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Abstract 
 
   Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers is studied analytically. 
The flow in the porous medium is modeled using Darcy-Brinkman equation. The coupled non-linear partial differential 
equations describing the conservation of mass, momentum and energy are solved by linearization technique, wherein the flow is 
assumed to be in two parts; a mean part and a perturbed part. Exact solutions are obtained for the mean part and a perturbed part 
is solved using long wave approximation. Separate solutions are matched at the interface using suitable matching conditions. 
Results for a wide range of governing parameters such as Grashof number, viscosity ratio, width ratio, conductivity ratio, and 
traveling thermal temperature are plotted for different values of porous parameter on the velocity and temperature fields. Closed 
form expression for the skin friction and Nusselt number at both left and right channel walls are also derived and all the results 
are depicted pictorially. It is found that the presence of porous matrix, viscosity ratio and conductivity ratio suppress the velocity 
whereas, Grashof number and width ratio promotes the velocity parallel to the flow direction and reversal effect is observed on 
the velocity perpendicular to the flow direction.  
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1. Introduction 
 

Mixed convection heat transfer in porous media has received increasing interest over last twenty years, due to its numerous 
applications in geophysics and energy-related systems. Conservation in ducted flow may occur in many applications, such as heat 
exchangers, chemical processing equipment, transport of heated and cooled fluids, solar collectors and micro-electronic cooling. 
Buoyancy effects distort the velocity and temperature profiles relative to the forced convection case. This phenomenon is of 
substantial significance because it may strongly affect wall friction, pressure drop, and heat transfer, occurrence of extreme 
temperatures and stability of the flow. Convective heat transfer and fluid flow in a system containing simultaneously a fluid 
reservoir and a porous medium saturated with fluid is of great mathematical and physical interest. More specifically the existence 
of a fluid layer adjacent to layer of fluid saturated porous medium is a common occurrence in both geophysical and engineering 
environments. The fundamental nature and the growing volume of work in this area is amply documented in the books by Ingham 
and Pop (2005), Vafai (2005), Nield and Bejan (2006) etc. 

Composite systems are part of numerous and other engineering applications also, such as fibrous and granular insulation, porous 
insulation of ducts, ambient air heat transfer from hair covered skin, grain storage, and drying paper. Freezing of soils and melting 
of ice frozen soils due to the change in weather conditions also require the knowledge of interaction mechanism between the fluid 
and porous layers. Composite layers are also find application in porous journal bearings.  

Deajani et al. (1986) and Nield (1983) have studied the thermal instabilities of a superposed porous and fluid layer using 
Darcy’s law together with matching conditions. Masuoka (1974) has observed convective flow in a layer of fluid heated from 
below and divided by a horizontal porous wall. He has found that the porous wall suppresses the convection. Recently, heat 
transfer in channels partially filled with porous media has received considerable attention and was the focus of several 
investigations (Chikh et al., 1995 and Vafai and Kim, 1995). As previously mentioned, the need for better understanding of heat 
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transfer in porous media is motivated by numerous engineering applications encountered. In general, most analytical studies of 
fluid flow adopt Darcy’s law (refer Nield and Bejan, 2006 for different models such as Darcy model, Darcy-Brinkman model and 
Brinkman-Forchheimer model). In the study conducted by Al-Nimr and Alkam (1998) there appears to be very limited research on 
the problems of forced convection in composite fluids and porous layers. Beavers and Joseph (1967) first investigated the fluid 
mechanics at the interface between fluid layer and a porous medium over a flat plate. Rudraiah (1985) investigated the same 
problem using Darcy-Brinkman model. Neild (1991) discussed the limitation of the Brinkman-Forchheimer model in porous media 
and the interface, between the clear fluid and porous region. Later on Vafai and Kim (1995) presented an exact solution for the 
same problem. Recently Tang, et al. (2010) studied the combined heat and moisture convective transport in a partial enclosure 
with multiple free ports.   

Composite layer flows are exciting because of the modeling challenge that is thrown at researchers to model interface and 
boundary condition/s. By browsing the literature, it becomes evident that the interface conditions which have been in use are either 
of the ‘slip’ or ‘stick’ type of condition (see Beavers and Joseph, 1967 and Ochoa-Tapia and Whitaker, 1995). Several works have 
appeared on composite layer flows using these conditions or variant of them. Vafai and Kim (1990) presented an exact solution for 
the fluid flow at the interface between porous medium and a fluid layer including the inertia and boundary effect. They considered 
the shear stress in the fluid and the porous medium were taken to be equal at the interface region. Kuznetsov (1998) assumed that 
the shear stress jump is inversely proportional to the permeability of the porous medium. Later Alazmi and Vafai (2001) gave a 
detailed analysis of different types of interfacial conditions between a porous medium and a fluid layer which is the bench mark 
article to understand various types of interface conditions found in the literature. Following the analysis for interfacial conditions 
as defined in Vafai and Thiyagaraja (1987), Malashetty and his research group worked on flow and heat transfer through 
composite porous medium through channels. Convective flow and heat transfer in an inclined channel bounded by two rigid plates 
with one region filled with porous matrix saturated with a viscous fluid and another region with clear viscous fluid different from 
the fluid in the first region was studied by Malashetty et al. (2004). The same authors in 2005 analysed flow and heat transfer in an 
inclined channel consisting of a fluid layer sandwiched between two porous matrix layers. Oscillatory flow and heat transfer in 
composite porous medium channel was studied by Umavathi et al. (2006). An analysis of fully developed combined free and 
forced convective flow in a fluid saturated porous medium channel bounded by two vertical parallel plates was presented by 
Prathap Kumar et al. (2009). Recently Umavathi et al. (2010) found the exact solutions for the generalized plain Couette flow in a 
composite channel.  

The dynamics of incompressible viscous fluid flows bounded by wavy walls is of special interest and has many practical 
applications in the transpiration cooling of re-entry vehicles and rocket boosters, cross-hatching on ablative surfaces and film 
vaporization in combustion chambers, the finishing of painted walls and in reducing friction of drag on the hulls of ships and 
submarines. Wavy walls are also employed in medical operations in order to increase mass transfer (blood oxy-genator Eldabe     
et al., 2008). Processes involving heat and mass transfer are often encountered in the chemical industry, in reservoir engineering 
connection with thermal recovery processes, and in the study of the dynamics of salty hot springs in the sea. In view of these 
applications, several authors have made investigations of the fluid flows over a wavy wall. Vajravelu and Sastri (1978) have made 
an interesting analysis of the free convective heat transfer in a viscous incompressible fluid bounded by a long (when compared to 
width of the channel) vertical wavy and parallel flat wall. Later Vajravelu (1989) studied the combined free and forced convection 
in hydromagnetic flows in a vertical wavy channel with traveling thermal waves. Malashetty et al. (2001) studied on magneto 
convective flow and heat transfer between vertical wavy wall and a parallel flat wall. Luo (2008) studied the flow of two 
superposed viscous fluid layers in a two-dimensional channel confined between a plane and a wavy wall by analytical and 
numerical methods at arbitrary Reynolds numbers. Srinivas and Muthuraj (2010) studied MHD flow with slip effects and 
temperature-dependent heat source in a vertical wavy porous space. Recently Umavathi et al. (2010, 2011) studied the flow and 
heat transfer in a long vertical channel composed of a smooth and a corrugated wall filled with two immiscible viscous fluids. 

Much attention has not been given to the mixed convection flow and heat transfer in a fluid superposed porous medium in 
vertical wavy channel even though the study is useful in many areas of applications as mentioned above.  Thus the objective of this 
work is to study the flow and heat transfer in a vertical wavy channel, containing porous layer saturated with a fluid and a clear 
viscous fluid layer. In this study, the porous matrix is assumed to be sparse; the Darcy-Brinkman model is thus adopted to describe 
the fluid flow in porous medium region. 
 
2. Mathematical formulation of the problem 
 
 The geometry under consideration illustrated in Figure 1 consists of wavy walls in which X -axis is taken vertically upward, and 
parallel to the direction of buoyancy, and the Y -axis is normal to it. The wavy walls are represented by ( )(1) cosY h a Xλ θ= − + +  

(right wavy wall) and ( )(2) cosY h a Xλ= +  (left wavy wall). Considering different and constant temperatures 1̂T  (right wavy wall) 

and 2̂T  (left wavy wall), where 2 1
ˆ ˆT T> . The region (1) 0h Y− ≤ ≤  is occupied by a fluid-saturated porous medium of density ρ , 

specific heat at constant pressure pC , viscosity μ , permeability κ , thermal conductivity K , thermal expansion coefficient β , 

and the region (2)0 Y h≤ ≤   (region–II) is occupied by the fluid as in region–I without porous matrix.  
We make the following assumptions: 
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(a) the fluid properties are assumed to be constant and the Boussinesq approximation will be used so that the density variation 
is retained only in the buoyancy term; 

(b) the flow is laminar and two-dimensional (that is, the flow is identical in vertical layers, which is a valid assumption); 
(c) the wave length of the wavy wall which is proportional to 1a−  is very large where a  is the amplitude. 
 

