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Abstract 
 
   Employing Biot's theory of wave propagation in liquid saturated porous media, longitudinal shear vibrations of composite 
poroelastic cylinders of infinite extent are investigated. The composite poroelastic cylinder is made of two different poroelastic 
materials.  The dilatations of liquid and solid media are zero, hence liquid pressure developed in solid-liquid aggregate is zero 
and no distinction is seen between pervious and impervious surfaces.  The non-dimensional frequency as a function of ratio of 
thickness of casing to radius of the core is determined and computed, for two types of composite poroelastic cylinders and then 
displayed graphically. The displacements of composite poroelastic cylinders are given and then exhibited graphically. These 
results are discussed.  The results of purely elastic solid are obtained as a special case.  
 
Keywords: Biot's theory, shear vibrations, displacement, composite cylinder, frequency equation. 
 
1.  Introduction 
 
   Gazis (1959) studied the wave propagation in hollow elastic cylinders. Baltrukonis and Gottenberg (1959) discussed the 
thickness-shear vibrations of circular bars of elastic material.  Employing Biot's theory (1956), Tajuddin (1982) studied the 
torsional vibrations of finite composite poroelastic cylinders with two concentric cylindrical layers having a common curved 
surface and a solid composite poroelastic cylinder bonded end to end.  Dynamic poroelasticity of thinly layered structures was 
given by Gelinsky et al (1998).  Degrande et al (1998) studied the wave propagation in layered dry, saturated and unsaturated 
poroelastic medium. Wisse et al (2002) presented the experimental results of guided wave modes in porous cylinders.  Chao et al 
(2004) studied the shock-induced borehole waves in porous formations. Tajuddin and Shah (2006, 2007, 2009, 2010) studied 
different problems on wave propagation in poroelastic cylinders. Shah (2008, 2010) investigated the axially symmetric vibrations 
of fluid-filled poroelastic circular cylindrical shells of various wall-thicknesses and flexural vibrations of coated poroelastic 
cylinders of infinite extent in absence of dissipation.  
   In the present analysis, the longitudinal shear vibrations of infinite composite poroelastic circular cylinder are investigated. A 
composite poroelastic circular cylinder consists of an inner solid poroelastic circular cylinder bounded by and bonded to a circular 
casing made of distinct poroelastic material. The frequency equation of longitudinal shear vibrations of such a composite 
poroelastic cylinder is derived and then discussed. Some results of physical interest are shown as special case.   Plots of non-
dimensional frequency versus ratio of wall-thickness to inner radius are presented for two different types of poroelastic composite 
cylinders and then the results are discussed. Non-dimensional displacements of the composite poroelastic cylinders are shown. The 
results of purely elastic solid are obtained as a special case.   
   The considered problem is of significance in preparing the logical design of guided missiles, solid propellant rocket motors 
where the natural frequencies of free vibrations are involved. These natural frequencies can be estimated by assuming that the 
mass of the propellant is included in the mass of the motor casing. In reality the motions of the casing and core are coupled and the 
modes of free vibrations that exist can only be accurately calculated by considering both the masses of the casing and core.  This is 
an interesting problem in a solid-propellant rocket motor. 
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2. Governing equations 
 
   The equations of motion of a homogeneous, isotropic poroelastic solid in presence of dissipation (b) following Biot (1956), are  

                                                                                                                                                                                                             (1) 

where ur (u, v, w) and U
r

(U, V, W) are solid and  liquid displacements;  ∇2 is the Laplace operator and e, ∈ are dilatations of solid and 
liquid media, respectively.  Here A, N, Q, R are all poroelastic constants; τ, β and η are the mass coefficients following Biot (1956) 
such that sums (τ+β) and (β+η) represents mass of solid and liquid, respectively, and β is mass-coupling parameter. 
 
        The stresses σij and the liquid pressure s are given by 
 

                                                                                                                                                                                                                 (2) 
where  δij is the well-known Kronecker delta function. 
 
3. Solution of the problem 
 
 Let (r, θ, z) be the cylindrical polar coordinates.  Consider a composite, homogeneous isotropic poroelastic solid cylinder of 
infinite extent with the radii of core r1 (inner poroelastic solid circular cylinder) and casing r2(outer poroelastic concentric shell) 
whose axis is in the direction of z-axis. The thickness of the casing is h[=(r2-r1)]>0.  The subscript ‘1’ and ‘2’ are used to denote the 
inner and outer materials of the poroelastic composite cylinder, respectively. Let the poroelastic constants of the considered problem 
are mA, mN, mQ, mR,  (m=1,2). 

