ ∈ SOLV IP (B1) and Ax∗ ∈ SOLV IP (B2)}.

Assumption 3.2: Suppose {βn}, {αn} and {εn} are all positive sequences satisfying conditions:
1) 0 < lim infn→∞ αn < lim supn→∞ αn < 1.
2) {θn} ⊂ (a, 1− βn) for some a > 0.

3) limn→∞
εn
βn

= 0.

4) {βn} ⊂ (0, 1) with limn→∞ βn = 0 and
∑∞
n=1 βn =∞.

Algorithm 3.3
1: Step 0 Choose sequences {βn}, {θn} and {εn} such that the conditions from Assumption 3.2 hold
and let λ > 0, α ≥ 0 and x0, x1 ∈ H be chossen arbitrarily. Set n := 1.
Iteration Steps: Step 0: Given the iterate xn−1 and xn(n ≥ 1), choose αn such that 0 ≤ αn ≤ αn,
where

αn :=


min{ n− 1

n+ α− 1
,

εn
‖xn − xn−1‖

} if xn 6= xn+1,

n− 1

n+ α− 1
, otherwise,

(3.1)

and compute 
wn = xn + αn(xn − xn−1),

un = JB1

λ (wn + γnA
∗(JB2

λ − I)Awn),

xn+1 = (1− θn − βn)wn + θn
1
tn

∫ tn
0
T (s)unds,

(3.2)

where

γn ∈ (ε,
‖(JB2

λ − I)Awn‖2

‖A∗(JB2

λ − I)Awn‖2
− ε ),

for some large enough ε > 0.
Update: Set n := n+ 1 and go to Step 1.

Remark 3.3: (a) Notice that the stepsize {γn} is independent of operator norm of A∗A which is
a big improvement over others whose stepsize is dependent of operator norms.
(b) The inertial term θn(xn−xn−1) is introduced to speed up the rate of convergence which is also
an improvement over algorithms (1.19), (1.20) and (1.21). Furthermore, the computation of our
algorithm is simple. It does not require the computation of ‖xn−xn−1‖ or

∑∞
n=1 ‖xn−xn−1‖ <∞

before choosing the inertial factor θn.

4 Convergence Analysis
Theorem 4.1: Let {xn} be a sequence generated by Algorithm 3.3 such that 3 and 3 are satisfied,
then the sequence {xn} generated recursively by the Algorithm 3.3 strongly converges to the solu-
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tion set.
Proof: We break the proof into several steps.
Step I: We first show that the sequence is bounded. Take p ∈ Φ, we that JB1

λ p = p,Ap = JB2Ap,
and T (s)p = p

‖wn − p‖ = ‖xn + αn(xn − xn−1)− p‖
= ‖xn − p+ αn(xn − xn−1)‖
≤ ‖xn − p‖+ αn‖xn − xn−1‖

= ‖xn − p‖+ βn
αn
βn
‖xn − xn−1‖. (4.1)

But αn‖xn − xn−1‖ ≤ εn,∀ n ∈ N, which implies that,
αn
βn
‖x−xn−1‖ ≤ εn

βn
→ 0 as n→∞.

Thus, there exist M > 0 such that
αn
βn
‖x− xn−1‖ ≤M,∀n ∈ N.

It follows from this fact and (4.1) that

‖wn − p‖ ≤ ‖xn − p‖+ βnM. (4.2)

Now, from the Algorithm 3.3, ∀p ∈ Φ, and nonexpansivess of JB1

λ that

‖un − p‖2 = ‖JB1(wn + γnA
∗(JB2)− I)Awn − p‖2

= ‖JB1(wn + γnA
∗(JB2 − I)Awn − JB1(p)‖2

≤ ‖wn + γnA
∗(JB2 − I)Awn − p‖2

= ‖wn − p+ γnA
∗(JB2 − I)Awn‖2

= ‖wn − p‖2 + γ2
n‖A∗(J

B2

λ − I)Awn‖2 + 2γn〈wn − p,A∗(JB2

λ − I)Awn〉
= ‖wn − p‖2 + γ2

n‖A∗(J
B2

λ − I)Awn‖2 + 2γn〈Awn −Ap, (JB2

λ − I)Awn〉. (4.3)

