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Abstract

The effective material properties are predid@mdcomposites with different shape and size ofusions such as cylindrical
fibers, spherical and elliptical particles and wgitical fibers with hemispherical ends. The analysibased on a numerical
homogenization technique using finite element metho connection with three-dimensional represewgatiolume element
models. Investigations are carried out to studyitflaence of various parameters like volume fractiaspect ratio and particle
distribution. Results are discussed and compared.
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1. Introduction

The development and characterization of multfiomal composite materials have been focus byrésearch community in
recent years with emphasis on the potential apica and benefits for various industries. Therrastic composites constitute
an important class of materials with a wide varietypplications ranging from aerospace structares electronic printed circuit
boards to recreational and commercial equipmenmeSof the most important and useful propertieshelsé composites are
lightweight, high strength and stiffness, excell&Fdtional properties, good resistance to fatigunel retention of these properties
at high temperatures. The combination of theseeit@s has placed thermo-elastic composites atrirlkk among materials used
for heat shields, leading edges, re-entry tipskebaozzles and brakes for military and advancedian aircrafts. The effective
thermo-mechanical properties of the composite déppon properties of the constituents and the filodame fraction.

Many authors have developed techniques to stbdyelastic behavior of fibrous composites. Theyetinto account the
existence of an intermediate layer between theixnamd the fiber (Agbossou et al, 1997). These kjyers are called interphases
or interfacial zones between fiber and matrix. €fective utilization of the fiber reinforced congites depends on efficient load
transfer from the matrix to fibers through theseiphases. These interphases are formed due texéonple, chemical reaction
between the matrix and fiber materials or the userotective coatings on the fiber during manufacm Although small in
thickness, interphases can significantly affectaterall mechanical properties of the fiber-reicat composites. It is the weakest
link in the load path, and consequently most fa#uin fiber reinforced composites, such as debgndiber pullout, and matrix
cracking, occur in or near this region. Thus, itiacial to fully understand the mechanism andot$fef the interphases on the
overall material properties of fiber reinforced qmusites. Several homogenization techniques have Heeeloped to obtain a
suitable constitutive model to be inserted at tleemmscopic level. Homogenization is a mechanicedasodeling scheme that
transforms a body of a heterogeneous materialantonstitutively equivalent body of a homogeneowadenial, where the total
energy stored in both systems is approximately sdihe macroscopic properties are determined bymaobenization process,
which yields the effective stresses and strainm@an the effective, homogenized sample of mdtefiae sample of material is
often called as statistically representative voluabement (RVE) or unit cell (Berger et al, 2005heTRVE generation of
homogenized composites and its representativeesepted in Figs. 1 & 2.
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Matrix
Fig. 1. Generation of RVE from a given composite
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Fig. 2. Representation of surfaces of RVE

Modeling and prediction of the overall elastilagtic response and local damage mechanisms imogeteeous materials in
general and particle-reinforced composites in paldr, is a very complex problem. Analytical andpémcal models provide an
effective way for predicting the properties of cargjpes from the known properties of its constitsemspecially for simple
configurations of the phases. Even if analytical aami analytical models have been developed tombenize fiber composites,
they are often reduced to specific cases. A fielement analysis was attempted to describe thevlwehaf these materials,
because there is no restriction on the geometzrg, snaterial properties and number of phases irctneposite (Berger et al,
2006). Kari et al, 2007, have studied the influeateandomly distributed spherical and cylindripalrticle reinforced composites
using numerical homogenization techniques withqatici boundary conditions, as shown in Fig. 3.
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Fig. 3. Steps of numerical homogenization technique