 
The only non-zero displacement components of solid and liquid media w and W are 

                                                                                                                                                                                                             (3) 
 
where ω is the circular frequency and n is the angular wavenumber i.e., the number of waves around the circumference of the 
poroelastic composite cylinder. The quantities ω and n are identically same for both materials of the composite poroelastic cylinder 
since these are bonded at the interface r=r1.  The equations of motion (1) in cylindrical polar coordinates when w and W are 
functions of (r, θ, t) will be reduced to                                                                                                                                         

                                                                                                                                                                                                             (4) 
                 
 
Substitution of equation (3) into equation (4) results in  
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                                                                                                                                                                                                             (5) 
where 

 

and 

                                                                                                                                                                                                             (6) 
A solution of equation (5) gives 

                                                                                                                                                                                                             (7) 

In equation (7), C1, C2 and D1 are all constants and Jn, Yn are Bessel functions of first and second kind, respectively, each of order 

n  and  

 

 where V3 is a shear wave velocity (Biot, 1956). 

 

The relevant non-zero stress both for the core and casing are  

                                                                                                                                                                                                             (8) 
where a 'dash' over a quantity denote differentiation with respect to r. 
 

   With the help of equation (3), it can be seen that the dilatations of solid and liquid media each is zero.  Therefore the liquid 
pressure developed in solid-liquid aggregate ms (m=1, 2) is zero, following second equation of (2). Hence no distinction is made 
between a pervious and an impervious surface.  Also the frequency equation of longitudinal shear vibrations of poroelastic 
composite cylinder is same for both pervious and impervious surfaces. 
 
4. Frequency equation 
 
   The boundary conditions for stress free outer surface r=r2 and the perfect bonding between the core and the casing at the 
interface r=r1, are  
                                                                                                                                                                                                             (9) 
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First three equations of (9) are to be satisfied for a pervious surface, while the first two equations together with the fourth equation 
of (9) are to be satisfied for an impervious surface.  Since the liquid pressure is zero, third and fourth equations of (9) are satisfied 
identically. 
   Substitution of equations (7) into (3) and (8) and then the resultant into (9) yields three homogeneous equations for three 
constants C1, C2, and D1.  For a non-trivial solution to exist the determinant of the coefficients related to these equations must 
vanish.  By eliminating these constants the frequency equation of longitudinal shear vibrations of a composite poroelastic cylinder 
is 

                                                                                                                                                                                                           (10) 
where 

                                                                                                                                                                                                           (11) 

   In equation (11), n takes the integer values. Different values of n are taken for computation, viz., 0, 1 and 2.  Axially symmetric 
shear vibrations results for n=0.  For n=1, flexural vibrations are obtained, while n=2 gives typical non-axially symmetric 
vibrations. 
   To discuss the frequency equation (10), it is convenient to introduce the non-dimensional quantities.  Due to the dissipative 
nature of the medium, all the waves are attenuated.  Attenuation presents some difficulty in the definition of wave velocity, 
therefore we set b=0 in what follows. Then the non-dimensional variables are  

                                                                                                                                                                                                           (12) 
 
where ‘h’ is the thickness of casing,  1ρ = 1τ + 2 1β + 1η  and  Ω  is non-dimensional frequency with 1C0 is reference velocity ( 1C0

2 

= 1N/1ρ).  Let  

                                                                                                                                                                                                           (13) 

   Employing the non-dimensional quantities defined in equations (12) and (13) the frequency equation of longitudinal shear 
vibrations of a composite poroelastic cylinder (10) in absence of dissipation reduces to 

                                                                                                                                                                                                 (14) 
where the elements of Fij are given as 
                                                                                                                                                                       

                                                                                                                                                                                                           (15) 
where x and y are  
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5. Special cases 
 
   The composite poroelastic circular cylinder will reduce to poroelastic solid cylinder and hollow poroelastic cylinder depending 
on the poroelastic constants of the core, discussed below: 