From (4.3), we obtain,

2γn〈Awn −Ap, (JB2

λ − I)Awn〉 = 2γn〈Awn −Ap+ (JB2

λ − I)Awn − (JB2

λ − I)Awn, (J
B2

λ − I)Awn〉
= 2γn〈JB2Awn −Ap, (JB2

λ − I)Awn〉 − 2γn‖(JB2

λ − I)Awn‖2

= γn‖JB2Awn −Ap‖2 + γn‖(JB2

λ − I)Awn‖2

−γn‖Awn −Ap‖2 − 2γn‖(JB2

λ − I)Awn‖2

= γn‖JB2Awn − JB2(Ap)‖2 − γn‖Awn −Ap‖2 − γn‖(JB2

λ − I)Awn‖2

≤ γn‖Awn −Ap‖2 − γn‖Awn −Ap‖2 − γn‖(JB2

λ − I)Awn‖2

= −γn‖(JB2

λ − I)Awn‖2. (4.4)

It follows from (4.2), (4.3) and the condition on γnthat

‖un − p‖2 ≤ ‖wn − p‖2 + γ2
n‖A∗(J

B2

λ − I)Awn‖2 − γn‖(JB2

λ − I)Awn‖2

= ‖wn − p‖2 − γn(‖(JB2

λ − I)Awn‖2 − γn‖A∗(JB2

λ − I)Awn‖2)

= ‖wn − p‖2. (4.5)

‖(1− θn − βn)(wn − p) + θn( 1
tn

∫ tn
0
T (s)unds− p)‖2
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= (1− θn − βn)2‖wn − p‖2 + θ2
n‖(

1

tn

∫ tn

0

T (s)unds− p)‖2

+2θn(1− θn − βn)〈wn − p,
1

tn

∫ tn

0

T (s)unds− p〉

= (1− θn − βn)2‖wn − p‖2 + θ2
n‖(

1

tn

∫ tn

0

T (s)unds− T (s)(p)‖2

+2θn(1− θn − βn)〈wn − p,
1

tn

∫ tn

0

T (s)unds− T (s)(p)〉

≤ (1− θn − βn)2‖wn − p‖2 + θ2
n‖un − p‖2

+2θn(1− θn − βn)‖wn − p‖‖un − p‖
≤ (1− βn)2‖wn − p‖2. (4.6)

Next, from the algorithm 3.3, (4.6) and (4.2) we estimate that for all p ∈ Φ,

‖xn+1 − p‖ = ‖(1− θn − βn)(wn − p) + θn(
1

tn

∫ tn

0

T (s)unds− p)− βnp‖

≤ ‖(1− θn − βn)(wn − p) + θn(
1

tn

∫ tn

0

T (s)unds− p)‖+ βn‖p‖

≤ (1− βn)‖wn − p‖+ βn‖p‖
≤ (1− βn)[|xn − p‖+ βnM ] + βn‖p‖
= (1− βn)|xn − p‖+ (1− βn)βnM + βn‖p‖
≤ (1− βn)|xn − p‖+ βnM + βn‖p‖
= (1− βn)‖xn − p‖+ βn(M + ‖p‖). (4.7)

It follows from Lemma 2.8 and (4.7) that {xn} is bounded. Consequently, {wn} and {un} are
bounded sequences.

Step II: We show that the limit exists and that the sequence {xn} is asymptotically regular, that
is, limn→∞ ‖xn+1 − xn‖ = 0.
To establish this result, we consider the following two cases:
Case 1: Assume {‖xn − p‖} is nonincreasing sequence, then {‖xn − p‖} is convergent. Clearly

lim
n→∞

(‖xn − p‖2 − ‖xn+1 − p‖2) = 0.

Observe also that from the Algorithm 3.3.