In order to determine the best predictions efédlastic properties of an aligned unidirectionfaéif reinforced composite, spatial
distribution of the reinforcing fibers should benstered. The random nature of the transverse pgaki the composite had a
significant influence on the transverse elasticstamts; and to predict them accurately, this micusture aspect have to be
considered. Several authors have reported the lweha¥ the composite materials with multi-scale sggzh. The overall
properties of the composites that are obtained filoenexperimental results are well fitted with fhegestigations made either
through the micro or macro mechanical analysis. pitegpagation of interfacial cracking or de-cohesiriiber-matrix interfaces
has been successfully modeled by a number of ms&ar using the cohesive volumetric finite elenmapthods(Hashin, 2002,
Kari 2006, Kari et al, 2007, Liu et al, 2000, Ranabsal, 2001, Wang 1998). A majority of these ®adave been used for unit
cell models, which assume that the material is titoisd of periodic repetition of single cells. Dteelack of structural simplicity
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of continuous fiber composites or laminates, th@dielement method (FEM) are often more suitaltda tanalytical modeling for
multiphase materials. Therefore, finite elementhuodtis used to determine the effective propertieshe multi-shaped fiber
composites.

In this paper, the effective material propertésandomly distributed particle loaded compositese calculated by considering
a representative volume element (RVE) approactstlfirconsidered the existence of a RVE, and careaty adopted the
deterministic, homogeneous continuum theories, b not clearly account for random microstructutasgyenerating the RVE
approach, consider; (i) statistical homogeneityesentative and (ii) select a sufficiently largeesof the RVE relative to the size
of the inclusion to ensure the independence ofbitnendary conditions. Based on a unit cell modehveippropriate periodic
boundary conditions and load cases the finite efdmeethod was used to calculate the full set oéatife coefficients of the
composite. General numerical homogenization coneegd used, which can be extended for the composités arbitrary
inclusions. The material properties for all anayaie listed in Table-1.

Table 1. Material parameters used for the analysis

Material Young's Modulus (GPa) Poisson’s Ratio
Fiber/ Particle (SiC) 450 0.17
Matrix (Aluminum Alloy) 70 0.3

2. Congtitutive equations and unit cell models

The generalized Hooke's law can be formulated toretate the stiffness matrix I average stress; and straing;, for
homogenized composites as (Berger et al, 2006)

S @ G Gs Cu GCs Gg €11
G22 G, Gs: G Gs G €22
033 = & Gy Css  Cas €33 (2)
G23 G Cis  Cus €23
G631 6 Ge €31
G12 % €12

For the transversely isotropic material, thbawior of the composite is governed by five indefet constants and all others
are nullified because the transversely isotropiteni is having one axis of revolution in addititwmee symmetry planes that are
mutually orthogonal. The stiffness matrix remaimshanged due to an arbitrary rotation of the refegesystem about this axis.
The use of this property leads to:

Cii= Cp, Cr=Cyy, Cus= Css and C66 = (G-C)/2 2

The relations between the effective elastic modaht stiffness constants can be written as,

2(Cyy)°
E=Cu+ ——— ()
C11 + C12
Vi3 = & (4)
C11 + C13
E=Cu+ (023)2 (Cn B 2012) + Css (C12)2 (5)
(Czs) ? - C33C11
Vip = (Czs)2 B C33C12 (6)

) (Czs)2 - C33C11

3= Cyy (7)



55 Srivastava et al. / International Journal of Engémi;g, Science and Technology, Vol. 3, No. 1, 2pp152-68

1
G= E (C11 - Clz) ®)

1
and, K= 5 (C,,+CL) )

where, Bz = Longitudinal Young's modulus,,E= Transverse Young's modulus,
vi13 = Longitudinal Poisson’s rati@o;, = Transverse Poisson’s ratio,
G,3 = Out-of-plane shear modulus or longitudinal sheadulus,
Gy, = In-plane shear modulus or transverse shear msdul
K33 = Bulk modulus

Finite RVE technique was used to define the nalteroperties with the help of five independemaséic constants by
considering randomly distributed different shap&ihforced with periodic boundary conditions. Thepipriate boundary
condition was applied to the unit cell in orderctdculate effective coefficient. The effective daménts such as zand G can
be evaluated by averaged non-zero stress and g&etior.

