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Abstract 
 
   In this work, the flow and heat transfer in a long vertical channel composed of a smooth and a corrugated wall filled with two 
immiscible viscous fluids is studied under laminar flow conditions. Non-linear equations governing the motion have been solved 
by linearization technique, wherein the flow is assumed to be in two parts; a mean part and a perturbed part. Exact solutions are 
obtained for the mean part and a perturbed part using long wave approximation. Separate solutions are matched at the interface 
using suitable matching conditions. The results are presented graphically for various governing parameters such as Grashof 
number, viscosity ratio, width ratio and conductivity ratio. The effect of these parameters on the physical characteristics such as 
Nusselt number and skin friction at the walls is studied. It is found that Grashof number, viscosity ratio and width ratio enhance 
the flow whereas, conductivity ratio reduces the flow. Rate of heat transfer and skin friction for varying parameters is also 
shown graphically. 
 
Keywords: wavy wall; perturbation method; immiscible fluids. 

 
1. Introduction 
 

Study of mixed convection in the channels has been to the focus of a lot of investigations during the last three decades because 
of the multiple applications in which it is involved. The fluid dynamics and thermal phenomena occurring in corrugated wall 
channels have been studied in different engineering sectors. Corrugated surfaces are, for example, utilized in compact heat 
exchangers (Kays and London, 1984). The study of heat transfer through corrugated surface is also particularly interesting in the 
cooling of electronic devices and systems (Bar and Kruas, 1990; Cesini et al., 1992). The corrugated wall channel is one of several 
devices employed for enhancing the heat transfer efficiency of industrial transport processes. The problem of viscous flow in a 
wavy channel was first treated analytically by Burns and Parks (1967), who expressed the stream function as a Fourier series under 
the assumption of Stokes flow. Following this, Goldstein and Sparrow (1977) were the first to use the naphthalene technique to 
measure local and average heat transfer coefficients in a corrugated wall channel (with ‘triangular waves’). Their experiments in 
laminar, transitional turbulent flows used two corrugation cycles (i.e. two wavelengths). They observed secondary flows in the 
regions of high resolution local mass transfer measurement, and comparison of their results with those obtained with parallel-plate 
channels showed a three fold enhancement in the average heat transfer in the turbulent regimes. 

Wang and Vanka (1995) determined the rates of heat transfer for a flow through a periodic array of wavy passage. They 
observed that for the steady-flow regime, the average Nusselt numbers for the wavy-wall channel were only slightly larger than 
those for a parallel-plate channel. However, in the transitional-flow regime, the enhancement of heat transfer was by a factor of 
approximately 2.5. Friction factors for the wavy channel were about twice those for the parallel-plate channel in the steady-flow 
region, and remained almost constant in the transitional regime. Although, some studies for steady and unsteady flows have been 
reported, example, Blancher et al. (1998), Selvarajan et al. (1998), Greiner et al. (1991) and Wirtz et al. (1999), little knowledge is 
available on the flow in these wavy channels. 

Rees and Pop (1994) gave a short note on free convection along a vertical wavy surface in porous medium. Malashetty et al. 
(2001) studied the magnetoconvective flow and heat transfer between vertical wavy wall and a parallel flat wall. Wang and Chen 
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(2001) studied the transient behavior of the laminar mixed convection in micropolar fluid flow over a vertical wavy surface. Wang 
and Chen (2002) also analyzed the rate of heat transfer for flow through a sinusoidal curved channel. A numerical study of mixed 
convection heat and mass transfer along a vertical wavy surface has been carried out by Jang and Yan (2004). Yao (2006) used 
finite difference methods to analyze the problem of natural convection boundary layer flow along a complex vertical surface 
represented by two sinusoidal functions.  He found that the total heat-transfer rates for a complex surface are greater than those for 
a flat surface. Usha and Uma (2004) analyzed the long waves on a viscoelastic film flow down a wavy inclined plane. 