‖wn − xn‖ = θn‖xn − xn−1‖

= βn
θn
βn
‖xn − xn−1‖ → 0. (4.8)

It follows from (4.8) that

lim
n→∞

‖wn − xn‖ = 0. (4.9)

From the Algorithm 3.3, we know that

γn‖A∗(JB2 − I)Awn‖2 ≤ ‖(JB2 − I)Awn‖2 − ε‖A∗(JB2 − I)Awn‖2. (4.10)
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Next, we show that limn→∞ ‖A∗(JB2 − I)Awn‖2 = 0.
For all p ∈ Φ, using Assumption 3.2(2),we estimate that

‖xn+1 − p‖2 = ‖(1− θn − βn)(wn − p) + θn(
1

tn

∫ tn

0

T (s)unds− p)− βnp‖2

≤ ‖(1− θn − βn)(wn − p) + θn(
1

tn

∫ tn

0

T (s)unds− p)‖2 + β2
n‖p‖2

−2βn〈(1− θn − βn)(wn − p) + θn(
1

tn

∫ tn

0

T (s)unds− p), p〉

≤ ‖(1− θn − βn)(wn − p) + θn(
1

tn

∫ tn

0

T (s)unds− p)‖2 + β2
n‖p‖2

≤ (1− θn − βn)2‖wn − p‖2 + θ2
n‖

1

tn

∫ tn

0

T (s)unds− p‖2

+2θn(1− θn − βn)〈wn − p,
1

tn

∫ tn

0

T (s)unds− p〉+ β2
n‖p‖2

≤ (1− θn − βn)2‖wn − p‖2 + θ2
n‖

1

tn

∫ tn

0

T (s)unds− p‖2

+2θn(1− θn − βn)‖wn − p‖.‖
1

tn

∫ tn

0

T (s)unds− p‖+ β2
n‖p‖2

≤ (1− θn − βn)2‖wn − p‖2 + θ2
n‖

1

tn

∫ tn

0

T (s)unds− p‖2

+θn(1− θn − βn)[‖wn − p‖2 + ‖ 1

tn

∫ tn

0

T (s)unds− p‖2] + β2
n‖p‖2

= [(1− θn − βn)2 + θn(1− θn − βn)]‖wn − p‖2 + [θ2
n + (1− θn − βn)]‖ 1

tn

∫ tn

0

T (s)unds− p‖2

+β2
n‖p‖2

= (1− βn)(1− θn − βn)‖wn − p‖2 + θn(1− βn)‖ 1

tn

∫ tn

0

T (s)unds− p‖2 + β2
n‖p‖2

≤ (1− βn)‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− p‖2 + β2
n‖p‖2

= (1− βn)‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− T (s)p‖2 + β2
n‖p‖2

≤ (1− βn)‖wn − p‖2 + (1− βn)‖un − p‖2 + β2
n‖p‖2

≤ ‖wn − p‖2 + ‖un − p‖2 + β2
n‖p‖2. (4.11)

From (4.2),(4.5),(4.10) and (4.11), we get

‖xn+1 − p‖2 ≤ ‖wn − p‖2 + ‖wn − p‖2 + γn[γn‖A∗(JB2

λ − I)Awn‖2 − ‖(JB2

λ − I)Awn‖2] + β2
n‖p‖2

≤ 2‖wn − p‖2 − γnε‖A∗(JB2

λ − I)Awn‖2 + β2
n‖p‖2

= 2[‖xn − p‖2 + 2βnM‖xn − p‖+ β2
nM

2]− γnε‖A∗(JB2

λ − I)Awn‖2 + β2
n‖p‖2

= 2‖xn − p‖2 + 4βnM‖xn − p‖+ 2β2
nM

2 − γnε‖A∗(JB2

λ − I)Awn‖2 + β2
n‖p‖2

= ‖xn − p‖2 +
βn
βn
‖xn − p‖2 + 4βnM‖xn − p‖+ 2β2

nM
2 − γnε‖A∗(JB2

λ − I)Awn‖2 + β2
n‖p‖2

= ‖xn − p‖2 + βn[
‖xn − p‖

βn
+ 4M‖xn − p‖+ 2βnM

2 + βn‖p‖]

−γnε‖A∗(JB2

λ − I)Awn‖2. (4.12)
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Now, using the condition of βn in Assumption 3.2(4) and (4.12), we obtain

γnε‖A∗(JB2

λ − I)Awn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βn[
‖xn − p‖

βn
+ 4M‖xn − p‖+ 2βnM

2 + βn‖p‖].