2.1. Periodic boundary conditions applied to RVE

Three-dimensional composite materials can peesented as a periodic array of the RVEs. Theogieriboundary conditions
can be applied to the RVE models. It is assumei] Wizen the deformation caused by the load is éxpeed by each RVE in the
composite, then there is no separation or overltden the neighboring RVEs after deformation dredaverage mechanical
properties of the RVE are equal to the averageestigs of the particular composite. Fig. 4 showes RVEs containing different
types of inclusions, which are placed suitably imittine different positions. When the load is applie the RVE, it is transferred
to the reinforcing material through the inclusioatnix interface. This is made possible by joinihg hode points of the inclusion
with the node points of the matrix material so tiansfer of load within the

® ®)

) : , ()

(E) o

Fig. 4. Complete meshed RVE models containing affesize, shape, volume fraction and distributbparticles within the
matrix material. (a) Cylinder (b) Ellipse (c) Spadd) Cylinder and Sphere (e) Cylinder and Elliffs&phere and Ellipse



56 Srivastava et al. / International Journal of Engémi;g, Science and Technology, Vol. 3, No. 1, 2pp152-68

Fig. 4. Complete meshed RVE models containing diffesize, shape, volume fraction and distributbparticles within the
matrix material. (g) Cylindrical fibers with hemtsgrical end and (h) Ellipse inclined at an angl@ta@-axis

RVE is effective. In case of fiber inclusiongytmay be aligned in one direction or the fibens loa distributed randomly within
the RVE itself. Fig. 5 shows both types of fibersaagement. Due to the manufacturing flexibilitiffetent shaped fibers became
easy to produce. With the careful control of thegeissing parameters, the spherical fibers can ineded in to elliptical shaped
fibers. Fig. 6 shows the randomly transversallyritiated elliptical fibers with their axis rotatdy an angle 20° to the Z- axis for
different volume fraction of the fiber inclusion.

Fig.5. Cylindrical fiber inclusions with hemispheai ends at 10% volume fraction (a) transversatgoanly distributed short
fibers (TRDSF), (b) randomly distributed short fis¢dRDSF)

Fig. 6: Transversally randomly distributed elligii¢ibers with the axes rotated by 20° to the Zsanith the volume fraction of (a)
5%, (b) 10%, (c) 15%, (d) 20% and (e) 25 % (plotkéithout RVE).
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2.2. Numerical homogenization of randomly distrdgumulti-shaped fiber composites

The RVE model is the unit cell containing thartiele inclusions in the matrix. The elastic cam¢ of the homogenized
composite are consisted randomly distributed shautti-shaped non-overlapping fibers. The cubic R¥Evolume L* are
obtained through FEA. The modified form of randoegential adsorption algorithm (RSA) is used fospecified distance
between neighboring inclusions. For uniformly dimited fiber orientations, and periodicity of thelwme elements, the distance
between axis of the particle ‘n’ and all the cylinglaxes j = 1,. .., (n -1) have to exceed ammini value (2 *r + L). Where r is
the radius of the short multi-shaped fiber and thies minimum distance between two adjacent pastiétaposed by the practical
limitations to create an adequate finite elemershm{&ari et al, 2007) If any surface of the pa#it! intersects any of the cubic
RVE surfaces, this condition has to be checked with cylindrical, spherical, cylindrical fibers withemispherical ends and
elliptical inclusions on the opposite surfaces iseathe microstructure of the composite is peri¢d]c Also the fiber surface
should not be very close to the cubic RVE surfacavell as corners of the RVE in order to avoid pnesence of distorted finite
elements during meshing (Berger et al 2005).

