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Abstract 
 
   This paper aims to study the effect of time-delay on a food chain model. Two delays ) and ( 21 ττ are considered in the model 
to describe the time that juveniles of prey and predator take to mature. The stability analysis of the proposed model is carried 
out. The Hopf bifurcation conditions of the interior equilibrium point are established. Finally, numerical simulations are done to 
support the analytical findings. In addition, critical value of time delays are determined and it is found that maturation delay 
always acts as a destabilizing factor. 
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1. Introduction 
 
   Ecology is a highly predictive science with the goal of understanding the patterns and processes related to life on earth. The field 
of ecology has become the organizing principle in the effort to address the world problems because it contains both the problem 
and solution. The complexity of natural systems presents difficulty in finding simple answers. Science has traditionally isolated 
organisms in order to study them under ecology. It does not only include the community of organisms in an environment, but also 
the whole complex of physical factors around them. It is interested in how an organism relates within the natural community. 
Ecological systems are enormously complex. In an ecological system, no organism is an autonomous entity isolated from its 
surroundings as there are always interactions among species of the system. In ecology, biological interactions are the relationships 
between two species in an ecosystem. These relationships can be categorized into many different classes based either on the effects 
or on the mechanism of the interaction and can be classified as Neutralism, Amensalism, Competition, Parasitism and Predation. 
Predation describes a biological interaction where a predator (an organism that is hunting) feeds on its prey, the organism that is 
attacked. Predators may or may not kill their prey prior to feeding on them, but the act of predation always results in the death of 
the prey.  
   The dynamics of predator – prey model has long been and will continue to be one of the dominant themes in both ecology and 
mathematical ecology due to the fact that predator– prey interaction is the fundamental structure in population dynamics. In the 
1920s Volterra and Lotka described a simple mathematical model of the interaction between predators and their prey by means of 
following nonlinear differential equations  
 
           )),t(bya)(t(x)t(x −=&  
           )),t(dxc)(t(y)t(y −−=&  
 
where )(ty is the density of predators (for example, foxes), )(tx is the density of its prey (for example, rabbits), and ,a  ,b  c and 
d are positive constants. After the pioneering work of Lotka and Volterra, prey-predator models have been studied extensively by 
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many mathematicians (Freedman, 1980; Kuang, 1990; May, 1981, 2001; Murray, 1989, 1993; Takeuchi, 1996; Turchin, 2003; 
Vance, 1978).  
   Mathematical model of multiple species interaction is the so-called food chain model. In the paper of Freedman and Waltman 
(1977), the authors studied the persistence of a classical (i.e. prey-dependent) three species food chain model. Chiu and Hsu (1998) 
discussed the extinction of top predator in a classical three-level food chain model with Michaelis–Menten functional response. 
Klebanoff and Hastings (1993, 1994), McCann and Yodzis (1995), Kuznetsov and Rinaldi (1996), Muratori and Rinaldi (1992) 
and others studied structures relevant to chaos in three species classical food chains. Freedman and So (1985) studied the global 
stability and persistence of a simple but general food chain model. Kuang (2001) studied similar questions for a diffusive version 
of that simple food chain model. Recently, Upadhyay and Vikas Rai (2001) have proposed a food chain system in the following 
form: 
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where a prey population X is captured by individuals of populationY . This population, in turn, serves as a favorite food for 
individuals of population Z . ,D,D,D,w,w,w,w,b,a,a 21321121 3D  and c  are positive constants. 1a  the intrinsic growth rate of the 

prey population X , 2a  the intrinsic death  rate of the specialist predator Y in the absence of the only food X , c  measures the 
rate of self-reproduction and the square term signifies the fact that mating frequency is directly proportional to the number of 
males as well as females, 3D  normalizes the residual reduction in the predator population because of severe scarcity of the 

