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Abstract 
 
   The conventional load flow methods like Newton-Raphson load flow (NRLF), Fast Decoupled load flow (FDLF) provide poor 
performance under critical conditions such as high R/X ratio, heavily loading condition etc. Exploiting the decoupling properties 
of power system, reliable fuzzy load flow is developed to overcome the limitations of the popular methods. Both power 
mismatch and summation of power mismatches are taken as two inputs for fuzzy logic controller. Considering magnitude of 
power mismatch and sign of power mismatch, new 25 fuzzy rules are created from two sets of inputs. The proposed Decoupled 
Fuzzy Load Flow (FDLF) is applied to IEEE 14 bus, IEEE 30 bus, IEEE 57 bus and IEEE 118 bus under stressed situations. The 
test results prove that the proposed algorithm provides better performance than the conventional methods under critical 
conditions.  
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1. Introduction 
 
   One of the most basic and commonly encountered problems of power system analysis is the load flow. Load flow has a rich 
tradition of research and as a result there are many efficient solution techniques of the load flow problem besides the general 
purpose solution techniques like the Newton-Raphson (Tinney et al, 1967) and the Fast Decoupled (Wang et al, 2000) methods. 
Occasionally, load flow suffers from the problem of convergence difficulties. Methods based on optimal multiplier power flow 
(OMPF) (Iwamoto et al, 1981) have been developed to overcome such situations. The requirements of the speed and accuracy of 
the load flow algorithm vary. Solution of the load flow problem in stressed condition, particularly when the system is operating at 
its loadability limit, is of great importance for voltage stability analysis. Conventional power flow methods fail to find a solution in 
such cases (Wong et al, 2003). Moreover, due to the introduction of FACTS based control devices (Lo et al, 1997) and the 
operating environment due to the restructuring of the power system, necessity for the development of rugged power flow 
algorithms utilizing the general purpose evolutionary techniques have been felt (Vlachogiannis, 2001).  
   The justification of the application of the non conventional approaches such as Genetic algorithm (GA), Particle Swarm 
Optimization (PSO), Fuzzy logic (FL) in the power flow problem lies in the fact that these approaches are not based on the power 
flow derivatives. So, these methods need not face the problem of Jacobian singularity as the maximum loading conditions are 
approached. GA and PSO based load flow algorithms are evolutionary based and stochastic in nature. But the second family of 
load flow algorithms incorporating uncertainty has been developed more recently and it utilizes fuzzy sets for its modeling 
(Miranda et al, 1998). This is qualitatively different way of expressing uncertainty. It represents imprecise, or vague, knowledge 
rather than uncertainty related to a frequency of occurrence. One inherent advantage of this approach is the ability to easily 
incorporate expert knowledge about the systems under study. With this approach, input variables are represented as fuzzy 
numbers, which are special types of fuzzy sets. Although the calculations in fuzzy analysis are somewhat simpler than that in a 
probabilistic case, it is still far too complex to be applied directly to the full system model. Therefore, again a linearized model of 
the system is used. Fuzzy interval arithmetic has been employed in handling uncertainties associated with the load, generation or 
system parameters. 
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   Fuzzy load flow is developed exploiting the decoupling properties of power systems. The maximum power mismatch and 
summation of power mismatches are taken as two input ranges. Two separate loops are used like fast decoupled power flows. To 
show the robustness, the proposed algorithm is applied to different IEEE test systems under critical conditions.  
 
2.  Load Flow Problem 
 
   The problem in load flow is to determine the voltages at (n-g-1) nodes and phase angles of the voltages at (n-1) nodes when the 
real power at (n-1) nodes and the reactive power at (n-g-1) nodes are specified. The reactive power limits of the g number of 
generator nodes and the active power balances at all the nodes are to be satisfied. Since the number of variables goes on increasing 
with the size of the system, the load flow problem becomes increasingly difficult as the size of the system increases. If maintaining 
the power balances at the nodes is set as the objective function, the load flow may be formulated as 
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Where, 

mi VV , : Voltage magnitude of ith and mth bus 

mi δδ , :  Phase angle of ith and mth bus 

imimY θ, : Admittance matrix element and its corresponding phase angle 
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‘SSE’ and ‘max_E’ represent sum of the squares of errors and maximum error of the total power mismatches respectively. In the 

above g is the number of generator buses except the slack bus, l is the number of load buses, and n is the total number of buses in 
the system. P, Q, V andδ  represent active power, reactive power, voltage magnitude and phase angle respectively. Subscripts ‘sp’ 
represents the specified value and ‘gen’ represents the quantity associated with the generator bus. Superscripts ‘min’ and ‘max’ are 
used to indicate the corresponding minimum and maximum limits. It may be noted here that when load flow problem is solved 
using conventional approach the constraint given in (5) becomes redundant, as the flat start is the accepted starting values of the 
load flow iterative solutions. In the non-conventional approach during random initialization, flat start cannot be adhered to. 
Generally max_E is reduced in each iteration for the desired convergence. In meta-heuristic / evolutionary methods, SSE is the 
limiting constrain for achieving convergence. In the proposed method, if the maximum error (Max_E) of the best solution is less 
than the specified tolerance i.e. 0.001, the solution is converged. 
 