(4.13)

Since {‖xn − p‖} is convergent, we get from (4.13) that

lim
n→∞

‖A∗(JB2

λ − I)Awn‖2 = 0. (4.14)

It follows from (4.10) and (4.14) that

lim
n→∞

‖(JB2

λ − I)Awn‖2 = 0. (4.15)

Again, since JB1

λ is nonexpansive, then, it is firmly nonexpansive. Using Algorithm 3.3, we get

‖un − p‖2 = ‖JB1

λ (wn + γnA
∗(JB2

λ − I)Axn − JB1

λ (p)‖2

≤ 〈JB1

λ (wn + γnA
∗(JB2

λ − I)Axn − JB1

λ (p), wn + γnA
∗(JB2

λ − I)Axn − p〉
= 〈un − p, wn + γnA

∗(JB2

λ − I)Axn − p〉

=
1

2
(‖un − p‖2 + ‖wn + γnA

∗(JB2

λ − I)Axn − p‖2 − ‖un − (wn + γnA
∗(JB2

λ − I)Axn)‖2)

=
1

2
(‖un − p‖2 + ‖wn − p+ γnA

∗(JB2

λ − I)Axn‖2 − ‖un − wn − γnA∗(JB2

λ − I)Axn)‖2)

=
1

2
(‖un − p‖2 + ‖wn − p‖2 + γ2

n‖A∗(J
B2

λ − I)Axn‖2 + 2γn〈wn − p,A∗(JB2

λ − I)Axn〉

−‖un − wn‖2 − γ2
n‖A∗(J

B2

λ − I)Axn‖2 + 2γn〈un − wn, A∗(JB2

λ − I)Axn〉)

=
1

2
(‖un − p‖2 + ‖wn − p‖2 − ‖un − wn‖2 + 2γn〈wn − p,A∗(JB2

λ − I)Axn〉

+2γn〈un − wn, A∗(JB2

λ − I)Axn〉. (4.16)

Hence,
‖un − wn‖2

≤ ‖wn − p‖2 − ‖un − wn‖2 + 2γn〈wn − p,A∗(JB2

λ − I)Axn〉+ 2γn〈un − wn, A∗(JB2

λ − I)Axn〉
≤ ‖wn − p‖2 − ‖un − p‖2 + 2γn〈wn − p,A∗(JB2

λ − I)Axn〉+ 2γn〈un − wn, A∗(JB2

λ − I)Axn〉
≤ 2γn〈wn − p,A∗(JB2

λ − I)Axn〉+ 2γn〈un − wn, A∗(JB2

λ − I)Axn〉
≤ 2γn(‖wn − p‖‖A∗(JB2

λ − I)Axn‖+ ‖un − wn‖‖A∗(JB2

λ − I)Axn‖). (4.17)

Therefore, using (4.14) in (4.17) yields that

lim
n→∞

‖un − wn‖ = 0. (4.18)

It follows from (4.9) and (4.18) that

‖un − xn‖ ≤ ‖un − wn‖+ ‖wn − xn‖. (4.19)

Taking limit in (4.19) gives that

lim
n→∞

‖un − xn‖ = 0. (4.20)
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We know from (4.11) that

‖xn+1 − p‖2 ≤ (1− βn)‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− p)‖2 + β2
n‖p‖2

≤ ‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− p‖2 + β2
n‖p‖2

= ‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− un + un − p‖2 + β2
n‖p‖2

= ‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− un‖2 + (1− βn)‖un − p‖2

+2(1− βn)〈un − p,
1

tn

∫ tn

0

T (s)unds− un〉+ β2
n‖p‖2

= ‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− un‖2 + (1− βn)‖un − p‖2

−2(1− βn)〈p− un,
1

tn

∫ tn

0

T (s)unds− un〉+ β2
n‖p‖2

≤ ‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− un‖2 + (1− βn)‖un − p‖2 + β2
n‖p‖2

≤ ‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− un‖2 + (1− βn)‖wn − p‖2 + β2
n‖p‖2

= ‖wn − p‖2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− un‖2 + β2
n‖p‖2. (4.21)

Now, using (4.2) and (4.21), we obtain

‖xn+1 − p‖2 ≤ (‖xn − p‖2 + βnM)2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− un‖2 + β2
n‖p‖2

= ‖xn − p‖2 + 2βnM‖xn − p‖2 + β2
nM

2 + (1− βn)‖ 1

tn

∫ tn

0

T (s)unds− un‖2

+β2
n‖p‖2.