 

 
 
 

We consider fluid to be incompressible and the flow is steady and fully developed. Thus, with these the continuity equation, 
momentum equation, energy equation and state equation using Darcy-Brinkman model yield (Nield and Bejan, 2006). 
Region – I 

                                                                     
(1) (1)

(1) (1) 0U V
X Y
∂ ∂

+ =
∂ ∂

                             (1) 

                               
(1)(1) (1) (1) 2 2

(1) (1) (1)
(1) (1) (1) 2 2eff

U U P U UU V g U
X Y X X Y
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κ
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Region – II 
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Figure 1: Physical configuration.
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(2)(2) (2) 2 2

(2) (2)
(2) (2) 2 2p

T T T TC U V K
X Y X Y

ρ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
                               (8) 

( )( )(2)1s sT Tρ ρ β= − −  

The fluid viscosity and the effective viscosity in the Brinkman term are distinguished respectively as μ  and effμ  in Eqs. (2) and 
(3). Most works which used the Brinkman model assumed that .effμ μ=  However, recent direct numerical simulation (Martys et 
al., 1994) and recent experimental investigation (Givler and Altobelli, 1994) have demonstrated that there are situations when it is 
important to distinguish between these two coefficients. For example, in Givler and Altobelli (1994) a water flow through a tube 
filled with an open-cell rigid form of high porosity was investigated. It was obtained that for this flow ( )3.4

2.47.5 .effμ μ+
−=  

The boundary conditions on ( ) ( ),j jU V  are both no-slip conditions and boundary conditions on T  are 1̂T  at the left wall and 2̂T  
at the right wall. For the problem displayed in Figure 1 at the interface (between region-I and region-II) we utilize the assumption 
of Kim and Choi (1996) and Kuznetsov (1999) that is, continuity of velocity, continuity of shear stress, continuity of pressure 
gradient along the flow direction, continuity of temperature and continuity of heat flux and are given below 

The relevant boundary and interface conditions on velocity are 
           (1) (1) 0U V= =   at ( )(1) cosY h a Xλ θ= − + + ; (2) (2) 0U V= =   at ( )(2) cosY h a Xλ= +  

 (1) (2)U U= , (1) (2)V V= , 
(1) (2)

eff
U V U V
Y X Y X

μ μ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
, 

(1) (2)

(1) (2)

P P
X X
∂ ∂

=
∂ ∂

 at 0Y =       (9) 

The relevant boundary and interface conditions for temperature are 
( )(1)

1 1 cosT T a Xλ= +⎡ ⎤⎣ ⎦   
                                     1̂T= (say)         at ( )(1) cosY h a Xλ θ= − + +  

 ( )(2)
2 1 cosT T a Xλ= +⎡ ⎤⎣ ⎦   

                                    2̂T= (say) at ( )(2) cosY h a Xλ= +  

                           (1) (2)T T= , 
(1) (2)

eff
T T T TK K
Y X Y X
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

  at 0Y =                                              (10) 

We next introduce the non-dimensional flow variables as 

 
(1)

(1)
(1)

Xx
h

= , 
(2)

(2)
(2)

Xx
h

= , 
(1)

(1)
(1)

Yy
h

= , 
(2)

(2)
(2)

Yy
h

= , 
(1)

(1) (1)hu U
ν

= , 
(1)

(1) (1)hv V
ν

= , 
(2)

(2) (2)hu U
ν

= ,  
(2)

(2) (2)hv V
ν

= ,  

2

(1)
(1)

2 (1)
,Pp

h
ρ

μ
=  2

(2)
(2)

2 (2)

Pp
h

ρ
μ

= ,  
(1)

(1)

2 1
ˆ ˆ

sT T
T

T T
∗ −

=
−

, 
(2)

(2)

2 1
ˆ ˆ

sT T
T

T T
∗ −

=
−

, 
( )3(1)

2 1

2

ˆ ˆh g T T
Gr

β

ν

−
= , effm

μ
μ

= , effK
k

K
= , 

(2)

(1)

hh
h

= , 

             
(1)hσ
κ

= , (1)

a
h

ε = , (1)h
λλ∗ = , Pr pC

K
μ

=                                                             (11) 

In terms of these non-dimensional variables, the basic Eqs. (1) to (8) can be expressed in the dimensionless form, as, (for 
simplicity, the notation is considered as (1)x x= ; (1)y y=  in region-I and (2)x x= ; (2)y y=  in region-II) 
Region–I 

                                                                           
(1) (1)

0u v
x y

∂ ∂
+ =

∂ ∂
                                                             (12) 

                                          
(1) (1) (1) 2 (1) 2 (1)

(1) (1) (1) 2 (1)
2 2

u u p u uu v m GrT u
x y x x y

σ∗⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

                   (13) 

                                            
(1) (1) (1) 2 (1) 2 (1)

(1) (1) 2 (1)
2 2

v v p v vu v m v
x y y x y

σ
⎛ ⎞∂ ∂ ∂ ∂ ∂
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                                 (14) 
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(1) (1)
2 2Pr

T T k T Tu v
y y x y

∗ ∗ ∗ ∗⎛ ⎞∂ ∂ ∂ ∂
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                                      (15) 

Region–II 

      
(2) (2)

0u v
x y

∂ ∂
+ =
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       (16) 
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(2) (2) (2) 2 (2) 2 (2)

(2) (2) 3 (2)
2 2

u u p u uu v Grh T
x y x x y

∗∂ ∂ ∂ ∂ ∂
+ = − + + +
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                                              (17) 

                                                           
(2) (2) (2) 2 (2) 2 (2)

(2) (2)
2 2

v v p v vu v
x y y x y

∂ ∂ ∂ ∂ ∂
+ = − + +
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                                    (18) 

                                                          
(2) (2) 2 (2) 2 (2)

(2) (2)
2 2

1
Pr

T T T Tu v
x y x y

∗ ∗ ∗ ∗⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                                                 (19) 

Using Eqn. (11) boundary and interface conditions Eqn. (9) for velocity field become 
(1) (1) 0u v= =  at  ( )1 cosy xε λ θ∗= − + + ; (2) (2) 0u v= =  at  ( )1 cosy xε λ∗= +  

  
(2)

(1) uu
h

= , 
(2)

(1) vv
h

= , 
(1) (1) (2) (2)

2

1u v u v
y x y xmh

⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

, 
(1) (2)

3

1p p
x xh

∂ ∂
=
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 at 0y =                   (20) 

Using Eqn. (11) boundary and interface conditions Eqn. (10) for temperature field become  
(1) 0T ∗ =  at ( )1 cosy xε λ θ∗= − + + ;  (2) 1T ∗ =  at ( )1 cosy xε λ∗= +  

                                              
(1) (1) (2) (2)

(1) (2) 1, T T T TT T
y x kh y x

∗ ∗ ∗ ∗
∗ ∗ ⎛ ⎞∂ ∂ ∂ ∂

= + = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 at 0y =                     (21) 

In the static fluid we have (see Vajravelu and Sastri, 1978) 

                                                                    
3 3(1) (2)

2 20 s s s sp gh p gh
x x

ρ ρ
ρν ρν

∂ ∂
= − − = − −

∂ ∂
                        (22) 

In view of Eqn. (22). Equations (13) and (17) becomes   

                                     
( )(1)(1) (1) 2 (1) 2 (1)

(1) (1) 2 (1) (1)
2 2

sp pu u u uu v m u Gr T
x y x x y

σ ∗
∂ − ⎛ ⎞∂ ∂ ∂ ∂

+ = − + + − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
                   (23) 

                                             
( )(2)(2) (2) 2 (2) 2 (2)

(2) (2) 3 (2)
2 2

sp pu u u uu v Grh T
x y x x y

∗
∂ −∂ ∂ ∂ ∂

+ = − + + +
∂ ∂ ∂ ∂ ∂

            (24) 

 
3. Solutions to the problem. 
 

Equations (12), (14)-(16), (18), (19), (23), and (24) are coupled nonlinear and are to be solved simultaneously. Due to the non-
linearity, analytical solutions are difficult; however approximate solutions can be obtained using perturbation techniques. 
Assuming that the solutions consists of a mean part and a perturbed part, velocity, pressure and temperature can be written as, 
                                                                         ( ) ( ) ( )( ) ( ) ( )

0 1, ,j j ju x y u y u x y= +                             (25) 

                                                                              ( ) ( )( ) ( )
1, ,j jv x y v x y=                                      (26) 

                                                                    ( ) ( ) ( )( ) ( ) ( )
0 1, , ,j j jp x y p x y p x y= +                             (27) 

                                                                     ( ) ( ) ( )*( ) *( ) *( )
0 1, ,j j jT x y T y T x y= +                             (28) 

where the perturbed quantities 1 1 1, ,u v p  and *
1T  are small compared with the mean or zeroth order quantities 0u , *

0T . The asterisk 
on T  and λ  is removed for the sake of simplicity in the following process. 

