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Abstract  
    
   Helicopter dynamics are in general nonlinear, time-varying, and may be highly uncertain. Traditional control schemes such as 
proportional–integral–derivative (PID) control, linear quadratic regulator (LQR), and eigen-structure assignment are usually not 
effective when a linearized model is used and the helicopter moves away from the design trim point. This paper presents a 
nonlinear model predictive control (NMPC) method to control the elevation and travel of a three degree of freedom (DOF) 
laboratory helicopter using successive linearization to approximate the internal model of the system. The developed algorithm is 
evaluated by simulation, and its performance is compared with that achieved by linear model predictive control (LMPC). 
 
Keywords:  nonlinear systems, helicopter dynamics, MIMO systems, model predictive control, successive linearization  
 
1. Introduction 
 
   Helicopters have severe nonlinearities and open-loop unstable dynamics as well as significant cross-coupling between their 
control channels, which make the control of such multiple-input multiple-output (MIMO) systems a challenging task. 
Conventional approaches to helicopter flight control involve linearization of these nonlinear dynamics about a set of pre-selected 
equilibrium conditions or trim points within the flight envelop (Kim, 1993). Based on the obtained linear models, classical single-
input single-output (SISO) techniques with a PID controller are widely used (Reiner et al, 1995; Kim et al, 1997; Lee et al., 2005). 
Of course, this approach will require multi-loop controllers, which makes their design inflexible and difficult to tune. Hence, the 
MIMO controller design approaches have received more and more attention. For example, successful implementation of LQR 
design for a helicopter system has been presented in (Apkarian, 1998). Also, Koo et al (1998) used dynamical sliding mode control 
to stabilize the altitude of a nonlinear helicopter model in vertical flights.  Later, neural network based inverse control of an aircraft 
system was presented in (Prasad et al, 1999). More MIMO control approaches for helicopter maneuver are presented in (Sira-
Ramirez et al., 1994; Mahony et al., 2004; Marconi et al., 2007, Tao et al., 2010).  
   In the past two decades, model predictive control (MPC) has been widely used in industrial process control (Lee et al., 1994; 
Ricker et al., 1995; Qin et al., 2003; Dua et al., 2008). With the development of modern micro-processors, it has been possible to 
solve the optimization problems associated with MPC online effectively, which makes MPC applicable to systems with fast 
dynamics (Wang et al., 2010; Zhai et al., 2010).  Many researchers utilized linear MPC to control helicopter systems (Witt et al, 
2007; Maia et al., 2008). However, as the linearized model is valid only for small perturbations from its equilibrium or trim point, 
the control performance can degrade severely if the helicopter does not operate around the design trim point. 
   In this paper, a nonlinear model predictive control based on successive linearization (MPCSL) of the nonlinear helicopter model 
is applied to a laboratory helicopter system to achieve acceptable performance over a wide flight envelope. The performance of the 
applied control technique is illustrated and compared to that of LMPC by comparing the steady state error, rise time, and overshoot. 
This paper is organized as follows. First the dynamical model of a laboratory helicopter system is presented, followed by a 
description of the applied successive linearization based NMPC used to control the elevation and travel of the helicopter. Then, 
simulation results are presented to illustrate the effectiveness of the proposed control algorithm. Finally, conclusions are drawn in 
the last section. 
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2. Helicopter system dynamics 
    
   It is economical for both industrial and academic research to investigate the effectiveness of an advanced control system before 
putting it into practical application. The research presented in this paper is based on a mathematical model of a 3-DOF laboratory 
helicopter system from Quanser Consulting, Inc. The 3-DOF helicopter consists of a base upon which an arm is mounted. The arm 
carries the helicopter body on one end and a counter weight on the other end. The arm can pitch about an elevation axis as well as 
swivel about a vertical (travel) axis. Encoders that are mounted on these axes allow measuring the elevation and travel of the arm. 
The helicopter body is mounted at the end of the arm and is free to swivel about a pitch axis. The pitch angle is measured via a 
third encoder (Apkarian, 1998). Due to hardware restrictions, the movement range of the elevation and pitch angles are constrained 
within [-1, +1] rad (Ishitobi et al., 2010). Two DC motors with propellers mounted on the helicopter body can generate a force 
proportional to the voltages applied to the DC motors. The force generated by the propellers can cause the helicopter body to lift 
off the ground. The purpose of the counterweight is to reduce the power requirements on the motors. The helicopter experimental 
system is shown in Figure 1 (Quanser, 2010). 
 

 

Figure 1: Laboratory Helicopter from Quanser Consulting, Inc. 
 