(4.22)

Therefore, (4.22) implies that

(βn − 1)‖ 1

tn

∫ tn

0

T (s)unds− un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+βn[2M‖xn − p‖2 + βn(M2 + ‖p‖2)]. (4.23)

Invoking the condition on βn of Assumption 3.2(4), we get

lim
n→∞

‖ 1

tn

∫ tn

0

T (s)unds− un‖ = 0. (4.24)

Observe that

‖un − T (u)un‖ ≤ ‖un −
1

tn

∫ tn

0

T (s)unds‖+ ‖ 1

tn

∫ tn

0

T (s)unds− T (u)
1

tn

∫ tn

0

T (s)unds‖

+‖T (u)
1

tn

∫ tn

0

T (s)unds− T (u)un‖

≤ 2‖un −
1

tn

∫ tn

0

T (s)unds‖+ ‖ 1

tn

∫ tn

0

T (s)unds− T (u)
1

tn

∫ tn

0

T (s)unds‖.

(4.25)
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Applying Lemma 2.2 in (4.25) above, we obtain

lim
n→∞

‖un − T (u)un‖ = 0. (4.26)

We further estimate that

‖xn+1 − un‖ ≤ (1− θn − βn)‖wn − un‖+ θn‖
1

tn

∫ tn

0

T (s)unds− un‖ (4.27)

It follows from (4.18),(4.24) and (4.27) that

lim
n→∞

‖xn+1 − un‖ = 0. (4.28)

Furthermore, using (4.18) and (4.9), we get

‖un − xn‖ ≤ ‖un − wn‖+ ‖wn − xn‖. (4.29)

Now, taking limit in (4.29), we have

lim
n→∞

‖un − xn‖ = 0. (4.30)

To show that xn is asymptotically regular, we use the estimates (4.28), (4.29) and obtain

‖xn+1 − xn‖ ≤ ‖xn+1 − un‖+ ‖un − xn‖ → 0. (4.31)

It follows from (4.31) that

lim
n→∞

‖xn+1 − xn‖ = 0. (4.32)

And,

lim
n→∞

‖un+1 − un‖ ≤ lim
n→∞

(‖un+1 − xn+1‖+ ‖xn+1 − un‖) = 0. (4.33)

Step III: We prove that q ∈ Φ.
Since {wn} and {un} are bounded sequences in H1, let q be a weak cluster point. Without loss of
generality, we may assume that the subsequence {xnj} of {xn} weakly converges to a point q. We
obtained from (4.18) that {unj} of {un} converges weakly to q. Hence, from the Algorithm 3.3, the
sequence unj = JB1

λ (wnj + τnjA
∗(JB2

λ − I)Awnj ) can be rewritten as:

(
wnj − unj + τnjA

∗(JB2

λ − I)Awnj
λ

∈ B1unj . (4.34)

Taking limj→∞ in (4.34), using the estimates in (4.14) and (4.18), together with the fact that
the graph of a maximal monotone operator is weakly stronly closed, we conclude that 0 ∈ B1(q)
which further implies that q ∈ SOLV IP (B1). Also, using the asymptotical behaviour of the se-
quences {xn} and {un}, we get that {Axnj} weakly converges to Aq. Furthrmore, using Lemma
2.3, the nonexpansiveness of the resolvent operator JB2 and the estimate in (4.14), we deduce that
Aq ∈ B2(Aq); that is, Aq ∈ SOLV IP (B2). Therefore, we conclude that q ∈ Ω.