Using Eqs. (25) to (28) in the Eqs. (12), (14)-(16), (18), (19), (23), and (24), separating the mean part (zeroth order) and the 
perturbed part (first order), gives the following equations. 
Zeroth order equations 

                                                                                              
2 (1)

0
2 0

d T
dy

=                (29) 

                                                                             
2 (1)

2 (1) (1)0
0 02 0

d u
m u GrT

dy
σ− + =                (30) 

                                                                                              
2 (2)

0
2 0

d T
dy

=                (31) 

                                                                                      
2 (2)

3 (2)0
02 0

d u
Grh T

dy
+ =                             (32) 
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First order equations 

                                                 
(1)(1) (1) 2 (1) 2 (1)

(1) (1) 2 (1) (1)01 1 1 1
0 1 1 12 2

duu p u u
u v m u GrT

x dy x x y
σ

⎛ ⎞∂ ∂ ∂ ∂
+ = − + + − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

            (33) 
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(1) 2 (1)1 1 1 1
0 12 2

v p v v
u m v

x y x y
σ

⎛ ⎞∂ ∂ ∂ ∂
= − + + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

             (34) 

                                                                  
(1)(1) 2 (1) 2 (1)
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0 1 2 2Pr

dTT T Tku v
x dy x y

⎛ ⎞∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂⎝ ⎠

             (35) 

                                                        
(2)(2) (2) 2 (2) 2 (2)

(2) (2) 3 (2)01 1 1 1
0 1 12 2

duu p u u
u v Grh T
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∂ ∂ ∂ ∂

+ = − + + +
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            (36) 

                                                                       
(2) (2) 2 (2) 2 (2)

(2) 1 1 1 1
0 2 2

v p v v
u

x y x y
∂ ∂ ∂ ∂

= − + +
∂ ∂ ∂ ∂

              (37) 

                                                               
(2)(2) 2 (2) 2 (2)

(2) (1) 01 1 1
0 1 2 2

1
Pr

dTT T T
u v

x dy x y
⎛ ⎞∂ ∂ ∂

+ = +⎜ ⎟
∂ ∂ ∂⎝ ⎠

             (38) 

In view of Eqs. (25) to (28) the boundary and interface conditions as defined in Eqs. (20) and (21) can be split as follows, 
Zeroth order boundary and interface conditions for velocity and temperature are 

  (1)
0 0u =  at 1y = − ; (2)

0 0u =  at 1y = ; 
(2) (1) (2)

(1) 0 0 0
0 2

1, at 0
u du du

u y
h dy dymh

= = =                  (39) 

  (1) (2)
0 00 at 1; 1 at 1T y T y= = − = = ;  

(1) (2)
(1) (2) 0 0

0 0
1,

dT dT
T T

dy kh dy
= =  at 0y =                  (40) 

First order boundary and interface conditions for velocity and temperature are 

( )
(1)

(1) (1)0
1 1cos , 0 at 1

du
u x v y

dy
λ θ= − + = = − ; 

( ) (2)
(2) (2)0
1 1

cos
, 0 at 1

x du
u v y

h dy
λ

= − = =  

                   
(1) (1) (2) (2) (1) (2)

(1) (2) (1) (2) 1 1 1 1
1 1 1 1 2 3

1 1 1 1, , ,
u v u v p pu u v v

h h y x y x x xmh h
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= = + = + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 at 0y =                                (41) 

( ) ( )(1) (2)
(1) (2)0 0

1 1

cos
cos at 1; at 1

xdT dT
T x y T y

dy h dy
λ

λ θ= − + = − = − =  

                                             
(1) (1) (2) (2)

(1) (2) 1 1 1 1
1 1

1,
T T T T

T T
y x kh y x

⎛ ⎞∂ ∂ ∂ ∂
= + = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

  at 0y =             (42) 

In order to solve Eqs. (33) to (38), for the first order quantities it is convenient to introduce stream function ψ  in the following 
form 

                                                 
( )

( )
1

j
ju

y
ψ∂

= −
∂

 and 
( )

( )
1

j
jv

x
ψ∂

=
∂

 for 1, 2j =                   (43) 

The stream function approach reduces the number of dependent variables to be solved and also eliminates pressure from the list 
of variables. Differentiate Eqn. (33) with respect to y  and differentiate Eqn. (34) with respect to x  and then subtract Eqn. (33) 
with Eqn. (34) which will result in the elimination of pressure (1)

1p . Similar procedure is opted for elimination of pressure (2)
1p  

from Eqs. (36) and (37). Equations (33) to (38) after elimination of (1)
1p  and (2)

1p , can be expressed in terms of the stream function 
ψ  in the form  
Region-I  
                      ( ) ( )(1) (1) (1) (1) (1) (1) (1) (1) 2 (1) (1) (1) (1)

0 0 0 12 0xyy x yy xxx xxxx yyyy xx yy xxyy yu u u m GrTψ ψ ψ ψ ψ σ ψ ψ ψ− + − + + + − + =                     (44) 

                                                                   ( )(1) (1) (1) (1) (1) (1)
0 1 0 1 1Prx x y xx yy

ku T T T Tψ+ = +                  (45) 

Region-II 
                                 (2) (2) (2) (2) (2) (2) (2) (2) (2) 3 (2)

0 0 0 12 0xyy x yy xxx yyyy xxxx xxyy yu u u Grh Tψ ψ ψ ψ ψ ψ− + − − − + =              (46) 

                                                       ( )(2) (2) (2) (2) (2) (2)
0 1 0 1 1

1
Prx x y xx yyu T T T Tψ+ = +                             (47) 
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where a suffix x  or y  represents derivative with respect to x  or y and 0 or 1 represents the zeroth order or first order terms 
respectively. 

The corresponding boundary and interface conditions on velocity and temperature reduces to 

( )(1) (1)
0cosy yx uψ λ θ= + , (1) 0xψ =  at 1y = − ;  

( )(2) (2)
0

cos
y y

x
u

h
λ

ψ = , (2) 0xψ =  at 1y = , 

(2)
(1) y
y h

ψ
ψ = , 

(2)
(1) x
x h

ψ
ψ = , ( )(1) (1) (2) (2)

2

1
xx yy xx yymh

ψ ψ ψ ψ− = −  at  0y =  

   ( ) ( )(1) (1) (1) (1) (1) (1) 2 (1) (1) (2) (2) (2) (2) (1) (1) 3 (2)
0 0 1 0 0 13

1
x y xy xxy yyy y x y xy xxy yyyu u m GrT u u Grh T

h
ψ ψ ψ ψ σ ψ ψ ψ ψ ψ− + + − − = − + + −  at 0y =                (48) 

( )
(1)

(1) 0
1 cos

dT
T x

dy
λ θ= − +  at 1y = − ; 

( ) (2)
(2) 0

1

cos x dT
T

h dy
λ

= −  at 1y =  

                                                 
(2) (2)

1 1(1) (2) (1) (1)
1 1 1 1, xx yy

xx yy

T T
T T T T

kh
+

= + =  at 0y =                                   (49) 

We assume stream function and temperature in the following form 
                                                   ( ) ( )( ) ( )

1,j i x j i xe y T e t yλ λψ ε ψ ε= =  for 1, 2j =                            (50) 
from which we infer  
                                                  ( ) ( ) ( ) ( )1 1 1 1, , ,i x i xu x y e u y v x y e v yλ λε ε= =                  (51) 
where i is the imaginary unit. 

In view of Eqn. (50), Eqs. (44) to (47) become 
Region-I 
                          ( ) ( )(1) (1) 2 2 (1) (1) 2 2 3 (1) 4 (1) (1)

0 0 02yyyy yy yy ym i u m i u i u m Gr tψ λ λ σ ψ λ σ λ λ λ ψ− + + + + + + −                    (52) 

                                                         ( ) ( )(1) (1) (1) (1) 2 (1) (1)
0 0 Pry yy

ki u t T t tλ λ ψ λ+ = − +                           (53) 

Region-II  
                                              ( ) ( )(2) (2) 2 (2) (2) 3 (2) 4 (2) 3 (2)

0 0 02yyyy yy yy yi u i u i u Grh tψ λ λ ψ λ λ λ ψ− + + + + −                           (54) 

                                                         ( ) ( )(2) (2) (2) (2) 2 (2) (2)
0 0

1
Pry yyi u t T t tλ λ ψ λ+ = − +                                        (55) 

Boundary and interface conditions as defined in Eqs. (48) and (49) can be written in terms of ( )jψ  and ( )jt  as 

( )
(1)(1)

(1)0cos , 0
du

y dy
ψ θ ψ∂

= =
∂

 at 1y = − ;  
(2)(2)

(2)01 , 0
du

y h dy
ψ ψ∂

= =
∂

, at 1y =  

(2) (2) 2 (2)(2)
(1) (1) (1) 2 (1)