3. Fuzzy Load Flow 
 
   The Fuzzy load flow algorithm (FLF) has been built up considering the decoupling properties of the power flow variables. The 
voltage magnitudes (V) are coupled with the reactive power mismatches (Q) considering the phase angles (δ) constants whereas 
the phase angles are dependent on the active power mismatches (P) keeping voltage magnitudes fixed. The popular fast decoupled 
load flow (FDLF) can be written as 
[ΔP/V] = [B’][Δδ]                 (6) 
[ΔQ/V] = [B”][ ΔV]                      (7) 
   Here 'B  and "B  are the constant sparse matrices. Constant sparse matrix can be calculated in different ways. But, for the 
proposed decoupled fuzzy load flow,   'B  and "B  are determined as follows: 
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Where, 
Yc : half line charges 
Rik: line resistance between i and k 
Xik: line reactance between i and k 
l    : actual number of lines which are directly connected to the ith bus 
a   : transformer ratio 
   The sparse matrices are determined only once before the starting of iteration. The diagonals of the sparse matrices are used to 
have an estimate of the correction element of the power flow variables. Considering a linear relationship between error and 
correction vector, it can be depicted that maximum correction vector (CV) corresponds to maximum error and individual CV 
depends on its respective error (Vlachogiannis, 2001) i.e. the scale of CV depends on the magnitude of the corresponding error.  
To develop the Fuzzy rule, this philosophy is taken and it is considered as first criteria.  
   In the proposed decoupled FLF algorithm, another parameter, summation of error is also considered. From different types of 
modified FDLF, modified NRLF like Continuation Power Flow (CPF) (Ajjarapu et al, 1992), it is noticed that summation of error 
and its sign is also a decisive factor for the correction vector. Let the summation of error is large and its sign is negative. If 
individual error is negative, then definitely, the CV will be negative. On other case, if the individual error is positive, then the 
magnitude of CV is generally small and it may be positive or negative depending on the first criteria. 
   So, it is evident that in the proposed algorithm, the inputs for the P-δ loop fuzzy system are active power mismatch (ΔP) and sum 
of active power mismatch (ΣΔP) and the output is correction of phase angle (Δδ). Similarly the inputs for the Q-V loop fuzzy 
system are reactive power mismatch (ΔQ) and sum of reactive power mismatch (ΣΔQ) and the output is correction of voltage 
magnitude (ΔV). The system modeling is described below. 
 

3.1 Maximum range selection of input and output variables: 
   The maximum ranges for the input and output variables of the fuzzy systems can be found by using the following formulae. 
 
3.1.1 For P-δ loop: 
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3.1.2 For Q-V loop: 
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Where maxQΔ  corresponds to nth bus 
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3.2 Membership functions for input and output variables: 
   Each variable (either input or output) is characterized by five membership functions in its universe of discourse. The name of the 
membership functions are given as follows: 
NB : Negative big 
NM : Negative medium 
ZE : Zero 
PM : Positive medium 
PB : Positive Big 
 
3.2.1 For P-δ loop: 
   The membership functions for the input and output variables of the P-δ loop of the proposed method are as shown in Figure 1, 2 
and 3. 
 
3.2.2 For Q-V loop: 
   We shall have three exactly similar figures for the membership functions of the input and output variables of the Q-V loop. 
 

3.3 Fuzzy rules: 
   With the above membership functions of the input and the output variables, we can have 25 fuzzy rules for each of the loops. 

3.3.1 For P-δ loop: 
   For the P-δ loop the fuzzy rule base is shown in Table 1.For example, one linguistic rule of the P-δ loop may be written as 

Rule14: If  PΔ  is PM and  PΔ∑  is NM, then Δδ is PM 
 
3.3.2 For Q-V loop: 
   For the Q-V loop we shall get an exactly similar fuzzy rule base. 
 

3.4 Updating the power flow variables: 
   The correction vectors are calculated by the fuzzy rules. Now the power flow variables are updated as 
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   Where, g
kV  and g

kδ  are the kth voltage magnitude and phase angles at gth generation respectively. Similarly, 'g
kV  and 'g

kδ  are 
the updated voltage magnitudes and phase angle for the kth node. The active and reactive power mismatches are calculated for the 
updated power flow variables. The sum of the squares of Error (SSE) and maximum power mismatch (max_E) are also 
determined. 
 

Table 1. Fuzzy rule base for P-δ loop 

ΔP 
 

ΣΔP 
NB NM ZE PM PB 

NB NB NB NM ZE PM 
NM NB NM NM ZE PM 
ZE NM NM ZE PM PM 
PM ZE ZE PM PM PB 
PB PM PM PM PB PB 
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3.5 Algorithm: 
   The whole procedure of the proposed algorithm is shown by a flow chart in Figure 4. 
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Read test data and security constraints

Calculate diagonal elements of sparse 
constant matrices B’ and B” 

Set iteration=0; tolerance=0.001

Initialize flat start for power flow variables 

Calculate ΔP and ΔQ 

Calculate ΔPmax and Δδmax using equation 
(10) 

Check convergence: 
ΔPmax and ΔQmax < 

tolerance ? 