Step IV: We prove that {xn} strongly converges to the solution set, Φ.
we first show that q ∈ F (Γ). Suppose for contradiction T (u)q 6= q. It follows from Opial condition,
Lemma 2.4 and (4.26) that

lim inf
j→∞

‖unj − q‖ ≤ lim inf
j→∞

‖unj − T (u)q‖

≤ lim inf
j→∞

{‖unj − T (u)unj‖+ ‖T (u)unj − T (u)q‖}

≤ lim inf
j→∞

{‖unj − T (u)unj‖+ ‖unj − q‖}

≤ lim inf
j→∞

‖unj − q‖. (4.35)
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This is a contracdiction. Hence, q ∈ F (Γ) and it follows that q ∈ Φ. From Lemma 2.5, we get that
xn ⇀ q. Also, un ⇀ q and q ∈ Φ.

Next: See that From the estimates (4.15) and (4.24), we know that

lim
n→∞

‖ 1

tn

∫ tn

0

T (s)unds− wn‖ ≤ lim
n→∞

(‖ 1

tn

∫ tn

0

T (s)unds− un‖+ ‖un − wn‖)→ 0. (4.36)

Using this fact in (4.36), we obtain that

‖(1− θn)wn + θn
1
tn

∫ tn
0
T (s)unds− p‖2

= ‖(1− θn)(wn − p) + θn(
1

tn

∫ tn

0

T (s)unds− p)‖2

= (1− θn)2‖wn − p‖2 + θ2
n‖

1

tn

∫ tn

0

T (s)unds− p‖2

+2θn(1− θn)〈wn − p,
1

tn

∫ tn

0

T (s)unds− p〉

≤ (1− θn)2‖wn − p‖2 + θ2
n‖

1

tn

∫ tn

0

T (s)unds− p‖2

+2θn(1− θn)‖wn − p‖.‖
1

tn

∫ tn

0

T (s)unds− p‖

≤ (1− θn)2‖wn − p‖2 + θ2
n‖

1

tn

∫ tn

0

T (s)unds− p‖2

+θn(1− θn)‖wn − p‖2

+θn(1− θn)‖ 1

tn

∫ tn

0

T (s)unds− p‖2

= [(1− θn)2 + θn(1− θn)]‖wn − p‖2

+[θ2
n + θn(1− θn)]‖ 1

tn

∫ tn

0

T (s)unds− p‖2

= (1− θn)‖wn − p‖2 + θn‖
1

tn

∫ tn

0

T (s)unds− T (s)p‖2

≤ (1− θn)‖wn − p‖2 + θn[‖un − p‖2

≤ (1− θn)‖wn − p‖2 + θn‖wn − p‖2

= ‖wn − p‖2

≤ ‖xn − p‖2 + α2
n‖xn − xn−1‖2 + 2αn〈xn − p, xn − xn−1〉

≤ ‖xn − p‖2 + α2
n‖xn − xn−1‖2 + 2αn‖xn − p‖.‖xn − xn−1‖

= ‖xn − p‖2 + αn‖xn − xn−1‖[2‖xn − p‖+ αn‖xn − xn−1‖]
≤ ‖xn − p‖2 + 3αn‖xn − xn−1‖M3 (4.37)

where M3 = sup{‖xn − p‖, ‖xn − xn−1‖}
Further more, using (4.37), (4.36), Lemma 2.1(b) and the Algorithm, we obtain
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‖xn+1 − p‖2

= ‖(1− βn)[(1− θn)wn + θn
1

tn

∫ tn

0

T (s)unds− p]− [βnθn(wn −
1

tn

∫ tn

0

T (s)unds) + βnp]‖2

≤ (1− βn)2‖(1− θn)wn + θn
1

tn

∫ tn

0

T (s)unds− p‖2 − 2〈βnθn(wn −
1

tn

∫ tn

0

T (s)unds) + βnp, xn+1 − p〉

≤ (1− βn)‖(1− θn)wn + θn
1

tn

∫ tn

0

T (s)unds− p‖2 + 2〈βnθn(wn −
1

tn

∫ tn

0

T (s)unds), p− xn+1〉

+2βn〈p, p− xn+1〉

≤ (1− βn)‖(1− θn)wn + θn
1

tn

∫ tn

0

T (s)unds− p‖2 + 2βnθn‖wn −
1

tn

∫ tn

0

T (s)unds‖.‖xn+1 − p‖

+2βn〈p, p− xn+1〉

≤ (1− βn)[‖xn − p‖2 + 3αn‖xn − xn−1‖M3] + 2βnθn‖wn −
1

tn

∫ tn

0

T (s)unds‖.‖xn+1 − p‖

+ 2βn〈p, p− xn+1〉

= (1− βn)‖xn − p‖2 + βn(3
αn
βn
‖xn − xn−1‖M3 + 2θn‖wn −

1

tn

∫ tn

0

T (s)unds‖.‖xn+1 − p‖

+2〈p, p− xn+1〉)
= (1− βn)‖xn − p‖2 + βndn

(4.38)