Fig. 8. Four cylindrical inclusions located at di#tnt geometrical locations within the RVE
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The RSA algorithm with the combination of theoab conditions is used to generate the fiber vokio@to a desired volume
fraction of fibers in a composite with uniformlysttibuted random fiber orientations. Algorithm wased for other shaped fiber
inclusions such as spherical, elliptical etc. aathkination of above cases, as shown in Figs. 78.vblume fraction was varied
from 10% to 60% for cylindrical fibers, 10% to 508 spherical fibers 5% to 25% for elliptical fikeand 3% to 20% for
combination of spherical, elliptical and cylindiidders with each fiber occupying the desired vodufraction. Higher volume
fractions and sizes of fibers are suitably adjusted deposited inside the RVE in descending mariiet is first depositing the
largest aspect ratio fibers and after reachingahmaming limit (i.e., no more fibers with that aspeatio can be deposited), again
depositing the next largest possible aspect rébiers in the RVE. With this approach the volumectien achieved is varied
keeping in views with the minimum distortion of tfiaite elements and the adequate mesh. The migpiscstructure of the
whole composite is calculated by considering a celit or representative volume element (RVE). Tdaptures the major features
of the underlying microstructure. Finite elementcatations were performed with the commercial FEEkame ANSYS. The
matrix and the fibers were meshed with 10 nodahetiron elements with full integration (Liu et2000)

The ANSYS parametric design language (APDL) waed to calculate the average strains, stressesféaxtive material
properties. The developed APDL scripts in combarativith the ANSYS batch processing, provide a péulgool for the fast
calculation of homogenized material propertiesarhposites.

3. Results and discussion
3.1. Influence of volume fraction when RVE remaursstant

Three-dimensional RVE models of fiber inclusiamere created containing different shape, sizedistdbution. For the mono-
disperse particles, using the described RSA algorithe highest volume fraction for the particlesrevdetermined. The jamming
factor limits the volume fraction of the fiber imsions in the RVE. The material properties sucklastic modulus (E), Poisson’s
ratio (v), shear modulus (G) and bulk modulus (K) are atersid for the study, which is divided into differexategories. The
volume fraction of fiber inclusions was varied ahé size of the RVE was kept constant. In the syleset analysis, the volume
fraction remains constant and size of the RVE lisaadd to change (Keri et al, 2007). The RVE modetach volume fraction is
subjected to uni-axial tensile as well as sheaprdedtion along the three axes of co-ordinates.affan of material properties of
cylindrical fibers with hemispherical ends for TRD&nd RDSF loaded composites with change in volfreions was studied
along with change in aspect ratio.
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Fig. 9. Variation of effective material propertiglsthe composites for cylindrical, spherical anlipétal fiber inclusion with
change of volume fraction (A) longitudinal Youngi®dulus, (B) longitudinal Poisson’s ratios, (Cntseerse Young's modulus,
(D) transverse Poisson’s ratio
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(D) longitudinal shear modulus, (E) transverse sheadulus, (F) bulk modulus

Different RVE models with randomly distributetort fibers are considered for each volume fra¢timd subjected to uni-axial
tensile as well as shear deformation along theethres of co-ordinates. The ensemble average @fffisetive material properties
at each volume fraction is considered as effectiaterial properties of the total composite at raticular volume fraction.
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Fig. 12. Variation of effective material propertigfsthe composites for transversely randomly disitied elliptical inclusion
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longitudinal Young’s modulus
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Fig. 12. Variation of effective material propertigisthe composites for transversely randomly distied elliptical inclusion
rotated at 20to the Z-axis, transversely randomly distributglindrical fibers with hemispherical ends and ramtipdistributed
cylindrical fibers with hemispherical ends and camigon with different analytical results (C) traasse shear modulus,
(D) bulk modulus

Figures (9-12) show the variation of effectivaterial properties such as Young’s modulus, Paissatio, shear modulus, and
bulk modulus respectively, with the change in vadufraction of fiber inclusion. Fig. 9(A) shows thariation of modulus in the
fiber direction, B3 with the variation of the volume fraction of fibmclusion. This shows the increase af ®ith increase of
volume fraction for single particle inclusion (i&ylindrical, spherical, elliptical fibers). It isbserved that the highest numerical
value of the result corresponds to the larger veldraction. This may be due to the fact that whenresin content of fiber is
more, then flaws appeared due to micro cracks amdsyv This may be present in the matrix that astshe point of stress
concentration and fractured at lower load (Kele007). With the increase of volume fractiorfibér content the above defects
minimizes and the proper interfacial bonding isieehd. After certain limit of the quantity of thesin content, it's difficult to
simulate the results due to the jamming effectallrihe analyses the RVE models containing thendyical fiber inclusion give
maximum value. The similar trend is also obsenedH;;, Gi,, Gsz and Kg; in all models. The results for the spherical and
elliptical inclusions are overlapped, due to corapte surface geometry. The values of the Poisgatis are decreased with the
increasing of volume fraction of the fiber inclusid’he uneven distribution of Poisson’s ratioerandv,; are not clear.