favorite food, 1b  measures the effect of intra-specific competition and D  measures the effect of the prey in evading a predator’s 
attack. It depends on the protection afforded by the environment to the prey. The larger the value of D , more elusive is the host 
against any attack by parasites. 
   However, this model is less realistic. To make model realistic one should include some of the past states of these systems; ideally 
real system may modeled by differential equations with time-delays. Time-delays occur so often in almost every situation, that to 
ignore them is to ignore reality. Time delay is the inherent property of the dynamical systems and plays an important role in almost 
all branches of science and particularly in biological sciences (e.g., population dynamics, epidemiology, etc.) see (Yan and Zhang, 
2008; Yang, 2009; Meng et al. 2011). The importance derives from the fact that many of the phenomena around us do not act 
instantaneously from the moment of their occurrence. For example, a change in the resources or environment does not affect the 
survival of existing populations immediately. There is always a time lag between the moment an action takes place and its effect is 
observed. In ecology, more realistic models should include some of the past states, i.e., a real system should be modeled by 
differential equations with time delays. Kuang (1993) mentioned that animals take some time to digest their food before further 
activities and responses take place and hence any model of species dynamics without delays is an approximation at best. Now it is 
beyond doubt that in an improved analysis, the effect of time-delay due to the time required in going from egg stage to the adult 
stage, gestation period, et cetera, has to be taken into account. Detailed arguments on importance and usefulness of time-delays in 
realistic models may be found in the classical books of Macdonald (1989), Gopalsamy (1992) and Kuang (1993). 
   Keeping this in mind, we introduce maturation time delays in our model. We assume that the juveniles of prey and predator take 

1τ  and 2τ  units of time to mature, respectively and hence our model is: 
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 Where ir , iK , 21,i = are growth rate and carrying capacity of  environment for prey and predator respectively. 
   The rest of this paper is organized as follows: In Section 2, we analyze our model with regard equilibria and their positive 
conditions. In Section 3, we investigate the stability of positive equilibrium and occurrence of Hopf bifurcation. In Section 4, some 
numerical simulations are carried out to justify the analytic results obtained in the manuscript. Section 5 deals with the conclusions 
of the paper.  
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2. Equilibrium analysis 
 
   Equating the derivatives on the left hand sides to zero and solving the resulting algebraic equations, we can find following 
possible equilibria: 

( ) ( ) ( ) ( ) ( ) *)z*,y*,x(E,,y,xE,ẑ,ŷ,E,,K,E,,,KE,,,E 54322110 000000000  
The equilibrium points ( ) ( ) ( )00 and  00000 22110 ,K,E,,KE,,,E  are always nonnegative. Now we will discuss non negativity 
condition for ( ) ( ) *)z*,y*,x(E,y,xE,ẑ,ŷ,E 543   and  00 . 
For equilibrium points ( )ẑ,ŷ,E 03  the system (1) become 
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 Solving above algebraic system we will get 
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For equilibrium points ( )04 ,y,xE  the system (1) become 
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Solving above algebraic system we will get 
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Now, check the existence and uniqueness of an interior equilibrium *)*,*,(5 zyxE of the system (1).  
Solving algebraic system (1) 
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and  *x  is the unique positive root of the following equation 
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3. Stability and local Hopf bifurcation 
 
We are only interested in stability of interior point. ( )**,*, zyx   be the interior equilibrium of system (1). Then the linearization 

of Eq. (1) at ( )**,*, zyx  is given by 
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Characteristic equation is  
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 Stability of the system: 
 
Case A: 21 ττ ≠  
 
Sub case 1:  00 21 >> ττ ,   

We consider Eq. (3.2) with 2τ  in its stable interval and 1τ as a parameter. Let δλ i=  be one such root. Substituting this in 
equation (3.2) and equating real and imaginary parts, we get 
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246 BHsinSBA)(F −++++= δτδδδδ  and assume that: 

(H1): 3)0( BHF <=  

holds. It is easy to check that 00 <)(F  if (H1) holds and 0)( >∞F . Therefore, the equation (3.4) always has at least one positive 
root. 
 