   The system dynamics can be described by the following highly nonlinear state model (Apkarian, 1998): 
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( )[ ] εJgLMgLMMp ccabf ++−=1                  ( )[ ] εδδ JgLMgLMMp cccaabf tantan2 ++−=  

εεη Jp −=3                                                             εJLKp am=4            

( ) θJgLMMp hbf +−=5                                     ( ) θδ JgLMMp hhbf tan6 +−=  
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φφη Jp −=9                                                            φJLKp am−=10  

( ){ }aeda LLL += −1tanδ             { }cdc LL1tan−=δ                     { }heh LL1tan−=δ  
 
and, the symbols used in the above model are described in Table 1. 
 
                                            Table 1. Notation and units used in the laboratory helicopter model 

Symbols Unit Description 

ε  Degree Elevation angle 

θ  Degree Pitch angle 

φ  Degree Travel angle 

fV , bV  Volt Voltages applied to the front and back motor 

fM , bM  kg Mass of the front section of the helicopter, and mass of the rear section 

cM  kg Mass of the count-weight 

dL  m The length of pendulum for the elevation axis 

cL  m The distance from the pivot point to the counter-weight 

aL  m The distance from the pivot point to the helicopter body 

eL  m The length of pendulum for pitch axis 

hL  m The distance from the pitch axis to either motor 
g  m/s2 Gravitational acceleration 

εJ ， θJ ， φJ  kg m2 Moment of inertia about the elevation, pitch and travel axes 

εη ， θη ， φη  kg m2 /s Coefficient of viscous friction about the elevation, pitch and travel axes 
 
   In this research, a model predictive control algorithm with successive linearization is investigated for the control of the elevation 
and travel in the helicopter system by manipulating the voltages applied to the front and back motors. Therefore, elevation angle,  
ε,  and travel angle, �, are chosen as the controlled variables, i.e., 
 

[ ]Ty φε=                                      (2) 
 

and the two voltages, fV  and bV , are chosen as the manipulated variables, i.e., 
 

[ ]Tbf VVu =                                   (3) 
 

   For such dynamical system with severe nonlinearities, the direct MIMO control is challenging; however, this challenge can be 
overcome using successive linearization as described in the next sections. 
 
3. NMPC using successive linearization 
 
   Ishitobi et al. (2010) have shown that the nonlinear model described in Section 2 captures the essential dynamic behavior of a 
laboratory helicopter, and therefore, it is used in this work to describe the Quanser laboratory helicopter system and to design the 
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MPCSL scheme. At every instance, the nonlinear model is linearized at the current state and the control input. Then, the obtained 
linear model is used in MPC. This successive linearization makes the predictive model represent the latest operating condition of 
the helicopter. In addition, if compared with conventional MPC, the use of a linearized model reduces the computational effort in 
solving the MPC optimization problem significantly, and makes the developed control algorithm more realistic to meet the 
requirement of a real-time control system. The remainder of this section describes the MPCSL algorithm in more detail. 
 
3.1. Model Linearization 
   The nonlinear system in section 2 can be written as: 
 

( )uxfx ,=& ， xnx ℜ∈ ， unu ℜ∈                     (4) 
 

and, 
( )uxgy ,=              yny ℜ∈                                  (5) 

 
where xn , un and yn  are the dimensions of state vector, manipulated variables and controlled variables, respectively. The 
equations (4) and (5) can be linearized as follows:  
 

( ) ( ) ( )0000, uuBxxAuxfx −+−+≅&                     (6) 
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are matrices of the appropriate sizes. At a given time sample,  0x  and 0u  represent the current state and control vectors, 
respectively. Using equations (1), (6), (7), these system matrices can be obtained as follows:  
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   After linearization, the linearized model is discretized and the discrete model is used in MPC as described next. 
 
3.2 MPC algorithm 
   The diagram below depicts the structure used by the model predictive controller. 

 
Figure 2: The structure of model predictive controller 

 
   As shown in Figure 2, once the model has been obtained, it can be used as an internal model of a predictive controller. The 
model generates predictions of future process outputs over a specified prediction horizon, which are then used to minimize the 
following MPC objective criterion:  
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where M and P are the control and prediction horizons respectively, ee nnQ ×ℜ∈  and uu nnR ΔΔ ×ℜ∈  are the weighting matrices 

for the output error and the control signal changes respectively, and ye nPn ×= , uu nMn ×=Δ . en
kr ℜ∈  is the output 

reference vector at kt , and Lu , Uu  are constant vectors determining the input constraints as element-by-element inequalities (Al 
Seyab et al, 2008). By minimizing the objective function in equation (8), the MPC algorithm generates a sequence of control 
inputs ku  and 1,,1,0 −= Mk L , as illustrated in Figure 3 (Qin et al., 2003).  
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Figure 3: Manipulated variable profile 

 
   Then, only the first element in this control sequence is implemented and the whole procedure is repeated at next sampling instant. 
In this research, the internal model used by the model predictive controller is a linear model that is obtained by linearizing the 
nonlinear helicopter model at each sampling instant. Therefore, the optimization problem above is a standard quadratic 
programming problem (QP) which can be solved by any modern QP solvers. Given the medium size of optimization problem in 
this application, the active set method is used here to efficiently solve this online optimization problem (Fletcher, 2000; Nocedal et 
al., 2006). 
 