The majority of the existing research has been principally devoted to the case of a single fluid filling the entire enclosure. Most 
of the problems arising in petroleum industry, geophysics, astrophysics, atmospheric physics and many other instances involve 
multi-fluid flow system. A number of complex, interacting transport phenomena may take place in a non-isothermal multi fluid 
system. Traditionally, macroscopic problems of a multi fluid flow and transport are modeled in which various fluids are regarded 
as distinct fluids with individual thermodynamics and transport phenomena and are mathematically described separately by basic 
principles of convection of each fluid and by appropriate interfacial conditions between viscous fluids. An important assumption 
usually encountered in this model is the interfacial viscous and thermal equilibrium between the fluids. Meyer and Garder (1954) 
were the first authors to publish a paper on mechanics of two immiscible fluids in porous media. Loharsabi and Sahai (1998) 
analyzed the flow of two immiscible fluids in a parallel plate channel assuming continuity of velocity and thermal equilibrium at 
the interface. Vafai and Kim (1995) suggested that porous medium/clear fluid interface is best dealt with Brinkman-Forchhiemer-
extended Darcy formulation and the assumption of continuity of velocities and stress at the interface. Using this assumption, 
Malashetty et al. (1997, 2001, 2006) and Umavathi et al. (2005, 2006, 2007, 2008), Prathap Kumar et. al. (2010a, 2010b) studied 
flow and heat transfer of different immiscible fluids through channels.  

Keeping in view the practical applications on mixed convection flow in wavy channels, an attempt is made in this study to 
investigate the fully developed mixed convection flow of two immiscible fluids in a vertical wavy channel.  

 
2. Mathematical formulation of the problem 
 
We consider a two dimensional steady laminar mixed convective flow of two incompressible fluids in a vertical channel with one 
wavy wall and another flat wall as shown in Figure1. The X -axis is taken parallel to the flat wall, while theY -axis is taken 
perpendicular to it in such a way that the wavy wall is represented by ( )(1) cosY h a Xλ∗= − +  and the flat wall by (2)Y h= . The 

wavy and flat walls are maintained at constant temperatures wT  and 1T  respectively. The region (1) 0h Y− ≤ ≤  (Region–I) is 
occupied by a fluid of density (1)ρ , viscosity (1)μ , thermal conductivity (1)K , thermal expansion coefficient (1)β , specific heat at 
constant pressure (1)

pC , and the region (2)0 Y h≤ ≤  (region–II) is occupied by the fluid of density (2)ρ , viscosity (2)μ , thermal 

conductivity (2)K , thermal expansion coefficient (2)β , specific heat at constant pressure (2)
pC . The fluid properties are assumed to 

be constant except the density in the buoyancy term in the momentum equation. The fluid rises in the channel driven by buoyancy 
forces. The transport properties of both the fluids are assumed to be constant. The wave length of the wavy wall which is 
proportional to 1a−  is very large where a  is the amplitude. 

 
Figure 1: Physical model and the coordinate system. 

Y

(2)Y h=  

R- I

λ ε

(2)
1T T=  

X

(1)
wT T=  

R- II  

g

( )(1) cosY h a Xλ∗= − +  
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We make the Boussinesq approximation that the density is constant everywhere except when it is multiplied by gravity. Under 
these assumptions, the continuity, momentum, energy and state equations yield. 
Region – I 

                                                                        
(1) (1)

(1) (1) 0U V
X Y
∂ ∂

+ =
∂ ∂

                (1) 

                                   
(1) (1) (1)

(1) (1) (1) (1) 2 (1) (1)
(1) (1) (1)

U U PU V U g
X Y X

ρ μ ρ
⎛ ⎞∂ ∂ ∂

+ = − + ∇ −⎜ ⎟∂ ∂ ∂⎝ ⎠
                     (2) 

                                                 
(1) (1) (1)

(1) (1) (1) (1) 2 (1)
(1) (1) (1)

V V PU V V
X Y Y

ρ μ
⎛ ⎞∂ ∂ ∂

+ = − + ∇⎜ ⎟∂ ∂ ∂⎝ ⎠
               (3) 

                                                     
(1) (1)

(1) (1) (1) (1) (1) 2 (1)
(1) (1)p

T TC U V K T
X Y

ρ
⎛ ⎞∂ ∂

+ = ∇⎜ ⎟∂ ∂⎝ ⎠
               (4) 

( )( )(1) (1) (1)
0 1 sT Tρ ρ β= − −  

Region – II 

                                                                       
(2) (2)

(2) (2) 0U V
X Y
∂ ∂

+ =
∂ ∂

                  (5) 

                                     
(2) (2) (2)

(2) (2) (2) (2) 2 (2) (2)
(2) (2) (2)

U U PU V U g
X Y X

ρ μ ρ
⎛ ⎞∂ ∂ ∂

+ = − + ∇ −⎜ ⎟∂ ∂ ∂⎝ ⎠
              (6) 

                                             
(2) (2) (2)