Sub case 2:  00 21 >= ττ ,  
The associated characteristic equation of system (3.2) is 
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Let δλ i=  be one such root. Substituting this in equation (3.5) and equating real and imaginary parts, we get 
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Substituting σδ =2  equation (3.6) becomes  
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We notice that F is continuous everywhere with 00 >)(F  when condition (H1) holds and 0<∞ )(F . Therefore, the equation 
(3.7) always has at least one positive root. Consequently, the stability criteria of the system for 0=τ  will not necessarily ensure 
the stability of the system for 0≠τ .  
         We assume the equation (3.7) has three positive roots denoted by 321 ,, σσσ  respectively which are as: 

332211 σδσδσδ === ,, . 
Again solving (3.5a) and (3.5b), we get a critical value of delay given as follows 
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Sub case 3:  0,0 21 => ττ   
The associated characteristic equation of system (3.2) is 
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Let δλ i=  be one such root. Substituting this in equation (3.8) and equating real and imaginary parts, we get 
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Substituting σδ =2  equation (3.9) becomes  
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We notice that F is continuous everywhere with 0)0( <F  when condition (H1) holds and 0)( >∞F . Therefore, the equation 
(3.10) always has at least one positive root. Consequently, the stability criteria of the system for 0=τ  will not necessarily ensure 
the stability of the system for 0≠τ . We assume the equation (3.10) has three positive roots denoted by 321 ,, σσσ  denoted as: 

332211 σδσδσδ === ,, . 
Again solving (3.8a) and (3.8b), we get a critical value of delay given as follows 
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Case B: 21 ττ =  

Sub case 4:  021 >== τττ   
The associated characteristic equation of system (3.2) is 
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As is known to all, 1cossin 22 =+ δτδτ . So we have 
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4
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6
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12 =++++++ TTTTTT δδδδδδ ,                                                                    (3.14) 
where 

(3.12a)
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Substituting σδ =2  equation (3.15) becomes  
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6 =++++++= TTTTTT)(F σσσσσσσ ,                                                        (3.15) 

 22
3

40 HBH)(F −= . 
 
We notice that F is continuous everywhere with 00 <)(F  when condition (H1) holds and 0>∞ )(F . Therefore, the equation 
(3.15) always has at least one positive root. Consequently, the stability criteria of the system for 0=τ  will not necessarily ensure 

the stability of the system for 0≠τ . We assume the equation (3.15) has six positive roots   .6,.....2,1   , == iii σδ  
From (3.13b), we get a critical value of delay that is given as follows 
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            (3.16) 

Sub case 5: 021 == ττ . 
The associated characteristic equation of system (3.2) is 

032
2

1
3 =+++ MMM λλλ ,                                                                                                  (3.17) 

where 
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By Routh-Hurwitz’s condition, all roots of Eq. (3.17) have negative real parts if and only if 
(H5): 0  and    0M  0 32131 >−=>> MMM,M Δ  
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So the equilibrium point ( )**,*, zyx  is locally asymptotically stable when (H1) holds and unstable if either of these conditions is 
not satisfied. 
 
 
Hopf bifurcation 
 
We observe that the conditions for Hopf bifurcation (Hale and Lunel, (1993)) are satisfied yielding the required periodic solution, 
that is, 

0
0

≠⎥⎦
⎤
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=τττ
λ

d
)(Red . 

This signifies that there exists at least one eigenvalue with positive real part for 0ττ > . We have studied Hopf bifurcation for two 
cases, namely (i) 00 21 >= ττ , , (ii) 021 >== τττ .  We are not interested in case 5, case 3 is like case 2 and it is difficult to find 
hopf bifurcation condition of case 1 so it is ignored.  
 
Case 1: 00 21 >= ττ ,  

Differentiating equation (3.5) with respect to  2τ  , we obtain 
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by using 
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We can obtain here, 
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We will verify the condition (3.18c) numerically. Shows that transversality condition holds and hence Hopf bifurcation occurs 
at

022 ττ = . 