2, ,y yy
y yyh h mh

ψ ψ λ ψψψ ψ ψ λ ψ
+

= = + =  at 0y =    

    ( ) ( )(1) (1) (1) (1) (1) 2 (1) 2 (1) (1) (2) (2) (2) (2) 2 (2) (2) 3 (2)
0 0 0 03

1
y y yyy y y y y y yyyi u i u m Grt i u i u Grh t

h
λψ λ ψ ψ λ ψ σ ψ λψ λ ψ λ ψ ψ− + − − − = − − + −  at 0y =  (56) 

    ( )
(1)

(1) 0cos
dT

t
dy

θ= −  at 1y = − ; 
(2)

(2) 01 dT
t

h dy
= −  at 1y = ;   

(2) (2)
(1) (2) (1) (1), y

y

t i t
t t t i t

kh
λ

λ
+

= + =  at 0y =    (57) 

We restrict our attention to the real parts of the solutions for the perturbed quantities 1, ,t uψ , 1v  and 1T . 
Consider only small values of λ  and on substituting  

                                                           ( ) ( )
0 0

, , ,z z
z z

z z
y t y tψ λ λ ψ λ λ

∞ ∞

= =

= =∑ ∑                                        (58) 

into Eqs. (52) to (57) we obtain to the order of λ , the following set of ordinary differential equations. 
Zeroth order  

2
10
2 0

d t
dy

=  

4 2
210 10 10

4 2 0
d d dt

m Gr
dydy dy

ψ ψ
σ− − =  
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2
20
2 0

d t
dy

=  

                                                                
4

320 20
4 0

d dt
Grh

dydy
ψ

− =                                                    (59) 

First order  
(1)2

(1) 011
0 10 102 Pr

dTd t ki u t
dydy

ψ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

2 2 (1)4 2
2 (1) 10 011 11 11

0 104 2 2 2

d d ud d dt
m i u Gr

dydy dy dy dy
ψψ ψ

σ ψ
⎛ ⎞

− = − +⎜ ⎟
⎝ ⎠

 

(2)2
(2) 021
0 20 202

1
Pr

dTd t
i u t

dydy
ψ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

                                                            
2 2 (2)4

(2) 320 021 21
0 204 2 2

d d ud dt
i u Grh

dydy dy dy
ψψ

ψ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

                                  (60) 

Zeroth order boundary and interface conditions in terms of stream function and temperature are 

( )
(1)

10 0
10cos , 0

d du
dy dy
ψ

θ ψ= =  at 1y = − ; 
(2)

20 0
20

1 , 0
d du

dy h dy
ψ

ψ= =  at 1y =  

2 2
10 20 10 20

10 20 2 2 2

1 1 1, ,
d d d d
dy h dy h dy mh dy
ψ ψ ψ ψ

ψ ψ= = =     at 0y =  

3 3
2 310 10 20

10 203 3 3

1d d d
m Gr t Grh t

dydy h dy
ψ ψ ψ

σ
⎛ ⎞

− − = −⎜ ⎟
⎝ ⎠

  at        0y =  

        ( )
(1)

0
10 cos

dT
t

dy
θ= −  at 1y = − ; 

(2)
0

20
1 dT

t
h dy

= −  at 1y = ;         10 20
10 20

1,
dt dt

t t
dy kh dy

= =   at 0y =           (61) 

First order boundary and interface conditions in terms of stream function and temperature are  
11

110, 0
d
dy
ψ

ψ= =  at 1y = − ;  21
210, 0

d
dy
ψ

ψ= =  at 1y =  

2 2
11 21 21 11 21

11 2 2 2

1 1, ,
d d d d
dy h dy h dy mh dy
ψ ψ ψ ψ ψ

ψ= = =   at 0y =  

(1) (2)3 3
(1) 2 (2) 30 10 0 2011 11 21

10 0 11 20 0 213 3 3

1du d du dd d d
i u m Gr t i i u Grh t

dy dy dy dy dydy h dy
ψ ψψ ψ ψ

ψ σ ψ
⎛ ⎞

− + − − = − + −⎜ ⎟
⎝ ⎠

 at 0y =  

  11 0t =  at 1y = − ; 21 0t =  at 1y = ; 11 21
11 21 10 20

1,
dt dt

t t i t i t
dy kh dy

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
 at 0y =                           (62) 

The set of Eqs. (29) to (32) subjected to boundary and interface conditions (39) and (40) have been solved exactly for ( )
0

ju  and 
( )

0
jT , and the set of Eqs. (59) and (60) subject to boundary and interface conditions (61) and (62) have been solved for jψ  and jt  

( )1, 2j = . From these solutions, the first order quantities can be put in the form,   

     ( ) 0 1 ,j r i j jjiψ ψ ψ ψ λψ= + = +      ( ) 0 1j r i j jjt t i t t tλ= + = +  ( )1, 2j =                        (63) 

where suffix r  denotes the real part and i  denotes the imaginary part 
Considering only real part, the expression for first order velocity and temperature become 

                                                          ( ) ( )
( ) ( )

( )
1 sin cos

j j
j i rd d

u x x
dy dy
ψ ψ

ε λ λ λ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

             (64) 

                                                           ( ) ( )( )( ) ( ) 2 ( )
1 sin cosj j j

r iv x xε λψ λ λ ψ λ= − −              (65) 

                                                                ( ) ( )( )( ) ( ) ( )
1 cos sinj j j

r iT x t x tε λ λ λ= −               (66) 
The total solutions for the velocity and temperature become the summation of the mean and perturbed part.  
The solutions and constants are given in the appendix section. 
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3.1 Skin friction and Nusselt number. 
 

The shearing stress xyτ  at any point in the fluid is given in non-dimensional form, by 

                                                           
2

2xy xy
h u v

y x
τ τ

ρυ
⎛ ⎞ ∂ ∂

= = +⎜ ⎟ ∂ ∂⎝ ⎠
                                           (67) 

At the wavy walls, ( )1 cosy xε λ θ= − + +  and 
( )cos

1
x

y
h

ε λ
= + , the skin friction xyτ  becomes 

                                                           ( )( )0 '' '
1 1 0 1cos ( 1) ( 1)x u uτ τ ε λ θ− −= + + − + −                            (68) 

and 

                                                                   ( ) ( )0 '' '
1 1 0 1

1 cos 1 (1)x u u
h

τ τ ε λ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

                         (69) 

respectively, where ( )
(1)

0 0
1 1

du
dy

τ− = −  and ( )
(2)

0 0
1 1

du
dy

τ =  

The dimensionless Nusselt number is given by 

                                                                   ( ) ( )( )' '
0 1Re i xTNu T y e T y

y
λε∂

= = +
∂

                       (70) 

At the wavy walls, ( )1 cosy xε λ θ= − + +  and 
( )cos

1
x

y
h

ε λ
= + , Eqn. (70) assumes the form 

                                                                 ( ) ( ) ( )( )0 (1)'' '
1 1 0cos 1 1Nu Nu x T tε λ θ− −= + + − + −               (71) 

and 

                                                                     ( ) ( ) ( )''0 (2) '
1 1 0 1

1 cos 1 1Nu Nu x T t
h

ε λ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

                    (72) 

respectively, where  ( )
(1)

0 0
1 1

dT
Nu

dy− = −  and ( )
(2)

0 0
1 1

dT
Nu

dy
=  

where Re represents the real part 
The expressions for 0

1τ− , 0
1τ , 0

1Nu−  and 0
1Nu  are obtained from zeroth order solutions 0u  and 0T  and are numerically evaluated 

for several sets of values of the parameters m , h , k  and θ . Also, the wall skin friction 1τ− , 1τ  and the wall Nusselt number 1Nu−  
and 1Nu  are calculated numerically and some of the qualitative interesting features are presented graphically. 
 
4. Results and discussion 
 

Mixed convective flow and heat transfer of composite porous medium in a vertical wavy channel is studied analytically. The 
parameters such as Prandtl number, wave number, amplitude parameter and xλ  are fixed as 0.7, 0.05, 0.02, 0.785398 respectively 
for all the computations, whereas Grashof number, viscosity ratio, width ratio, conductivity ratio and traveling thermal temperature 
are fixed as 5,  1, 1, 1, 0.785398 respectively for all the graphs except the varying one. The effect of porous parameter σ  is 
observed for all the graphs from Figures 2 to 11 and Tables 1 to 3. 