where dn = (3αnβn ‖xn − xn−1‖M3 + 2θn‖yn − Syn‖.‖xn+1 − p‖+ 2〈p, p− xn+1〉).
Since the {xn} is bounded, thus, there exists a subsequnce {xnj} of {xn} that weakly converges to
a point q ∈ H1 such that

lim sup
j→∞

〈p, p− xnj 〉 = lim
j→∞
〈p, p− xnj 〉 = 〈p, p− q〉 ≤ 0. (4.39)

It follows from (4.39) that

lim sup
j→∞

〈p, p− xnj+1〉 = 〈p, p− q〉 ≤ 0. (4.40)

The fact that lim supn→∞ dn ≤ 0 follows from (4.9), (4.36) and (4.40). Therefore, we obtain from
the concluding part of Lemma 2.7 that limn→∞ ‖xn − p‖ = 0. Hence, {xn} strongly converges to
p ∈ PΦ0.
Case 2: Suppose that {‖xn − p‖} is not monotone decreasing sequence. Denote Ωn = ‖xn − p‖2
and let τ : N → N be a mapping for all n ≥ n0( for sufficiently large n0) defined by:

τ(n) := max {k ∈ N : k ≤ n,Ωk ≤ Ωk+1}

. Then, it is easy to see that τ is a non-decreasing sequence such that τ(n)→∞ as n→∞ and

Ωτ(n) ≤ Ωτ(n)+1, for n ≥ no.

It follows from (4.22)and (4.23) that

0 ≤ ‖xτ(n) − p‖2 − ‖xτ(n) − p‖2

≤ βrn [2M‖xτn − p‖2 + βτn(M2 + ‖p‖)]− (1− βτn)‖ 1

tτn

∫ tτn

0

T (s)uτnds− uτn‖2. (4.41)

This implies that

(βτ(n) − 1)| 1

tτn

∫ tτn

0

T (s)uτnds− uτn‖2 ≤ βrn [2M‖xτn − p‖2 + βτn(M2 + ‖p‖)]→ 0.
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using the same argument as above (4.8) -(4.38), as in Case 1 above, we deduce that {xτ(n)}, {yτ(n)}
and {wτ(n)} are all weakly convergent to p ∈ Ω ∩ F (Γ) = Φ. Now for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − p‖2 − ‖xτ(n) − p‖2

≤ βτ(n)M1 + β2
τ(n)‖p‖

2 + 2βτ(n)M2 − ‖xτ(n) − p‖2

= βτ(n)[M1 + βτ(n) + 2βτ(n)]− ‖xτ(n) − p‖2.
(4.42)

Thus, using the condition on βn, we get

‖xτ(n) − p‖2 ≤ βτ(n)[M1 + βτ(n) + 2βτ(n)]→ 0.

(4.43)

Hence,
lim
n→∞

‖xτ(n) − p‖2 = 0.

It follows that
lim
n→∞

Ωτ(n) = lim
n→∞

Ωτ(n)+1

Furthermore, for n ≥ n0, we see that Ωτ(n) ≤ Ωτ(n)+1 if τ(n) < n,
Since, Ωj ≥ Ωj+1 for τ(n+ 1) ≤ j ≤ n. Consequently, ∀n ≥ n0,

0 ≤ Ωn ≤ max {Ωτ(n),Ωτ(n)+1} = Ωτ(n)+1

Therefore,
lim
n→∞

Ωn = 0.