Also, rounded sphere-cylinders with the comtimaof cylindrical body and two hemispheric capgte both ends removing
the singularities are considered, as shown in Hig.lt is clear that fibers do not have roundedsdapt it can be considered as a
minor change in shape compared to plane cylindégadroach (Ramos et al, 2001). The material ptigzeare calculated
corresponding to the different volume fraction ief content. The Young’s modulus, shear modulustark modulus is found
to be increases with the increase of volume fracti@ut the values are found to be lower than théieeacases for cylindrical
inclusion alone. This might be due to the factafdr interfacial bonding in the smooth surfacesw®en load is applied to this
type material, it offers less resistance. Finatlynsider the pair inclusions of cylindrical- spleatj spherical-elliptical, elliptical-
cylindrical and pairs of particle inside the RVE, shown in Fig. 11. Due to jamming effect, the wadufraction of fiber inclusion
varies in different models. The cylindrical-sphaficombination gives the better results than tlierotwo combinations. Fig. 12
shows the variation of effective materials progartivith the ratio of major to minor axis (ellipsgated through Zbalong Z-axis
with 5% volume fraction) and rotation of major axdkng Z-direction. Material properties versus vodufraction of TRDSF
elliptical inclusion (a/b = 2, angle of rotation2€’ to Z-axis) is represented along with the TRDSF BREXSF cylindrical fibers
with the hemispherical end.

3.2. Influence of size of RVE on the effective ri@fgroperties & volume fraction of 30 %

The heterogeneous materials are analyzed thringgRVE technique having volume, which is suéfitly large enough for the
statistical representation of composites. It issiered to be capable of sampling of all microettital heterogeneity that occurs
in the composite (Wang, 1998). Such type of RVIEdpable of reproducing the bulk properties of ¢cbeposites. There is a
minimum size for the RVE (with short fibers), whihrequired to give appropriate effective matepiaperties of a macroscopic
composite structure. If the size of the RVE congdéds less than the minimum size required, it feag to a wrong prediction of
effective material properties. Numerical homogetiaratechniques can help in determining the critgiae of the RVE. In order
to determine the minimum size of RVE, identical sHiber particles were considered and by changfiregsize of the cubic RVE,
the effective material properties were obtained30% volume fraction. Figs. 13 and 14 show theatem of effective material
properties in response to the change in size oRYE. With identical aspect ratio of fibers (lengthfiber/diameter of fiber)
using this algorithm, it is possible to generateta30% volume fractions RVE models. But, it is patssible to generate higher
volume fraction RVE models because of the jammimit.| Studies are presented to determine the effetiie size of RVE on the
effective material properties of these composites.
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For this purpose, we considered the cubic lemdtthe RVE that varies from 0.4 to 2 unit lengithe single inclusion like
cylindrical, spherical and elliptical is consideretihe cylindrical inclusion RVE model gives thesbeesults in comparison to the
other cases. In the same analysis also assumethéhabmbine cases of elliptical-cylindrical, cyliical-spherical and spherical-
elliptical fiber inclusion. The spherical-cylindakcombination gives the best result in comparisoithe other two varieties as
mentioned earlier
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3.3. Influence of the position of fiber inclusia@red number of inclusions in RVE- volume fractios?a.