The effect of increasing Grashof number Gr  is to increase the fluid motion for zeroth order velocity 0u  as seen in Figure 2a. It 
is also observed that for large porous parameter σ , frictional drag resistance against the flow motion becomes pronounced and as 
a result, the velocity generally reduced in porous region. As the porous parameter σ  increases velocity decreases significantly in 
the permeable fluid layer. With the dragging effect across the interface the velocity in the region–II also decreases as σ  increases. 
The first order velocity decreases in region-I ( 1y = −  to 0 approximately) and increases in region-II with the Grashof number 
increases as seen in Figure 2b. The first order velocity 1u  is pronounced as the porous parameter σ  increases, in the region-I 
( 1y = − to 0 approximately) whereas, asσ  increases, first order velocity decreases in the region-II. The velocity u  for different 
values of Grashof number and porous parameter is shown in Figure 2c. The effect of Gr  and σ  on velocity u  parallel to the flow 
direction is similar to the effect on zeroth order velocity 0u . Physically, an increase in the value of the Grashof number means an 
increase in the buoyancy force which supports the motion. The behavior of the fluid velocity v  perpendicular to the channel length 
on the Grashof number and porous parameter is observed in Figure 2d. As the Grashof number increases velocity v  decreases 
whereas as the porous parameter σ  increases, velocity increases.  
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 The effect of viscosity ratio ( )effm μ μ=  on the velocity u and v  is shown in Figure 3. As the viscosity ratio m  increases 
zeroth order velocity decreases in both the regions as seen in Figure 3a. It is also observed that as the porous parameter σ  
increases, zeroth order velocity decreases in both the regions. However, the effect of σ  is more operative in region–I when 
compared to region–II. The effect of viscosity ratio on first order velocity 1u  is to enhance the velocity in the porous region in 
magnitude and suppress the velocity in the viscous region as seen in Figure 3b. The effect of viscosity ratio m  and porous 
parameter σ  on the velocity u  is again similar to the effect on zeroth order velocity 0u  as seen in Figure 3c. Physically, the 
increase in viscosity ratio means, fluid become thicker which will reduce the flow filed. The fluid velocity v  perpendicular to the 
channel length increases as the viscosity ratio m  and porous parameter σ  increases as seen in Figure 3d.  
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Figure 2: Velocity profiles for different values of Grashof number and porous parameter. 
(a) zeroth order profiles, (b) first order profiles, (c) velocity profiles in u and (d) velocity profiles in v.
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  The influence of width ratio ( )(2) (1)h h h=  on the velocity field is displayed in Figure 4. The effect of width ratio h  on zeroth 

order velocity 0u  is to enhance the velocity in both the regions. That is larger the width of the clear viscous fluid layer compared 
to width of the permeable fluid layer, the stronger the flow field. It is observed that the width ratio h  is more effective in viscous 
fluid region compared to permeable fluid region. The effect of porous parameter σ  on zeroth order velocity is to reduce the 
velocity in both the regions as seen in Figure 4a. The effect of width ratio h  on the first order velocity 1u  is not significant in 
region-I compared to region-II whereas, as the width ratio increases, velocity increases in region-II. The effect of porous parameter 
σ  is to decrease the first order velocity 1u  in region–II and its effect is not significant in region–I as seen in Figure 4b. The effect 
of width ratio h  and porous parameter σ  on the velocity u  is exactly similar to the effect on zeroth order velocity 0u  as observed 
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in Figure 4c. The effect of width ratio h  and porous parameter σ  on fluid velocity v  is shown in Figure 4d. As the width ratio 
increases velocity v  decreases for small porous parameter and it increases for porous parameter 4σ ≥  in porous region, in viscous 
region, the width ratio reduces the velocity v  whereas, the porous parameter σ  enhance the fluid velocity v .   
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Figure 3:  Velocity profiles for different values of  viscosity ratio and porous parameter.
 (a) zeroth order profiles, (b) first order profiles, (c) velocity profiles in u and (d) velocity profiles in v.
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 The influence of width ration h  on the temperature field is to decrease the zeroth order temperature field 0T , as displayed in 
Figure 5a. Figure 5b reflects that as the width ratio h  increases the first order temperature 1T  increases. The effect of width ratio 
h  on temperature T  is similar to its effect on zeroth order temperature 0T . It is also observed from Figure 5a and 5c that the effect 
of porous parameter σ  does not affect the temperature field whereas, first order temperature decreases to the order of 10-3 as 
porous parameter increases as seen in Figure 5b . 

The role of conductivity ratio ( )effk K K=  and porous parameter σ  is to suppress the zeroth order velocity 0u  as seen in 

Figure 6a. The first order velocity 1u  increases in region-I and decreases in region-II as the conductivity ratio k  and porous 
parameter σ  increases as seen in Figure 6b. The effect of k  and σ  on the velocity u  is similar to the effect on the zeroth order 
velocity. Physically, larger the conductivity of the porous matrix compared to fluid, the smaller the flow field. The fluid velocity v  
enhances as the conductivity ratio k  and porous parameter increases as seen in Figure 6d. 

  The effect of conductivity ratio k  on zeroth order and total temperature T  is similar to the effect of width ratio h  (Figure 5) 
as seen in Figures 7a and 7c. That is, as the conductivity ratio increases, zeroth and total temperature decreases. The effect of k  on 
first order temperature 1T  decreases as conductivity ratio increases as seen in Figure 7b. It is also observed from Figure 7a and 7c 
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that the effect of porous parameter σ  does not affect the temperature field whereas, as the porous parameter σ  increases first 
order temperature decreases as seen in Figure 7b. 
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Figure 4: Velocity profiles for different values of width ratio and porous parameter.
 (a) zeroth order profiles, (b) first order profiles, (c) velocity profiles in u and (d) velocity profiles in v.
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The effect of the traveling thermal temperature θ  on first order velocity 1u , and velocity u  is shown in Figure 8. The first order 

velocity 1u  increases as traveling thermal temperature θ  increases from 1y = −  to -0.25 approximately and decreases from 
0.25y = −  onwards as seen in Figure 8a. The velocity u  increases as the traveling thermal temperature θ  increases in region-I 

near the left wavy wall and decreases in region-II near the interface as seen in Figure 8b. The fluid velocity v  perpendicular to the 
channel increases as the traveling thermal temperature θ  increases as seen in Figure 8c. Its effect is more significant near the left 
wavy wall. 

The effect of traveling thermal temperature θ  on first order and total temperature is shown in Figure 9. First order temperature 
increases as the traveling thermal temperature θ  increases and its effect is more in region-I compared to region-II as seen in 
Figure 9a. The effect of the traveling thermal temperature θ  on total temperature increases slightly near the left wavy wall and 
remains constant at the right wavy wall as seen in Figure 9b. 
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Shear stress τ at the walls of the channel is analysed for different values of Grashof number Gr , width ratio h  and porous 
parameter σ  and is shown in Figure 10. As the Grashof number Gr and width ratio h   increases the skin friction at the left wall 
increases and decrease at the right wall. The porous parameter decreases the skin friction at the left wall and increases in 
magnitude at the right wall as seen in Figure 10. 

The heat transfer coefficient Nu  for different values of Gr  and width ratio h  is shown in Figure 11. The Nusselt number at the 
left wavy wall 1Nu−  and Nusselt number at the right wavy wall 1Nu  remains invariant on Grashof number. Varying the width ratio 
h , the Nusselt number at the left wavy wall is vary large compare to the Nusselt number at the right wavy wall. 
 Table 1 depicts the effect of amplitude and porous parameter on Nusselt number distribution for fixed values of 10Gr = , 

1m h k= = = , Pr 0.7= , 4xλ π=  and 0θ = . It is noted that the 1Nu− decreases and 1Nu  increases with increase in amplitude 
(or wave number) and porous parameter, which is the similar result obtained by Jang et al. (2003, 2004). (That is the Nusselt 
number is small for large amplitude-wavelength ratio). Also, the Nusselt number decreases as the wavelength increases as 
observed by Varol and Oztop, (2006).  
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The effect of convective parameter Gr on temperature is shown in Table 2. The zeroth order temperature equation does not 

contain Grashof number and hence remains invariant for the effects of Grashof number. However Grashof number occurs in the 
first order temperature equation through zeroth order velocity. It is observed that the first order temperature increases to the order 
of 10-5 with increase in the Grashof number. The effect of Grashof number on total temperature also increases to the order of 10-5. 
The porous parameter σ  decreases the first order temperature and total temperature as seen in Table 2. 

 
 The effect of viscosity ratio on the temperature field is shown in Table 3. It is observed that zeroth order temperature is invariant 
on viscosity ratio whereas, first order temperature varies to the order of 10-3. However the effect of viscosity ratio on total 
temperature also varies to the order of 10-3 and there is no effect of porous parameter σ  on zeroth, first order and total temperature 
as seen in Table 3. 
  
 To validate the results for the present model, the results are compared with Umavathi and Shekar (2011) and (Vajravelu and 
Sastri, 1978). Considering purely viscous fluid in region-I, the present model will reduce to Umavathi and Shekar (2011). For 
values of viscosity ratio, width ratio and conductivity ratio to be one and in the absence of porous parameter with 2xλ π= and 

0θ =  will reduce the present model to one-fluid model (Vajravelu and Sastri, 1978). The results of velocity u  and temperature T   
agree very well with Umavathi and Shekar (2011) and Vajravelu and Sastri (1978) as seen in Table 4. For comparison of the 
present model with Vajravelu and Sastri (1978), the problem of Vajravelu and Sastri (1978) is solved in the absence of heat 
source/sink, the plates are placed at ( )1 cosy xε λ= − +  instead of ( )cosy xε λ=  and boundary conditions on temperature are 

chosen to be 0T =  at ( )1 cosy xε λ= − +  and 1T = at 1y = . 
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Table 1. Values of the Nusselt number for different values of amplitude, xλ  and porous parameter with 1m k h= = = . 