We conclude that {xn}, {un} and {wn} converge strongly to p ∈ Ω ∩ F (T ) ∀n ≥ n0. �

Corollay 4.1: Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded
linear operator. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone operators. Let
T : H1 → H1 be a nonexpansive mapping such that the solution set Φ 6= ∅. If the Assumptions 3.1
and 3.2 are satisfied, then {xn} generated by the Algorithm 4.1 below strongly converges to a point
q ∈ Φ 6= ∅.
Algorithm 4.1
1: Step 0 Choose sequences {βn}, {θn} and {εn} such that the conditions from Assumption 3.2 hold
and let λ > 0, α ≥ 0 and x0, x1 ∈ H be chossen arbitrarily. Set n := 1.
Iterative Steps: Step 1: Given the iterate xn−1 and xn(n ≥ 1), choose αn such that 0 ≤ αn ≤ αn,
where

αn :=


min{ n− 1

n+ α− 1
,

εn
‖xn − xn−1‖

} if xn − xn+1 > 0,

n− 1

n+ α− 1
, otherwise.

(4.44)

Step 2: and compute 
wn = xn + αn(xn − xn−1),

un = JB1

λ (wn + γnA
∗(JB2

λ − I)Awn),

xn+1 = (1− θn − βn)wn + θnTun,

(4.45)

where

γn ∈ (ε,
‖(JB2

λ − I)Awn‖2

‖A∗(JB2

λ − I)Awn‖2
− ε ),
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for some large enough ε > 0.
Update: Set n := n+ 1 and go to Step 1.

Proof. Proof: Clearly, the result follows from Theorem 4.1.

5 Numerical examples
In this section, we provide some numerical examples to demonstrate the efficiency of our algorithm.
All the codes were written in MATLAB R2019a. All the computations were performed on personal
computer with Intel(R) Core (TM) i5-4300U CPU at 1.90Ghz 2.49GHz with 8.00 Gb-RAM and
64-OS. The performance is tested with the existing results (1.20) and (1.21). The stopping criterion
is ‖xn+1 − I)xn‖ ≤ 10−10 as in the case of [19, 20]. We shall assume that λ has a fixed value of
0.5, αn = αn with different choices of α = 5, 10, βn = 1

n2 , θn = 1 − βn and εn = βn/n
1/5n. For the

sake of algorithms (1.20) and (1.21), let γ = 1/2L where is the spectral radius of the operator A∗A,
while in our algorithm, it has a variable stepsize γn that is generated at each iteration.
Example 5.1 [20]: Let H1 = H2 = R2, and let two operators of matrix multiplication B1 : R2 →
R2 and B2 : R2 → R2 be defined by B1(x) = T1(x) and B2(x) = T2(x, ) where

T1 =

(
8 0
0 2

)
,

and
T2 =

(
3 0
0 6

)
.

See that T1 and T2 are positive linear operators; then they are maximal monotones. Thus, we
can define the resolvent mappings associated with maximal monotone as follows: JB1

λ (I + λB1)−1

and JB2

λ (I + λB2)−1, where λ > 0. Let A ∈ R2×2 be a nonsingular matrix operator in which the
elements are randomly selected and let A∗ be the adjoint of A.

0.PNG
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Figure 1

1.PNG
Figure 2

Interpretation of the result: In figure 1, we tested different choices of α = 5, 10 and the rate
of convergence does not show significant different in the choice of α. While in figure 2, we compare
the rate of convergence of our algorithm [Algorithm 3.3] and that of Sitthithakerngkiet et al. [20]
[Algorithm 1.20] and Kazmi and Rizvi [19] [Algorithm 1.19] and see that our result outperforms
the mentioned results.

6 Conclusion
Irrespective of the vast applications of nonexpansive mapping, we have considered in this research,
a more valuable mapping, the nonexpansive semigroup in real Hilbert space. A new inertial-based
iterative algorithm for solving variational inclusion problem and fixed point problem is constructed.
The algorithm improved the work of [18–20, 23, 24] among other results that have already been
announced. To achieve this milestone, we carefully constructed an algorithm that the stepsize
does not depend on the operator norm, a difficult task in applications; the strong convergence was
obtained under some mild conditions. Furthermore, in order to establshed a faster convergence, we
incorporated an inertial extrapolation technique in the spirit of Polyak [35] and have deduced from
our numerical illustration that our algorithm is efficient and applicable.
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