 
5.1 Poroelastic solid cylinder 
   When the material parameters of the poroelastic core and casing are equal, then the composite poroelastic cylinder will become a 
poroelastic solid cylinder made of one material.  In this case,  2N=1N=N, 2q=1q=q (both positive), then the frequency equation of 
longitudinal shear vibrations (10) of a composite poroelastic cylinder in absence of dissipation is reduced to  

                                                                                                                                                                                                           (16) 
where 

  
Equation (16) when expanded gives product of two factors 
    
                                                                  D31(D11D22-D12D21)=0.                                                                                                    (17) 
 
Equation (17) gives either    D31=0   or    (D11D22-D12D21)=0,  i.e., 

                                                                                                                                                                                                           (18) 
 
Of these, it can be seen that 

                                                                                                                                                                                                           (19) 
and the second term of Eq.(18) contributing to a constant following the properties of recurrence relations related to Bessel 
functions (Abramowitz and Stegun, 1965).   
 
   Equation (19) is the frequency equation of longitudinal shear vibrations of poroelastic solid cylinder made of one poroelastic 
material considered by the authors (Tajuddin and Shah, 2010).  By eliminating liquid effects in equation (19), one can recover the 
results of purely elastic solid considered by Gazis (Eq.28, 1959), and Baltrukonis and Gottenberg (Eq.16, 1959).  
 
5.2  Poroelastic hollow cylinder 
   When the material constants of the core vanish, the composite poroelastic cylinder will become a hollow poroelastic cylinder.  
Setting 1N=0, 2N=N, 2q=q and 1q=2q at the interface r = r1, the frequency equation of longitudinal shear vibrations of a composite 
poroelastic cylinder (10) reduces to  

                                                                                                                                                                                                           (20) 
where 
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Equation (20) when expanded simplifies to                                                                                                                                      

 
It can be verified that Jn(qr1)≠0, and  

                                                                                                                                                                         (22) 
 
otherwise frequency equation (20) satisfies identically. Equation (22) is the frequency equation of longitudinal shear vibrations of 
hollow poroelastic circular cylinders discussed by Tajuddin and Shah (2010).  By eliminating liquid effects in equation (22) one 
can obtain the results of purely elastic solid of Gazis (Eq.25, 1959) and Baltrukonis and Gottenberg (Eq.18, 1959).  
 
 
6. Displacement of longitudinal shear mode 
 
   The total displacement of the composite solid cylinder comprising of core and casing is determined by using the boundary 
conditions that the outer surface of composite cylinder is free from stress and at the interface displacements are equal. The 
normalized displacement w* = w/1w (where w=1w+2w) of longitudinal shear mode, after a lengthy calculation, reduce to  

                                                                                                                                                                                                           (23) 

7. Results and discussion 
 
   Two types of composite poroelastic circular cylinders are employed to compute the non-dimensional frequency. These are 
composite poroelastic circular cylinders-I and II.  Composite cylinder-I is made of solid circular core of water saturated sandstone 
(Yew and Jogi, 1976) bonded to the casing of kerosene saturated sandstone (Fatt, 1959).  Similarly, in composite cylinder-II, the 
core is made of kerosene saturated sandstone and the casing is made of water saturated sandstone.  The non-dimensional physical 
parameters of composite cylinder-I and II are presented in Table-I given under: 

 
Table-I   (Material parameters of composite cylinders) 

Material parameter d1 d2 d3 g1 g2 g3 d 

Composite Cylinder-I 0.887 -0.001 0.099 0.877 0 0.123 0.30 

Composite Cylinder-II 0.891 0 0.125 0.901 -0.001 0.101 3.33 

 
   Non-dimensional frequency (Ω) versus ratios of thickness of the casing to radius of the core is presented. The thickness of the 
casing of the composite poroelastic cylinder is small when h/r1 is small.  As h/r1 is increasing, the thickness of the casing is 
increasing and when h/r1→∞, that is when r1→0, the poroelastic solid core will become a thin rod.  Therefore, the variations of h/r1 
from zero to infinity results from thin casing to core of small radius.  The frequency equation (14) is solved for a wide range of 
values of h/r1 for composite cylinder-I and II.  The values of angular wavenumber  n are taken for 0, 1 and 2.  Cases of n=0, 1 and 
2 respectively represent axially symmetric shear vibrations, flexural vibrations and non-axially symmetric vibrations.  These 
results are presented in figs.1-3. 
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   The non-dimensional frequency as a function of h/r1, for n=0 is shown in Fig.1. Fig.1 shows that for small values of h/r1 there is 
decrease in frequency for both the poroelastic composite cylinders.  As the values of h/r1 increases the frequency remains  

 

almost same for each of the first few modes of the composite cylinder-I.  The frequency increases with the increase of number of 
modes, that is, the frequency for second mode is higher than that of first mode.  The variation of frequency for composite cylinder-
II is similar in phenomenon to that of composite cylinder-I.   
 