 0.02ε = , 0.05λ =  1.0ε = , 1.0λ =  
Flat walls  

( 2xλ π= , 0θ = ) 
Wavy walls  

( 4xλ π= , 0θ = ) 
Flat walls  

( 2xλ π= , 0θ = ) 
Wavy walls  

( 4xλ π= , 0θ = ) 
σ  1Nu−  1Nu  1Nu−  1Nu  1Nu−  1Nu  1Nu−  1Nu  

10.0 0.499991 0.500047 0.499994 0.500033 0.491215 0.547170 0.493788 0.533354 
20.0 0.499976 0.500064 0.499983 0.500045 0.475529 0.564109 0.482696 0.545332 
30.0 0.499973 0.500066 0.499981 0.500047 0.472535 0.566010 0.480579 0.546676 

 
 

Table 2. Values of the Temperature field for different values of Grashof number and porous parameter. 
2σ =  

y  0T  1T  T  
5, 50,100Gr =  5Gr =  50Gr =  100Gr =  5Gr =  50Gr =  100Gr =  

-1 0 -0.005  -0.005 -0.005 -0.0050 -0.0050 -0.0050 
-0.75 0.125 -0.00526 -0.00524 -0.00523 0.11974 0.11976 0.11978 
-0.5 0.25 -0.00551 -0.00548 -0.00544 0.24449 0.24452 0.24456 
-0.25 0.375 -0.00577 -0.00573 -0.00568 0.36923 0.36927 0.36932 
0 0.5 -0.00603 -0.00599 -0.00595 0.49397 0.49401 0.49405 
0.25 0.625 -0.00629 -0.00626 -0.00623 0.61871 0.61874 0.61877 
0.5 0.75 -0.00655 -0.00653 -0.00651 0.74345 0.74347 0.74349 
0.75 0.875 -0.00681  -0.00680 -0.00679 0.86819 0.86820 0.86821 
1 1 -0.00707 -0.00707 -0.00707 0.99293 0.99293 0.99293 
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4σ =  
-1 0 -0.005  -0.005 -0.005 -0.0050 -0.0050 -0.0050 
-0.75 0.125 -0.00526 -0.00525 -0.00523 0.11974 0.11975 0.11977 
-0.5 0.25 -0.00551 -0.00549 -0.00547 0.24448 0.24451 0.24453 
-0.25 0.375 -0.00577 -0.00575 -0.00573 0.36923 0.36925 0.36927 
0 0.5 -0.00603 -0.00602 -0.00601 0.49397 0.49398 0.49399 
0.25 0.625 -0.00629 -0.00630 -0.00630 0.61871 0.61870 0.61870 
0.5 0.75 -0.00655 -0.00656 -0.00657 0.74345 0.74344 0.74343 
0.75 0.875 -0.00681  -0.00682 -0.00682 0.86819 0.86818 0.86818 
1 1 -0.00707 -0.00707 -0.00707 0.99293 0.99293 0.99293 

6σ =  
-1 0 -0.005  -0.005 -0.005 -0.0050 -0.0050 -0.0050 
-0.75 0.125 -0.00526 -0.00526 -0.00526 0.11974 0.11974 0.11975 
-0.5 0.25 -0.00552 -0.00551 -0.00551 0.24448 0.24449 0.24449 
-0.25 0.375 -0.00577 -0.00578 -0.00578 0.36922 0.36922 0.36922 
0 0.5 -0.00604 -0.00606 -0.00608 0.49396 0.49394 0.49392 
0.25 0.625 -0.00630 -0.00633 -0.00636 0.61870 0.61867 0.61864 
0.5 0.75 -0.00656 -0.00659 -0.00662 0.74344 0.74341 0.74338 
0.75 0.875 -0.00681  -0.00683 -0.00685 0.86819 0.86817 0.86815 
1 1 -0.00707 -0.00707 -0.00707 0.99293 0.99293 0.99293 

 
 

Table 3. Values of the Temperature field for different values of viscosity ratio and porous parameter. 
2σ =  

y  0T  1T  T  
0.1,1, 2m =  0.1m =  1m =  2m =  0.1m =  1m =  2m =  

-1 0 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 
-0.75 0.125 -0.00525 -0.00526 -0.00526 0.11975 0.11974 0.11974 
-0.5 0.25 -0.0055 -0.00551 -0.00551 0.2445 0.24449 0.24449 
-0.25 0.375 -0.00576 -0.00577 -0.00577 0.36924 0.36923 0.36923 
0 0.5 -0.00602 -0.00603 -0.00603 0.49398 0.49397 0.49397 
0.25 0.625 -0.00629 -0.00629 -0.00629 0.61871 0.61871 0.61871 
0.5 0.75 -0.00655 -0.00655 -0.00655 0.74345 0.74345 0.74345 
0.75 0.875 -0.00681 -0.00681 -0.00681 0.86819 0.86819 0.86819 
1 1 -0.00707 -0.00707 -0.00707 0.99293 0.99293 0.99293 

4σ =  
-1 0 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 
-0.75 0.125 -0.00526 -0.00526 -0.00526 0.11974 0.11974 0.11974 
-0.5 0.25 -0.00552 -0.00552 -0.00551 0.24448 0.24448 0.24449 
-0.25 0.375 -0.00578 -0.00577 -0.00577 0.36922 0.36923 0.36923 
0 0.5 -0.00604 -0.00603 -0.00603 0.49396 0.49397 0.49397 
0.25 0.625 -0.0063 -0.00629 -0.00629 0.6187 0.61871 0.61871 
0.5 0.75 -0.00656 -0.00655 -0.00655 0.74344 0.74345 0.74345 
0.75 0.875 -0.00682 -0.00681 -0.00681 0.86818 0.86819 0.86819 
1 1 -0.00707 -0.00707 -0.00707 0.99293 0.99293 0.99293 

6σ =  
-1 0 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 
-0.75 0.125 -0.00526 -0.00526 -0.00526 0.11974 0.11974 0.11974 
-0.5 0.25 -0.00552 -0.00552 -0.00552 0.24448 0.24448 0.24448 
-0.25 0.375 -0.00578 -0.00578 -0.00578 0.36922 0.36922 0.36922 
0 0.5 -0.00605 -0.00604 -0.00604 0.49395 0.49396 0.49396 
0.25 0.625 -0.00631 -0.00631 -0.00631 0.61869 0.6187 0.6187 
0.5 0.75 -0.00656 -0.00656 -0.00656 0.74344 0.74344 0.74344 
0.75 0.875 -0.00682 -0.00681 -0.00681 0.86818 0.86819 0.86819 
1 1 -0.00707 -0.00707 -0.00707 0.99293 0.99293 0.99293 
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Table 4. Comparison of results with one fluid and two fluid model for 1m k h= = = , 0θ = , 2xλ π= , 0.05λ =  and 0.02ε =  . 

 
Umavathi and Shekar 

(2011) (Two-fluid 
model) 0.1h =  

Present model 
0.1h =  

Vajravelu and 
Sastri (1978) 

(One-fluid model) 

Present model 
1m k h= = =  

y  u  T  u T  u T  u  T  
-1 0 0 0 0 0 0 0 0 
-0.75 0.2173 0.22749 0.2173 0.22749 0.41016 0.125 0.41014 0.125 
-0.5 0.36363 0.45497 0.36363 0.45497 0.78125 0.25 0.78123 0.25 
-0.25 0.36791 0.68243 0.36791 0.68243 1.07422 0.375 1.07419 0.375 
0 0.1591 0.90986 0.1591 0.90986 1.25 0.5 1.24998 0.5 
0 0.01591 0.90986 0.01591 0.90986 1.25 0.5 1.24998 0.5 
0.25 0.01238 0.93239 0.01238 0.93239 1.26953 0.625 1.26951 0.625 
0.5 0.00855 0.95493 0.00855 0.95493 1.09375 0.75 1.09374 0.75 
0.75 0.00443 0.97746 0.00443 0.97746 0.68359 0.875 0.68359 0.875 
1 0 1 0 1 0 1 0 1 

 
5. Conclusions 
 

Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers was studied. Results were 
presented for variations of Grashof number, viscosity ratio, width ratio, conductivity ratio and traveling thermal temperature on the 
velocity, temperature, skin friction and Nusselt number.  

1. Grashof number and width ratio were enhances the velocity parallel to the flow and diminishes the velocity perpendicular to 
the flow. 

