Main Article Content
Application of artificial intelligence in load frequency control of interconnected power system
Abstract
This paper presents the use of artificial intelligence to study the load frequency control of interconnected power system. In the
proposed scheme, a control methodology is developed using Artificial Neural Network (ANN) and Fuzzy Logic controller
(FLC) for interconnected hydro-thermal power system. The control strategies guarantees that the steady state error of frequencies and inadvertent interchange of tie-lines power are maintained in a given tolerance limitations. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of Fuzzy controller and ANN controller based approaches shows the superiority of proposed ANN based approach over Fuzzy one for different loading conditions (1% and 2% step load variations). The simulation results also tabulated as a comparative performance in view of settling time and peak over shoot.
proposed scheme, a control methodology is developed using Artificial Neural Network (ANN) and Fuzzy Logic controller
(FLC) for interconnected hydro-thermal power system. The control strategies guarantees that the steady state error of frequencies and inadvertent interchange of tie-lines power are maintained in a given tolerance limitations. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of Fuzzy controller and ANN controller based approaches shows the superiority of proposed ANN based approach over Fuzzy one for different loading conditions (1% and 2% step load variations). The simulation results also tabulated as a comparative performance in view of settling time and peak over shoot.