(2) (2) (2) (2) 2 (2)
(2) (2) (2)

V V PU V V
X Y Y

ρ μ
⎛ ⎞∂ ∂ ∂

+ = − + ∇⎜ ⎟∂ ∂ ∂⎝ ⎠
               (7) 

                                                      
(2) (2)

(2) (2) (2) (2) (2) 2 (2)
(2) (2)p

T TC U V K T
X Y

ρ
⎛ ⎞∂ ∂

+ = ∇⎜ ⎟∂ ∂⎝ ⎠
                             (8) 

( )( )(2) (2) (2)
0 1 sT Tρ ρ β= − −  

The boundary conditions on ( ) ( ),i iU V  are both no-slip conditions and boundary conditions on T  are wT  at the left wall and 1T  at 
the right wall. For the problem displayed in Figure 1 at fluids interface, we utilize the assumption of continuity of velocity, 
continuity of shear stress, continuity of pressure gradient along the flow direction, continuity of temperature and continuity of heat 
flux which are given below. 
The relevant boundary and interface conditions on velocity are  

(1) (1) 0U V= =    at ( )(1) cosY h a Xλ∗= − +  

                                                          (2) (2) 0U V= =  at  (2)Y h=             

(1) (2)U U= ;      (1) (2)V V= ;       
(1) (2)

(1) (2)U V U V
Y X Y X

μ μ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 at  0Y =  

                                                              
(1) (2)

(1) (2)

P P
X X
∂ ∂

=
∂ ∂

 at  0Y =                     (9) 

The relevant boundary and interface conditions on temperature are 
(1)

wT T=  at  ( )(1) cosY h a Xλ∗= − +  

                                                     (2)
1T T=  at  (2)Y h=      

                                        (1) (2)T T= ;    
(1) (2)

(1) (2)T T T TK K
Y X Y X
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 at  0Y =                  (10) 

We next introduce the non-dimensional flow variables as 
(1)

(1)
(1)

Xx
h

= , 
(1)

(1)
(1)

Yy
h

= , 
(2)

(2)
(2)

Xx
h

= , 
(2)

(2)
(2)

Yy
h

= , 
(1)

(1) (1)
(1)

hu U
ν

= , 
(1)

(1) (1)
(1)

hv V
ν

= , 
(2)

(2) (2)
(2)

hu U
ν

= , 
(2)

(2) (2)
(2)

hv V
ν

= , 

( )
(1)

(1)
2(1) (1) (1)/

Pp
hρ ν

= , 
( )

(2)
(2)

2(2) (2) (2)/

Pp
hρ ν

= ,  
(1)

(1) s

w s

T T
T T

θ
−

=
−

,  

(2)
(2) s

w s

T T
T T

θ
−

=
−

, 
(2)

(1)

ββ
β

= , 
(2)

(1)

hh
h

= , 
(1)

(2)m μ
μ

= , 
(2)

(1)r ρ
ρ

= , 
(2)

(1)

Kk
K

= , 
(1)

(2)
p

p
p

C
C

C
= ,  
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3

2

(1) (1)

(1)

h g TGr β
ν

Δ
= , w sT T TΔ = − , 1 s

w s

T T
T T

θ
−

=
−

, 
(1) (1)

(1)Pr pC
K
μ

=                  (11) 

In terms of these non-dimensional variables, the basic equations (1) to (8) can be expressed in the dimensionless form, as, (for 
simplicity, the notation is considered as (1)x x= ; (1)y y=  in region-I and (2)x x= ; (2)y y=  in region-II) 
Region – I 

                                                                         
(1) (1)

0u v
x y

∂ ∂
+ =

∂ ∂
                                                       (12) 

                                            
(1) (1) (1) 2 (1) 2 (1)

(1) (1) (1)
2 2

u u p u uu v Gr
x y x x y

θ∂ ∂ ∂ ∂ ∂
+ = − + + +

∂ ∂ ∂ ∂ ∂
            (13)  

                                                  
(1) (1) (1) 2 (1) 2 (1)

(1) (1)
2 2

v v p v vu v
x y y x y

∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂
             (14) 

                                                    
(1) (1) 2 (1) 2 (1)

(1) (1)
2 2

1
Pr

u v
x y x y
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
             (15) 

Region – II 

                                                                          
(2) (2)

0u v
x y

∂ ∂
+ =

∂ ∂
              (16) 

                                        
(2) (2) (2) 2 (2) 2 (2)