Using decoupled fuzzy logic obtain Δδ for 
all buses except slack bus 

Update δi = δi+Δδi 

Calculate ΔQmax and ΔVmax using equation 
(12) 

Using decoupled fuzzy logic obtain ΔV for 
all pq buses 

Update Vi = Vi+ΔVi
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Figure 1. Membership function for input-1: active power 
mismatch  PΔ  

Figure 2. Membership function for input-2: sum of active 
power mismatch  PΔ∑  

Figure 3. Membership function for output: phase angle 
correction vector δΔ  

Figure 4. Flow chart for proposed algorithm 
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4. Results 
 
   The proposed algorithm is tested on different standard IEEE test systems such as 14, 30, 57 and 118 Bus. The presented 
algorithm has been developed and run on Pentium 4, 2.4 GHz, 256 MB RAM, 40 GB of Hard disc computer with the environment 
of MATLAB 2010. 
   Though the proposed algorithm takes more number of generations than conventional approaches, it provides better performance 
under stressed conditions. The Newton-Raphson load flow (NRLF) and Fast Decoupled load flow (FDLF) suffer from singularity 
problem at or near the high R/X ratios and maximum loadability conditions. Better performance can be observed for optimal 
multiplier power flow (OMPF) method for ill-conditioned system, but the proposed load flow converges when all other 
conventional methods fail and also it provides robust performance for ill-conditioned systems. In order to show this, ill 
conditionings in the test systems have been introduced in two ways: by changing the R/X ratio and by increasing the system 
loading. Comparison between the proposed algorithm and conventional methods in the context of loadability limits is given in 
Table 2. In this table only P, Q loads are multiplied and the generation settings are not modified for such increased loading 
conditions. It is assumed that all the additional power demands will be supplied by the slack generator. 
   P-V or Q-V curve can be obtained using the proposed power flow algorithm. Figure 5 shows the P-V curve of IEEE 57 bus and 
solution of IEEE 57-bus test case under maximum loadability limit is given in Table 3 for evidence for the proposed algorithm. 
From Tables and Figure 5, it can be concluded that the performance of the proposed power flow algorithm regarding the 
loadability limits is better than other methods. 
   Line reactance are decreased to get high R/X ratios and also on the other hand line resistance are increased in order to increase 
the line R/X ratios as in (Amerongan, 1989). Table 4 and Table 5 show the test results for such cases when the conventional and 
proposed method just fail to give convergence. The case when the linear perturbation based power flow also fails represents the 
situations having no solution. From Tables, it is observed that the performances of the proposed method are better than the popular 
methods under critical conditions. 
 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.7

0.75

0.8

0.85

0.9

0.95

1

Load Multiplier

V
ol

ta
ge

 M
ag

ni
tu

de
 o

f 5
7t

h 
bu

s

 
Figure 5. Variation of voltage magnitude of 57th node with load multiplier for IEEE 57-bus test system 

 
Table 2. Load multiplier For Maximum loadability limits Of the different methods 

Solution methods 
Test Systems 

FDLF NRLF Optimal Multiplier 
method 

Proposed 
algorithm 

IEEE 14 bus 4.0072 4.0078 4.0080 4.0115 
IEEE 30 bus 3.0156 3.0523 3.0527 3.0585 
IEEE 57 bus 1.7904 1.7916 1.7920 1.8003 

IEEE 118 bus 2.0373 2.0392 2.0392 2.0469 
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Table 3. Line resistance multiplier for the critical R/X situations 

Solution methods 
Test Systems 

FDLF NRLF Optimal Multiplier 
method 

Proposed 
algorithm 

IEEE 14 bus 4.4218 4.4223 4.4225 4.4291 
IEEE 30 bus 5.1194 5.1212 5.1215 5.1284 
IEEE 57 bus 4.4095 4.4102 4.4102 4.4152 

IEEE 118 bus 5.0690 5.0705 5.0705 5.0732 
 
 

Table 4. Line reactance multiplier for the critical R/X situations 

Solution methods 
Test Systems 

FDLF NRLF Optimal Multiplier 
method 

Proposed 
algorithm 

IEEE 14 bus 0.0495 0.0491 0.0490 0.0419 
IEEE 30 bus 0.0558 0.0554 0.0552 0.0401 
IEEE 57 bus 0.0668 0.0655 0.0655 0.0588 

IEEE 118 bus 0.0714 0.0696 0.0696 0.0624 
 

5. Conclusions  
 
   The decoupling properties of power systems are used to develop fuzzy load flow. Two separate loops such as phase angle & 
active power and voltage magnitude & reactive power are operated one after another in a single iteration. Maximum power 
mismatches and summation of error are two input ranges. To obtain correction vector, 25 fuzzy rules are created. As there is no 
derivative/differentiation, the proposed algorithm performs better than conventional approaches under critical conditions such as 
high R/X ratio, high loadability etc.  
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