The influence of position of fiber inclusion & important aspect, which is studied along wité distribution of fibers at
different locations within the RVE. First, considdra spherical fiber inclusion, as shown in Figad &hange its position by
varying its centre coordinates within the RVE. Tdo®ordinate points for the geometrical centre ofshbkere(s) are shown in the
Table-2. In this analysis the volume fraction digfi remains constant where as only the numberhafrspand its position changes.
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Table 2. Coordinate points of the spherical indngs) for different location points within the RVE

4 spheres Coordinateg Coordinates | Coordinates | Coordinates | Coordinates
for the for the for the for the for the
position 1 position 2 position 3 position 4 position 5
X1 0.5 0.5 0.5 0.5 0.5
Y1 1 1.3 1.3 1.3 1.3
Z1 0.5 0.5 0.5 0.5 0.5
X2 0.5 0.5 0.5 0.5 0.5
Y2 1 1 1.3 1.3 0.8
Z2 15 1.5 15 15 15
X3 15 15 15 15 15
Y3 1 1 1 0.8 1.3
Z3 0.5 0.5 0.5 0.5 0.5
X4 15 15 15 15 15
Y4 1 1 0.8 0.8 0.8
Z4 1.5 1.5 15 1.5 1.5
Table 3. Coordinate points of the cylindrical irgibin(s) for different location points within the BV
4 cylinders | Coordinates for Coordinates | Coordinates | Coordinates | Coordinates
the position 1 for the for the for the for the
position 2 position 3 position 4 position 5
X1 0.5 0.5 0.5 0.5 0.5
Y1 1 1.3 1.3 1.3 1.3
Z1 0.5 0.5 0.5 0.5 0.5
X2 0.5 0.5 0.5 0.5 0.5
Y2 1 1 1.3 1.3 0.8
z2 15 15 15 15 15
X3 15 15 15 15 15
Y3 1 1 1 0.8 1.3
Z3 0.5 0.5 0.5 0.5 0.5
X4 15 15 15 15 15
Y4 1 1 0.8 0.8 0.8
Z4 15 15 15 15 15

The positions of these inclusions were changithdin the RVE, as given in Table-3 and the congami of effective material
properties are represented in Figs. 15 and 16.r&&alt shows that the single spherical/cylindriitlaér inclusion gives better
material properties.

The spherical inclusion suffers from the drawbdtat a large volume fraction has to be used toiexe the strength as
compared to elliptical and multi shaped inclusiomposites. The composites with cylindrical inclimsican be used where very
high strength material is required. Also, it waarfd that the change of position as well as numilees not alter the properties of
the RVE.
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Fig. 15. Variation of effective material propert@fsthe composites for one sphere, two spheresandpheres inclusion(s) with
change in absolute position at different locatiphslongitudinal Young’s modulus, (B) transversedfm’s modulus
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3.4. Influence of volume fraction on the cylindtifther with hemispherical ends

The effect of the material properties with thenge of the volume fraction of the randomly distted (RDCFH), transversely
randomly distributed cylindrical fibers with the rhispherical ends (TRDCFH) and transversely randodigyributed elliptical
fiber rotated at an angle 2 the Z-axis (TRDSF/20) was considered for the analysis. It was obsethat the numerical value
of the transverse Young's modulus,{Fat 5% volume fraction of fiber inclusion is almdbe same for the TRDSF and RDSF
arrangement of cylindrical fibers with hemisphekieads but there is an improvement of 3% in theecak elliptical fiber
inclusion (Liu et al 2000). Corresponding to 10, d%d 20% volume fraction, the randomly distributsdindrical fibers with
hemispherical ends shows 4.5, 4.1 and 1.94 % ingpnewnts over the transversely randomly distributedlar kind of fibers. At
higher volume fraction i.e. 25%, the nature of HRDSF for the hemispherical ended cylindrical filgmt reversed and an
improvement of 4.7 % is observed. The TRDSE/8ows an improvement of 4, 13, 17.7, 20.5 and % dnh TRDCFH for 5,
10, 15, 20 and 25% volume fraction. There is ameiase in trend is observed fog;Rvith the variation of volume fraction for
RDCFH, TRDCFH and TRDSF/2D At lower volume fraction, say at 5% and 10%, ¢hés no considerable amount of
improvements in the properties is observed fgy it at higher volume fraction, say at 25%, the TRI28,° shows 9% and
16.3% improvement over RDCFH and TRDCFH. Similantt is observed for & where the TRDSF/20 shows superior
properties than RDCFH and TRDCFH over the incréagbe volume fraction of the fiber inclusion. Hdgs, the curve for the
RDCFH and TRDCFH almost overlap with each othertbate is a linear increase in the properties seoked for TRDSF/28
TRDSF/2Q° produces 5.5% improvement for 5% volume fractind 82.5% improvements at 25% volume fraction ovBCRH
and TRDCFH.