 

                                                                                                                   
   The frequency of composite cylinder-II is higher than that of composite cylinder-I.  The non-dimensional frequency of composite 
cylinder-I and II for n=1, is presented in fig.2.  The variation of frequency is similar as in case of n=0.  The frequency of composite 
cylinder-II is less for n=1 than that of n=0, while the frequency of composite cylinder-I is nearly same for both n=0 and n=1.   The 
frequency of the composite cylinder-I and II in case of n=2 is shown in fig.3.  The variation of frequency in this case is similar as 
discussed in case of n=0. 
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   The normalized displacement of poroelastic composite cylinders-I and II for thick casing are presented each for second and third 
longitudinal shear mode in case of axially symmetric shear vibrations in figs.4-5. Figure.4 shows that the variation of displacement 
of composite cylinder-II is more than that of composite cylinder-I.  Besides the displacement is non-linear.  The normalized 
displacements of third longitudinal shear mode are shown in fig.5.   From fig.5, it is clear that displacement of composite cylinder-
II is higher than that of composite cylinder-I. Displacements for flexural vibrations are presented in figs.6-7 each for second and 
third longitudinal shear modes.  This variation is also similar to that of axially symmetric shear vibrations.  
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   Figures.8-9 shows the variations of displacements of second and third modes of non-axially symmetric vibrations.  In general, 
the displacements are non-linear and the displacement of composite cylinder-II is higher than that of composite cylinder-I both in 
case of flexural and non-axially symmetric vibrations. 
 
8. Concluding remarks 
 
The investigation of longitudinal shear vibrations of composite poroelastic cylinders has lead to the following conclusion: 
 
(I) The frequency of poroelastic composite cylinder-I is almost same for wide range of values of h/r1, that is, as h/r1→∞  the 

frequency remains almost same for each of the first few modes.  This is not true for poroelastic composite cylinder-II. 
(II) The frequency of poroelastic composite cylinder-II is higher than that of poroelastic composite cylinder-I for the axially 

symmetric, flexural and non-axially symmetric vibrations. 
(III) The frequency of poroelastic composite cylinder-I is nearly same for all the modes of vibration. 
(IV) The frequency of poroelastic composite cylinder-II is nearly same for axially and non-axially symmetric vibrations while it 

is slightly less for flexural vibrations. 
(V) In general, normalized displacements are non-linear and the displacement of composite cylinder-II is higher than that of 

composite cylinder-I. 
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Nomenclature 
 
( z θ, r, )           Cylindrical polar coordinates 
ur                      Solid displacement  

U
r

                    Liquid displacement  
r1                                  Radius of core (inner cylinder) 
r2                       Outer radius of casing (outer cylindrical shell) 
e                       Dilatation of solid 
∈                      Dilatation of liquid 

2∇                    Laplace operator in cylindrical polar coordinates 
b                        Dissipation 

ijσ                     Stresses 
s                        Liquid pressure 
A, N, Q, R        Poroelastic constants 

ηβ,τ,              Mass coefficients 

2

2

2

2

r
n

dr
d

r
1

dr
d                  Δ −+  

(x)Jn                Bessel function of first kind of order n and argument x 

(x)Yn               Bessel function of second kind of order n and argument x 

3V                      Shear wave velocity 
N                        Angular wavenumber 
ω                       Circular frequency 
Ω                       Non-dimensional frequency 
g                         r2/r1 
 