4. Simulated Example 
 
   In this example, the MPCSL control algorithm described earlier is applied to the nonlinear helicopter model using 
MATLAB/SIMULINK. The voltages fV  and bV  of the two motors are assumed to be changeable in the range [ ]VV 5,0 . The 
nominal values of the physical constants in the helicopter test-bed are as follows (Ishitobi, et al., 2010): 

286.0 mkgJ ⋅=ε ,   2044.0 mkgJ ⋅=θ    282.0 mkgJ ⋅=φ , 

mLa 62.0= ,   mLc 44.0= ,   mLd 05.0= ,   mLe 02.0= ,   mLh 177.0= , 

kgM f 69.0= ,   kgMb 69.0= ,   kgMc 69.1= ,   VNKm /5.0= ,   2/81.9 smg = , 

smkg /001.0 2⋅=εη ,    smkg /001.0 2⋅=θη ,    smkg /005.0 2⋅=φη ,     

   In this simulation, the reference signals for the elevation and travel angles are changed between o20−  to o20  to simulate the 
demands given by the pilot as shown in Figures 4, and 5. Also, the sampling time and simulation time used are 0.1 and 200 
seconds, respectively. 
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Figure 4: Reference signal for the elevation angle 
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Figure 5: Reference signal for the travel angle 

   In order to show the advantages of the MPCSL method when used to control this helicopter system, the control results are 
compared with those of LMPC, which is well tuned using the linearized model at the helicopter hovering condition, i.e., 
[ ] [ ]000=φθε .  The design parameters used in these two MIMO approaches are given in Table 2. 
 

Table 2:  Design parameters used in LMPC and MPCSL 
Initial Condition 0====== φθεφθε &&& , 8865.1=fV , 9366.1=bV  

P 10(MPCSL); 20(LMPC) 
M 5(MPCSL); 5(LMPC) 
Q 10*IP (MPCSL); 10*IP(LMPC) 
R 0.01*IM(MPCSL); 0.01*IM(LMPC) 

 
 
   The simulation results for the MPCSL and LMPC are shown in Figures 6 and 7, and the corresponding voltage signals applied to 
the rotors are shown in Figures 8 and 9.  
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Figure 6: Control simulation results for the elevation angle 

 

0 20 40 60 80 100 120 140 160 180 200

-20

-15

-10

-5

0

5

10

15

20

25

time(second)

tra
ve

l (
de

gr
ee

)

 

 
Ref. Trajectory
LMPC
MPCSL

 
Figure 7: Control simulation results for the travel angle 
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Figure 8: Voltage applied on the front rotor 
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Figure 9: Voltage applied on the back rotor 
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   It can be seen from the Figures 6 and 7 that when the helicopter is operating in a wide range of its flight envelope, the tracking 
performance of LMPC looks acceptable; however, large overshoot is not avoidable due to the inaccuracy of the internal model 
used in prediction. Also, compared with LMPC, the MPCSL approach results in smaller overshoot and shorter settling time for 
both the elevation and travel angles, which is a considerable improvement in performance. This is shown in Tables 3, 4, and 5, 
which compare the tracking mean absolute errors (MAE), percent overshoot, and settling time (using a band of %2±  of the total 
change in the controlled variables), for the two control algorithms.  
 

Table 3:  MAE for elevation and travel control 
MAE (degree) LMPC MPCSL 

Elevation 0.4114 0.2122 
Travel 0.9346 0.5909 

 

Table 4: Overshoot for elevation and travel control 
Percentage Overshoot LMPC MPCSL 

Elevation 7.5% 0% 
Travel 25% 5.3% 

 

Table 5: Settling time for elevation and travel control 
Settling Time (seconds) LMPC MPCSL 

Elevation 7.5 1.1 
Travel 8.9 6.4 

 
5. Conclusion 
 
   This paper presents a nonlinear model predictive control method that is based on successive linearization to control the elevation 
and travel of a laboratory helicopter system. The performance of the developed algorithm is illustrated and compared to that of 
linear model predictive control, and the results show a considerable improvement for the developed algorithm in term of tracking 
error, overshoot and settling time.  
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