3.5. Variation of material properties
The effect of aspect ratio is an important cdesition for the analysis of composite performantehanges the aspect ratio
from the numerical value 1 to 6. The property lkg, E;; and G, remains almost linear for the different valuesaspect ratios

for TRDCFH, as can be identified from Fig. 17. Totwrves for the RDCFH show some irregular deviatimal the cause is
unknown at this moment. Alsérom the earlier analysis it was observed that TRR28° shows better properties over the range of

the volume fraction of the fiber inclusion.
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Fig. 17. Variation of effective material propertigisthe composites for cylindrical fiber with hesgherical end inclusion(s) with
the variation of aspect ratio and comparison witfeknt analytical results (A) longitudinal Yoursgmodulus, (B) transverse
Young's modulus, (C) transverse shear modulus]dqbjitudinal shear modulus
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Fig. 18(A) shows that, the material propertiesnot change with the changes of aspect ratid RIDSF/2Q°. The effect of the
angular positioning of the elliptical fiber in tiRVE is an important aspect and need complete dmallysr this purpose, the
volume fraction of the elliptical fiber inclusios kept constant i.e. 5% and the ratio of the maxis to the minor axis is 2, as can
be seen from Fig. 18 (B). It was found that, theowes properties such asz#E; 1, Ki3, Gi3 and G, are unaffected by the different
angular positions of elliptical fiber i.e’@ 25 with 5° increments. There is an unexpected drop is obdeoreall the above
properties at the £@ngular position.
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Fig. 18. Variation of effective material propertiebthe composites for the elliptical fiber inclasi (A) ratio of major axis to
minor axis of the ellipse = 2 and rotated at arl@@@ to the Z-axis with the variation of the ratio ofjor axis to minor axis, (B)
at constant volume fraction of 5% with the ratiatlod major axis to the minor axis =2 with the vaoia of the angle of rotation of
the major axis along the Z direction, (C) at atipatar angular position 200 to the Z axis and tantsvalue of the ratio of major
axis to minor axis =2 with the variation of the wale fraction.

The elliptical fiber with the ratio of Major &xto the Minor axis 2, which is placed in the R¥Ea constant angular position°20
to the Z-axis is consider for the analysis, as showFig. 18(C). The volume fraction of the fibeciusion was varied from 5% to
25% with increments of 5%. It was found that theparties like ks, E;1, Ki» and G, gradually increases with the increase of the
volume fraction of the fiber inclusion (Berger ét 2006). The increments in the properties fgs, [E;;, K1 and G, from 5% to
25% volume fraction are 30.65, 30.67, 22.45 and 828pectively.
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4. Conclusions

Numerical homogenization tools have been dgezldor the evaluation of the effective materiadperties of the short fiber
composites. The results showed that the effectiadenal properties depend mainly on the volumetioac Also, Young's
modulus, shear modulus and bulk modulus propectesbe improved with the increase of fiber volumaetion. Volume fraction
for cylindrical, spherical and elliptical fiber ilusions can not be increased more than 50%, wreir the combined cases, it
should be in between 3 to 15% to avoid the jamneaifigct. This statement is valid for linear elastase for the evaluation of
effective material properties only.
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