(2) (2) 3 2 2 (2)
2 2

u u p u uu v Gr h m r
x y x x y

β θ∂ ∂ ∂ ∂ ∂
+ = − + + +

∂ ∂ ∂ ∂ ∂
            (17) 

                                                      
(2) (2) (2) 2 (2) 2 (2)

(2) (2)
2 2

v v p v vu v
x y y x y

∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂
             (18) 

                                                      
(2) (2) 2 (2) 2 (2)

(2) (2)
2 2Pr

pkmC
u v

x y x y
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
            (19) 

Using Eqn. (11) boundary and interface conditions Eqn. (9) for velocity field become 
 (1) (1) 0u v= =  at  ( )1 cosy xε λ= − +  

                                                                          (2) (2) 0u v= =  at  1y =            

          
(2)

(1) uu
mhr

= ; 
(2)

(1) vv
mhr

= ; 
(1) (2)

2 2

1u v u v
y x y xm h r

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

  at 0y =        

                                                                   
(1) (2)

2 3

1p p
x xr m h

∂ ∂
=

∂ ∂
 at  0y =               (20) 

Using Eqn. (11) boundary and interface conditions Eqn. (10) for temperature field become  
(1) 1θ =  at  ( )1 cosy xε λ= − +  

                                                                    (2)θ θ=  at  1y =            

                                          (1) (2)θ θ= , 
(1) (2)

k
y x h y x
θ θ θ θ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 at  0y =                           (21) 

 In the static fluid we have (see Vajravelu and Sastri 1978) 

            
3 3

2 2

(1) (2)
0 0

(1) (2)
0 s sp gh p gh

x x
ρ ρ
ρν ρν

∂ ∂
= − − = − −

∂ ∂
                                                      (22) 

 In view of Eqn. (22). Eqs. (13) and (17) becomes  

             
( )(1)(1) (1) 2 (1) 2 (1)

(1)
2 2

sp pu u u uu v Gr
x y x x y

θ
∂ −∂ ∂ ∂ ∂

+ = − + + +
∂ ∂ ∂ ∂ ∂

                                     (23) 

              
( )(2)(2) (2) 2 (2) 2 (2)

(2) (2) 3 2 2 (2)
2 2

sp pu u u uu v Gr h m r
x y x x y

β θ
∂ −∂ ∂ ∂ ∂

+ = − + + +
∂ ∂ ∂ ∂ ∂

                          (24) 
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3. Solutions to the problem 
 

Equations (12), (14)-(16), (18), (19), (23), and (24) are coupled nonlinear and are to be solved simultaneously. Due to the non-
linearity, analytical solutions are difficult; however approximate solutions can be obtained using perturbation techniques. 
Assuming that the solutions consists of a mean part and a perturbed part, velocity, pressure and temperature can be written as, 
                                                                 ( ) ( ) ( )0 1, ,u x y u y u x y= +                               (25) 

                                                                       ( ) ( )1, ,v x y v x y=                             (26) 

                                                             ( ) ( ) ( )0 1, , ,p x y p x y p x y= +                                                       (27) 

                                                                ( ) ( ) ( )0 1, ,x y y x yθ θ θ= +                                          (28) 
where the perturbed quantities 1,u 1,v  1p  and 1θ  are small compared with the mean or zeroth order quantities. 

Using Eqs. (25) to (28) in the Eqs. (12), (14)-(16), (18), (19), (23), and (24) and separating mean and perturbed parts, gives the 
following equations. 
Zeroth order equations  
Region -I 

                                                                                   
2 (1)

0
2 0

d
dy
θ

=                (29) 

                                                                             
2 (1)

(1)0
02

d u
Gr C

dy
θ+ =                      (30) 

Region -II 

                                                                                  
2 (2)

0
2 0

d
dy
θ

=                (31) 

                                                                      
2 (2)

3 2 2 (2)0
02

d u
Gr h m r C

dy
β θ+ =              (32) 

where ( )( )
0

j
sC p p

x
∂

= −
∂

, and is taken to be zero (see Ostrach 1952) for 1, 2j =  

First order equations 
Region –I 

                                                                           
(1) (1)
1 1 0

u v
x y

∂ ∂
+ =

∂ ∂
                                                                   (33) 

                                           
(1)(1) (1) 2 (1) 2 (1)

(1) (1) (1)01 1 1 1
0 1 12 2

duu p u u
u v Gr

x dy x x y
θ

∂ ∂ ∂ ∂
+ = − + + +

∂ ∂ ∂ ∂
                 (34) 