2. Viscosity ratio and conductivity ratio was to suppress the velocity parallel to the flow and promotes the velocity 
perpendicular to the flow.  

3. The effect of Grashof number and viscosity ratio were not operative on temperature whereas, width ratio and conductivity 
ratio reduces the temperature.  

4. It was also observed in all the results that, as the porous parameter increases, the velocity parallel to the flow decreases and 
increases the velocity perpendicular to the flow whereas, it remains invariant on temperature.  

5. The effect of traveling thermal temperature was to enhance the velocity and temperature near the left wavy wall and remains 
invariant at the right wavy wall.  

6. The skin friction increases at the left wall and decreases at the right wall as the Grashof number increases whereas, width 
ratio and porous parameter decreases the skin friction at the left wall and increases at the right wall.  

7. The Nusselt number remains invariant on Grashof number whereas, the Nusselt number decreases at the left wall and 
increases at the right wall as the width ratio increases. Amplitude and porous parameter decreases the Nusselt number at 
both the walls.  

8. The results obtained were in good agreement with the results for two-fluid model (Umavathi and Shekar, 2011) and for  
one-fluid model (Vajravelu and Sastri, 1978). 

 
Nomenclature 
 
a  amplitude ( )m  

pC  specific heat at constant pressure ( )-1 -1kJ kg K   

g  acceleration due to gravity ( )-2ms  

Gr  Grashof number ( )3(1) 2h g Tβ νΔ  

h  width ratio of the channel ( )(2) (1)h h  

K  thermal conductivity ( )-1 -1W m K   

effK  effective thermal conductivity ( )-1 -1W m K   

k  thermal conductivity ratio ( )effK K  

m  viscosity ratio ( )effμ μ  
Nu  Nusselt number 
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P  pressure ( )-2Nm  
p  dimensionless pressure  

sp  static pressure ( )-2Nm  

Pr  Prandtl number ( )pC Kμ  

T  temperature ( )K  

sT  static temperature ( )K  

,U V  velocities along X and Y  directions ( )-1ms   
,u v  dimensionless velocities  
,X Y  space co-ordinates ( )m  

,x y  dimensionless space co-ordinates 
Greek Symbols 
β  coefficient of thermal expansion  

ε  dimensionless amplitude parameter ( )(1)a h  

κ  permeability of the porous media ( )2m  

λ  wavelength ( )m  

λ∗  dimensionless wave number 
μ  viscosity ( )-1 -1kg m s  

effμ  effective viscosity ( )-1 -1kg m s  

ν  kinematic viscosity ( )/μ ρ  

ρ  density ( )-3kg m  

sρ  static density ( )-3kg m  

σ  porous parameter ( )(1)h κ  

τ  skin friction 
ψ  stream function 
Superscripts 
1 and 2 refer quantities for the fluids in region-I and region-II respectively. 
Subscripts 
p  porous 
f  fluid 

0 and 1 refer quantities for the zeroth order and first order equations.  
 
Appendix  

A. Primary categories of fluid flow interface conditions between a porous medium and a fluid layer. 

Model 1: p fu u=  ;  
p f

du du
dy dy

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 used by Neale and Nader (1974), Vafai and Kim (1990), Jang and Chen (1992). 

Model 2: p fu u=  ;  eff
p f

du du
dy dy

μ μ
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

used by Kim and Choi (1996), Poulikakos and Kazmierczak (1987). 

Model 3: p fu u= ;  1
p f

du du u
dy dy K

μ μμ β
ε
⎛ ⎞ ⎛ ⎞

− =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 used by Ochoa-Tapia and Whitaker (1995), Kuznetsov (1999). 

Model 4: p fu u= ;  2
1 2

p f

du du u u
dy dy K

μ μμ β β ρ
ε
⎛ ⎞ ⎛ ⎞

− = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 used by Ochoa-Tapia and Whitaker (1998) . 
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Model 5:   ( )int
f

du u u
dy K

α∗

∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 used by Beavers and Joseph (1967), Sahraoui and Kaviany (1992).  A Forchheimer term is 

added to the momentum equation in the porous side for the purpose of comparison. 
 
B.  Primary categories of heat transfer interface conditions between a porous medium and a fluid layer. 

Model 1: p fT T= ; f p
eff f

T T
K K

y y
∂ ∂

=
∂ ∂

used by Kuznetsov (1999), Jang and Chen (1992). 

Model 2:  p fT T= ; f eff
f p

T TK K
y y

φ
⎛ ⎞ ⎛ ⎞∂ ∂

+ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
used by Ochoa-Tapia and Whitaker (1998). 

Model 3: ( )T
p f

p

dT T T
dy

α
λ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
; f p

eff f

T T
K K

y y
∂ ∂

=
∂ ∂

 used by Sahraoui and Kaviany (1994), using fluid flow of Model 1. 

Model 4: ( )T
p f

p

dT T T
dy

α
λ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
; f p

eff f

T T
K K

y y
∂ ∂

=
∂ ∂

used by Sahraoui and Kaviany (1994), using fluid flow of Model 3. 

 For the present problem Model A2 is used for fluid flow and Model B1 is used for heat transfer along with the continuity of 
pressure gradient along the flow direction. 
 
Solutions and constants  

(1)
0 1 2c y cθ = + , (2)

0 3 4c y cθ = + , ( ) ( )(1)
0 1 2 1 2cosh sinhu l y l d a y d a y= + + + , (2) 3 2

0 3 4 3 4u l y l y d y d= + + + , 

( ) ( ) ( )( ) ( ) (
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(1) 2 3 4
1 5 6 7 8 11 12 13 14

2 2
16 17 15 18 18 19 17 20

3 3
15 16 19 20 14 15

cos 2 sinh cosh sin 2 3 4 5

2 cosh 2 sinh 3 cosh 3 sinh

cosh sinh sinh cosh sin

u x l y d ad a y ad a y x f y f y f y f y

a f f y a y a f f y a y a f f y a y a f f y a y

f a y f a y f a y a y f a y a y d d a

λ λ λ= − + + + + + + +

+ + + + + + + +

+ + + + + + ( )
( ) )16 9

h

cosh /

a y

d a a y Gr c y ma+ −

, 

( ) ( ) (

)

(2) 3 2 8 7 6 5 4 3 29 17
1 6 10 11 27 28 29 30 31 32 33

2
18 19

cos 4 sin 9 8 7 6 5 4 3
2 2
d d

u x l y y d y d x l y l y l y l y l y l y l y y

d y d

λ λ λ⎛ ⎞
= − + + + + + + + + + + +⎜ ⎟

⎝ ⎠

+ +

, 

( ) ( ) ( )( ) ( ) ( ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ))

(1) 2 2 2 3 4 5
1 5 5 6 7 8 11 12 13 14 15

2 2 3 3
16 17 18 19 20 9 13 14

15 16

sin cosh sinh cos cosh

sinh cosh sinh cosh sinh 2

cosh sinh

v x l y d d y d a y d a y x f y f y f y f y f y a y

f y a y f y a y f y a y f y a y f y a y Gr c ma d d y

d a y d a y

λ λ λ λ= − + + + + − + + + +

+ + + + + − + +

+ +

 

( ) ( ) (

)

(2) 4 3 2 2 9 8 7 6 5 4 3 39 10 17
1 6 11 12 27 28 29 30 31 32 33

218
19 20

sin cos
6 2 6

2

d d d
v x l y y y d y d x l y l y l y l y l y l y l y y

d
y d y d

λ λ λ λ⎛ ⎞
= − + + + + − + + + + + + +⎜ ⎟

⎝ ⎠

+ + +

, 

( ) ( ) ( ) ( ( ) ( ) ( ) ( )
)

(1) 6 5 4
1 5 6 14 15 16 17 18 19 20

9 10

cos sin cosh sinh cosh sinhx c y c x l y l y l a y l a y l y l y a y l y a y

c y c

θ λ λ λ= + − + + + + + +

+ +
, 

( ) ( ) ( ) ( )(2) 6 5 4 3 2
1 7 8 21 22 23 24 25 11 12cos sinx c y c x l y l y l y l y l y c y cθ λ λ λ= + − + + + + + + ,  

( ) ( )0
1 1 1 2cosh sinhl ad a d a aτ− = − + , 0

1 3 4 33 2l l dτ = + + , 

( ) ( ) ( ) ( )( ( ) ( ) ( ))
( ) ( ( ) ( )

( ) ( )

1 1 1 2 1 2 5 7 8

11 12 13 14 16 17 15 17 18 19 19 20

15 16 17 18 18 19 20 20 9

sinh cosh cos cosh sinh 2 cosh sinh

sin 2 6 12 20 2 2 4 6 6 cosh

2 4 2 6 6 sinh

l ad a d a a x ad a d a a l ad a d a a

x f f f f a f f af af a f f af f a a

a f af a f f af a f f af a Gr c

τ ε λ

ελ λ

− = − + + + − + +

+ − + − + + − + − − − +

+ + + − − − + + − ( ) ( ) ( ))15 16cosh sinhma ad a ad a a+ −

,   
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( ) ( ) ( ) ( )1 3 4 3 6 9 10 27 28 29 30 31 32 33 17 183 2 cos 12 sin 72 56 42 30 20 12 6l l d x l d d x l l l l l l l d dτ ε λ ελ λ= + + − + + − + + + + + + + + , 