 
References 
 
Abramowitz, A.,  Stegun, I.A., 1965.  Handbook of Mathematical Functions, National Bureau of Standards, Washington. 
Baltrukonis, J.H., Gottenberg, W.G., 1959. Thickness-shear vibrations of circular bars,  J.Acoust.Soc.Am.,  Vol.31,  pp.734-739. 
Biot,  M.A., 1956.  Theory of propagation of elastic waves in fluid-saturated porous solid, J.Acoust.Soc.Am.,  Vol.28,  pp.168-178. 
Chao, G., Smeulders, D.M.J., van Dongen, M.E.H., 2004.  Shock-induced borehole waves in porous formations: Theory and 

experiments,  J.Acoust.Soc.Am.,  Vol.116,  pp.693-702. 
Degrande, G., De Roeck, G., van Den Broeck, P.,  Smeulders, D., 1998. Wave propagation in layered dry, saturated and 

unsaturated poroelastic media, Int.Journal of Solids and Structures., Vol.35, pp.4753-4778. 
Fatt, I., 1959. The Biot-Willis elastic coefficients for a sandstone,   J.Appl.Mech., Vol.26, pp.296-297. 
Gazis, D.C., 1959. Three-dimensional investigation of the propagation of waves in hollow circular cylinders.I: Analytical 

Foundation,  J.Acoust.Soc.Am., Vol.31, pp.568-573. 
Gelinsky, S., Shapiro, S.A., Muller, T., Gurevich, B., 1998. Dynamic poroelasticity of thinly layered structures, Int.Journal of 

Solids and Structures.,  Vol.35,  pp.4739-4751. 
Shah, S.A., 2008.  Axially symmetric vibrations of fluid-filled poroelastic circular cylindrical shells,   Journal of Sound and 

Vibration., Vol.318, pp.389-405.  
Shah, S.A., 2010.  Flexural wave propagation in coated poroelastic cylinders with reference to fretting fatigue,  Journal of 

Vibration and Control.,  (Available online:doi:10.1177/1077546309360051). 
Shah, S.A., Tajuddin, M., 2009.  Axially symmetric vibrations of finite composite poroelastic cylinders, International Journal 

Applied Mechanics and Engineering., Vol.14,  pp.865-877. 
Tajuddin,  M., 1982. Torsional vibrations of finite composite poroelastic cylinders, Indian.J. Pure and Appl.Math.,  Vol.13,   

pp.375-381. 
Tajuddin, M., Shah, S.A., 2006. Circumferential waves of infinite hollow poroelastic cylinders, Trans.ASME, J.Appl.Mech., 

Vol.73,  pp.705-708. 
Tajuddin, M., Shah, S.A., 2007. On torsional vibrations of infinite hollow poroelastic cylinders,  Journal of Mechanics of 

Materials and Structures, Vol.2, pp.169-200. 



Tajuddin and Shah /International Journal of Engineering, Science and Technology, Vol. 3, No. 2, 2011, pp. 22-33 

 

33

 

Tajuddin, M.,  Shah, S.A., 2010. Radial vibrations of thick-walled hollow poroelastic cylinders,  Journal of  Porous Media.,  
Vol.13,  pp.307-318.  

Tajuddin, M., Shah, S.A., 2010. Longitudinal shear vibrations of hollow poroelastic cylinders, Bulletin of Cal. Math. Soc.,  
Vol.102,  pp.289-298.  

Wisse, C.J., Smeulders, D.M.J., van Dongen, M.E.H., Chao, G., 2002.  Guided wave modes in porous cylinders: Experimental 
results,  J.Acoust.Soc.Am., Vol.112,  pp.890-895. 

Yew,  C.H.,  Jogi,  P.N., 1976.  Study of wave motions in fluid-saturated porous rocks,  J.Acoust.Soc.Am., Vol.60, pp.2-8.  
 
Biographical notes 
 
Late Dr.M.Tajuddin was a Professor in the Department of Mathematics Osmania University, Hyderabad, India. He had more than 30 years of experience in 
teaching and research. His area of research includes wave phenomena aspects in elastic porous media.  He had published more than forty papers in referred national 
and international journals. He had also presented several research articles in national and international conferences.   
 
Dr. S. Ahmed Shah is professor in the Department of Mathematics, Deccan College of Engineering and Technology Hyderabad, India.  He has more than 19 years 
of teaching experience.  He published papers in referred national and international journals and has more than 11 years of research experience.  He attended and 
presented papers in national and international conferences. His area of research includes stress wave propagation in poroelastic solids. 
 
 
Received September 2010 
Accepted March 2011 
Final acceptance in revised form March 2011 
 
 