                                                           
(1) (1) 2 (1) 2 (1)

(1) 1 1 1 1
0 2 2

v p v v
u

x y x y
∂ ∂ ∂ ∂

= − + +
∂ ∂ ∂ ∂

                   (35) 

                                                    
(1)(1) 2 (1) 2 (1)

(1) (1) 01 1 1
0 1 2 2

1
Pr

d
u v

x dy x y
θθ θ θ⎛ ⎞∂ ∂ ∂

+ = +⎜ ⎟∂ ∂ ∂⎝ ⎠
                 (36) 

Region -II 

                                                                          
(2) (2)
1 1 0

u v
x y

∂ ∂
+ =

∂ ∂
                                                                   (37) 

                                       
(2)(2) (2) 2 (2) 2 (2)

(2) (2) 3 2 2 (2)01 1 1 1
0 1 12 2

duu p u u
u v Gr h m r

x dy x x y
β θ

∂ ∂ ∂ ∂
+ = − + + +

∂ ∂ ∂ ∂
            (38) 

                                                          
(2) (2) 2 (2) 2 (2)

(2) 1 1 1 1
0 2 2

v p v v
u

x y x y
∂ ∂ ∂ ∂

= − + +
∂ ∂ ∂ ∂

             (39) 

                                                    
(2)(2) 2 (2) 2 (2)

(2) (1) 01 1 1
0 1 2 2Pr

pkmCd
u v

x dy x y
θθ θ θ⎛ ⎞∂ ∂ ∂

+ = +⎜ ⎟∂ ∂ ∂⎝ ⎠
             (40) 

 In view of Eqs. (25) to (28) the boundary and interface conditions Eqs. (20) and (21) can be split as follows, 
Zeroth order boundary and interface conditions for velocity and temperature are 

(1)
0 0u = ,  at   1y = − , (2)

0 0u = ,  at 1y =  
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          (1) (2)
0 0

1u u
mhr

= , 
(1) (2)
0 0

2 2

1du du
dy dym h r

=  at  0y =                  (41) 

(1)
0 1θ =    at   1y = − , (2)

0θ θ=    at 1y =  

                                                       (1) (2)
0 0θ θ= , 

(1) (2)
0 0d dk

dy h dy
θ θ

=  at  0y =                            (42) 

First order boundary and interface conditions for velocity and temperature are 

( )
(1)

(1) 0
1 cos

du
u x

dy
λ= − ,  (1)

1 0v =   at  1y = −  

                                              (2)
1 0u = ,  (2)

1 0v =   at  1y =             

(1) (2)
1 1

1u u
mhr

= , (1) (2)
1 1

1v v
mhr

=   at  0y =  

                                
(1) (1) (2) (2)
1 1 1 1

2 2

1du dv du dv
dy dx dy dxm h r

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
  at  0y =         

                                                     
(1) (2)
1 1

2 3

1p p
x xr m h

∂ ∂
=

∂ ∂
  at  0y =                            (43) 

                 ( )
(1)

(1) 0
1 cos

d
x

dy
θ

θ λ= −  at  1y = − , (2)
1 0θ =    at  1y =   

                                   (1) (2)
1 1θ θ= ,       

(1) (1) (2) (2)
1 1 1 1d d d dk

dy dx h dy dx
θ θ θ θ⎛ ⎞

+ = +⎜ ⎟
⎝ ⎠

 at  0y =                  (44) 

  In order to solve Eqs. (33) to (40), for the first order quantities it is convenient to introduce stream function ψ  in the following 
form 

                                                  
( )

( )
1

j
ju

y
ψ∂

= −
∂

 and 
( )

( )
1

j
jv

x
ψ∂

=
∂

 for 1, 2j =                  (45) 

The stream function approach reduces the number of dependent variables to be solved and also eliminates pressure from the list 
of variables. Differentiate Eqn. (34) with respect to y and differentiate Eqn. (35) with respect to x  and then subtract Eqn. (34) 

with Eqn. (35) which will result in the elimination of pressure ( )1
1p . Similar procedure is opted for elimination of pressure ( )2

1p  

from Eqs. (38) and (39).        Equations.(33) to (40) after elimination of ( )1
1p  and ( )2

1p , can be expressed in terms of the stream 
function ψ  in the form  
Region-I 
                                        (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

0 0 0 12 0xyy x yy xxx xxxx yyyy xxyy yu u u Grψ ψ ψ ψ ψ ψ θ− + − − − + =             (46) 