( ) ( ) ( ( )( ) ( ) ( ) ( ) )1 1 5 14 15 16 19 20 17 19 20 18 9cos sin 2 3 sinh cosh 4Nu c x c x l l a l l l a al l al a l cε λ ελ λ− = + − − + − − + + + − − + , 

( ) ( ) ( )1 3 7 21 22 23 24 25 11cos sin 6 5 4 3 2Nu c x c x l l l l l cε λ ελ λ= + − + + + + + .     
2

a
m
σ

= , 3c
1

kh
kh

=
+

, 3
1

c
c

kh
= , 4 31c c= − , 2 4c c= , 1

1

Gr c
l

ma
= , 2

2

Gr c
l

ma
= , 

3
3

3 6
Gr h c

l = − , 
3

4
4 2

Gr h c
l = − , 5

5 2
Gr c

l
ma

= , 

3
7

6 24
Gr h c

l = , 
( )
( )

2 1 2

1

sinh

cosh

d a l l
d

a

+ −
= , 

( ) ( ) ( )
( ) ( )

2
2 1 3 4 1 2

2 2

cosh

cosh sinh

l l h l l mh l hl a
d

mh a a h a

− − + + +
=

+
, ( )2

3 2 1d mh d a l= + , 3
8 7

c
c c

h
= − − , 

 ( )4 1 2d h d l= + , ( )( )1 3
7

cos

1

k c h c
c

kh

θ −
=

+
, 7

5

c
c

kh
= , 6 8c c= , 7 1 5 6 2l c d c l= + , 8 5 2 6 1 6 1l c l c l d c= + + , 9 6 1 7 1l c d d c= + , 

10 6 2 8 1l c d d c= + , 11 5 1 1 5l c l c l= + , 12 1 5l d c= , 13 2 5l d c= , 7
14

Pr
2

l
l

k
= , 8

15

Pr
2

l
l

k
= , 9 1312

16 3 3

Pr l ll
l

k a a a

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
, 11

18

Pr
2

l
l

k
= , 

10 1312
17 3 3

Pr l ll
l

k a a a

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
, 12

19

Pr l
l

ka
= , 13

20

Pr l
l

ka
= , ( )21 7 3 3 6

Pr
30

l c l c l= + , 3 9
22 7 4 8 3

Pr
20 6

c d
l c l c l⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

, 

3 10
23 7 3 8 4

Pr
12 2

c d
l c d c l⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

, ( )24 7 4 8 3 3 11
Pr
6

l c d c d c d= + + , ( )25 8 4 3 12
Pr
2

l c d c d= + , 1 1 5 142 2f l l Gr l= + , 2 153f Gr l= , 

3 184f Gr l= , ( )4 2 7 5 1 1 5 17 192f al d l d ad d Gr l a l= + − + + , 9 2 5f ad l= − , ( )5 2 8 5 2 2 5 16 202f al d l d ad d Gr l a l= + − + + ,  

6 1 7 1 6 20f al d ad d Gr l a= − + , 7 1 8 2 6 19f al d ad d Gr l a= − + , 8 1 5f ad l= − , 10 2 52f l l= , 102
11 2 2

ff
f

mama
= − − , 

31
12 26

ff
f

ma ma
= − − , 2

13 12
f

f
ma

= − , 3
14 20

f
f

ma
= − , 5 6 9

15 23 5

5 17
42 4

f f f
f

mam a m a
= − + , 7 84

16 23 5

5 17
42 4

f ff
f

mam a m a
= − + , 

7 8
17 23

5
44

f f
f

mam a
= − ,  6 9

18 23

5
44

f f
f

mam a
= − , 9

19 36

f
f

m a
= , 8

20 36

f
f

m a
= , 3

21 3 6 216 6f l l Gr h l= + ,  3
22 4 6 2210 5f l l Gr h l= + ,  

34 9
23 3 6 3 10 23

2
12 2 4

3
l d

f d l l d Gr h l= + − + , 3
24 4 6 3 9 3 11 2412 6 3f d l d d l d Gr h l= + − + , 3

25 4 9 3 10 3 12 4 11 256 2 2f d d d d l d l d Gr h l= + − − + , 

26 4 10 4 122f d d l d= − , 21
27 3024

f
f = , 22

28 1680
f

f = ,  23
29 840

f
f = ,  24

30 360
f

f = , 25
31 120

f
f = , 26

32 24
f

f = , 
3

11
33 6

Gr h c
f = ; 

( ) ( ) ( )( )1 1 2 1 5cos sinh cosh 2z d a a d a a l lθ= − + + + , 3 4 3
2 6

3 2
4

l l d
z l

h
+ +

= − , 
3

3
6

6
mah hz − +

=  
2

4
2

2
mah hz +

= , 

2
5 6 5z l mh l= + , 

3

6
2

2
mah hz − +

= , 2
7z mh a= , 2

8 5 22z mh l z= − , 9 3z h z= + , ( )10 4 coshz z h a= − , ( )11 sinhz h a h a= + , 

12 5 5z hl z= − + , ( )13 7 6 sinhz z z a a= + , ( )14 6 coshz h a z a a= − , 15 8 1 6z z z z= + , ( )16 10 9 sinhz z z a a= + , 

( )17 11 9 coshz z z a a= − , 18 12 1 9z z z z= + ; 13 18 15 16
8

16 14 13 17

z z z z
d

z z z z
−

=
−

, 15 14 8
7

13

z z d
d

z
− −

= , ( ) ( )6 7 8 1sinh coshd d a a d a a z= − + ,  

( ) ( )5 8 7 6 5sinh coshd d a d a d l= − + − , 3
9 6d h mad= − , ( )2

10 5 72d mh l ad= + ,  ( )11 6 8d h d ad= + ,  ( )12 5 7d h d d= + ; 

( ) ( ) ( ) ( )19 14 15 16 19 20 17 18cosh sinhz l l l l a l l a l= − + − + − + , 20 21 22 23 24 25z l l l l l= + + + + , 8
21 6 17 19

c
z kh c l a l

kh
⎛ ⎞

= + + −⎜ ⎟
⎝ ⎠

; 

19 20 21 16
9 1

z z z l
c

kh
− − −

=
+

, 10 9 19c c z= − , 11 21 9c z khc= + , 12 16 10c l c= + , 24 27 28 29 30 31 32z f f f f f f= + + + + + , 

( ) ( ) ( ) ( )22 11 12 13 14 15 17 19 16 18 20cosh sinhz f f f f f f f a f f f a= − + − − + − + − + ,  23 231 232z z z= + , 27 271 272z z z= + ,  

( ) ( )231 11 12 13 14 15 16 17 18 19 202 3 4 5 2 3 coshz f f f f f a f f a f f a f a= − + − + + − − + + − , 25 27 28 29 30 31 329 8 7 6 5 4z f f f f f f= + + + + +   

( ) ( )232 15 16 17 18 19 202 3 sinhz a f f a f f a f f a= − − + + − , 2 9
26 11 16 17

2
2

Gr c
z mh f a f f

ma
⎛ ⎞

= + + −⎜ ⎟
⎝ ⎠

, ( )3
28

1 6
6

z h ma h= − + , 
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( ) ( ) ( ) ( )271 1 2 6 8 1 2 5 7z d l d ad l ad d d= − + + + + + , ( ) 2
272 12 15 18 19 15 16 4 11 3 126 3 6 6z m f af a f f f Gr l d d d dσ= + + + − − + − , 

( )2
29

1 2
2

z h ma h= + , 26 27
30 24 152 6

z z
z z hf= + + + , ( )3

31
1 2
2

z h ma h= − + , 2
32z h ma= , 27

33 25 26 152
z

z z z hf= + + + , 34 28z z h= + , 

( )35 29 coshz z h a= − , ( )36 sinhz h a h a= + , 37 30 22z z hz= − , ( )38 32 31 sinhz z z a a= + , ( )39 31 coshz h a z a a= − ,  

40 33 23 31z z z z= − ,  ( )41 35 34 sinhz z z a a= + , ( )42 36 34 coshz z z a a= − , 43 37 23 34z z z z= − , 39 16 40
15

38

z d z
d

z
− +

= , 

( ) ( )13 14 15 16 22cosh sinhd d d a d a z= − + − , ( ) ( )14 15 16 23sinh coshd d a a d a a z= − − , 38 43 40 41
16

30 41 38 42

z z z z
d

z z z z
−

=
−

, 

3
17 14 27d mah d z= − + , 2

18 15 26d mah d z= + , ( )19 14 16 15d h d ad f= + + , ( )20 13 15d h d d= + . 
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