Case 2: 021 >== τττ . 
Differentiating equation (3.11) with respect toτ , we obtain 
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We can obtain here, 
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Verifying numerically it has been obtained that the transversality condition holds and hence Hopf bifurcation occurs at 0ττ = . 
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4. Numerical simulation and discussion 
 
   In this section, we present numerical simulation to illustrate results obtained in previous sections. The system (1) is integrated 
using fourth order Runge – Kutta Method with the help of MATLAB software package under the following set of parameters: 

 
 

Parameter Meaning Value 

1r  Intrinsic growth rate of the prey  10 

2r  Intrinsic growth rate of the predator  20 

1K  Carrying capacity of environment for prey 15 

w  The attack rate of predator 1.8 

D  The effect of the prey in evading a predator’s attack 10 

2K  Carrying capacity of environment for predator 10 

1w  The maximal production efficiency of predator 0.4 

1D  The half-saturation constant 10 

2w  The saturation killing rate 0.2 

2D  The half-saturation constant 10 

c  The rate of self-reproduction 0.13 

3w  The maximum predation rate 0.4 

3D  The residual reduction in the predator  2 

Table (a) 
The interior equilibrium point of Eq. (1) with Table (a) is 

).,.,.(E 6510010769218831145 . 
Here, we are studying only for interior equilibrium point. By computation, we have 49.0,2451.1

020 == τδ . Here we show that 
the transversal condition (3.18c) is satisfied as: 

03786580
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2
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=

.
d

)(Red

τττ
λ . 

Therefore, *)*,*,( zyx  is asymptotically stable for 490
022 .=< ττ  and unstable for 490

022 .=> ττ . We can see this effect in 

Fig (1a) and Fig (1b). When 
022 ττ = , Eq.(1) with data (a) undergoes a Hopf bifurcation at *)*,*,( zyx , that is, there is an small 

amplitude periodic solution around *)z*,y*,x( when 01 =τ  and 2τ  is close to 
02τ , which is shown in Fig.(1a) and Fig.(1b). The 

transversal condition (3.19c) is also satisfied for Table (a) as 0   00485270
0

≠=⎥⎦

⎤
⎢⎣

⎡

=

.
d

)(Red

τττ
λ  for 75.0,98.1 00 == τδ . 

When ,21 ττ ≠ 00 21 >> ττ , , we assume that 18.01 =τ and see the effect of 2τ  on food chain model. This effect can be shown 
in Fig (2a) and Fig (2b). We also show here nature of system when there is no delay, see Fig. (3). When 021 >== τττ , 

*)z*,y*,x(  is asymptotically stable for 7500 .=<ττ  and unstable for 7500 .=>ττ . We can see this nature of the system in Fig. (4a) 
and Fig. (4b).  
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Fig(1a) when 50.0,0 21 == ττ  

0 2 4 6 8 10 12 14 16 18 20

0.8

1

1.2

1.4

1.6

1.8

2

t

Y

 
0 2 4 6 8 10 12 14 16 18 20

14

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

15

t

X



Agarwal and Pathak  / International Journal of Engineering, Science and Technology, Vol. 3, No. 8, 2011, pp. 41-53 

 

51

 

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

t

Z

0.5

1

1.5

2

0
500

1000
1500

2000
2500

-1

-0.5

0

0.5

1

Z Y

 

Fig. (1b) when 01.0,0 21 == ττ  
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         Fig. (2a) when 50.0,18.0 21 == ττ                 Fig. (2b) when 01.0,18.0 21 == ττ  
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Fig.(3) when 0,0 21 == ττ  
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            Fig.(4a) when 7.021 === τττ                        Fig.(4b) when 8.021 === τττ  

5. Conclusion 
 
   Based on the food chain model proposed by Upadhyay and Rai (2001), we have proposed a food chain model with two delays, 
and investigated its dynamics. We have obtained the sufficient conditions for stability of interior equilibrium point. Moreover, 
conditions for the existence of Hopf bifurcation for the cases 00 21 >= ττ ,  and 021 >== τττ , respectively are determined. We 
have found critical value of delay and observed that under certain conditions, system bifurcates from the steady states of system 
(1) at some critical values of ( )21 τττ , . Maturation delay always acts as a destabilizing factor. We have shown that maturation 
delay always satisfies the Hopf bifurcation condition. Hence, we conclude from our analysis that the stability properties of the 
system could switch with the time delay that is incorporated on different densities in the model. 
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