                                                             ( )(1) (1) (1) (1) (1) (1)
0 1 0 1 1

1
Prx x y xx yyu θ ψ θ θ θ+ = +                   (47) 

Region-II 
                                (2) (2) (2) (2) (2) (2) (2) (2) (2) 3 2 2 (2)

0 0 0 12 0xyy x yy xxx yyyy xxxx xxyy yu u u Gr h m rψ ψ ψ ψ ψ ψ β θ− + − − − + =            (48) 

                                                         ( )(2) (2) (2) (2) (2) (2)
0 1 0 1 1Pr

p
x x y xx yy

kmC
u θ ψ θ θ θ+ = +              (49) 

where a suffix x or y  represents derivative with respect to x  or y . 
The corresponding boundary and interface conditions on velocity and temperature reduces to 

( )(1) (1)
0cosy yx uψ λ=  , (1) 0xψ =   at  1y = −  

                                     (2) 0yψ = , (2) 0xψ =   at 1y =           
(2)

(1) y
y mhr

ψ
ψ = ,      

(2)
(1) x
x mhr

ψ
ψ = ,       

(2) (2)
(1) (1)

2 2
xx yy

xx yy m h r
ψ ψ

ψ ψ
−

− =   at 0y =    

( )(1) (1) (1) (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) 3 2 2 (2)
0 0 1 0 0 12 3

1
xy x y xxy yyy xy x y xxy yyyu u Gr u u Gr h m r

r m h
ψ ψ ψ ψ θ ψ ψ ψ ψ β θ− + + + − = − + + + −  

                                                                                                                                       at     0y =                 (50) 
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                                           ( )(1) (1)
1 0cos yxθ λ θ= −   at   1y = − , (2)

1 0θ =  at  1y =                                 

(1) (2)
1 1θ θ= , 

( )(2) (2)
1 1(1) (1)

1 1
xx yy

xx yy

k

h

θ θ
θ θ

+
+ =  at  0y =                 (51) 

We assume stream function and temperature in the following form 

                                          ( )( )( ) jj i xe yλψ ε ψ= , ( )( )( )
1

jj i xe t yλθ ε=  for 1, 2j =            (52) 
from which we infer  
                                                          ( ) ( )1 1, i xu x y e u yλε= , ( ) ( )1 1, i xv x y e v yλε=              (53) 
where i is the imaginary unit. 
       In view of Eqn. (52), Eqs. (46) to (49) becomes 
Region-I 
                                       ( ) ( )(1) (1) 2 (1) (1) 3 4 (1) (1)

0 02 0yyyy yy yy yi u i u i Gr tψ λ λ ψ λ λ λ ψ− + + + + − =             (54) 

                                                            ( ) ( )(1) (1) (1) (1) 2 (1) (1)
0 0

1
Pry yyi u t t tλ λθ ψ λ+ = − +                            (55) 

Region-II 
                             ( ) ( )(2) (2) 2 (2) (2) 3 4 (2) 3 2 2 (2)

0 02 0yyyy yy yy yi u i u i Gr h m r tψ λ λ ψ λ λ λ ψ β− + + + + − =                         (56) 

                                                          ( ) ( )(2) (2) (2) (2) (2) 2 (2)
0 0 Pr

p
y yy

kmC
i u t t tλ λθ ψ λ+ = −                  (57) 

Boundary and interface conditions as defined in Eqs. (50) and (51) can be written in terms of ( )jψ  and  ( )jt  as 

 
(1)(1)
0du

y dy
ψ∂

=
∂

,  (1) 0ψ =  at       1y = −  

                                       
(2)

0
y

ψ∂
=

∂
, (2) 0ψ =   at          1y =            

    
(1)

(2) y
y mhr

ψ
ψ = ,     

(2)
(1)

mhr
ψψ = ,      

(2) 2 (2)
(1) 2 (1)

2 2
yy

yy m h r
ψ λ ψ

ψ λ ψ
+

+ = , at    0y =                    

   
(2) (2) (2) (2)
0 0(1) (1) (1) (1) 2 (1) (1) (1)

0 0 2 3 2 (2) (2) 2 2 3 (2)

1 y y
y y y yyy

y yyy

i u i u
i u i u Grt

r m h Gr m r h t

λ ψ λψ
λ ψ λψ λ ψ ψ

λ ψ ψ β

⎛ ⎞− +
⎜ ⎟− + − + − =
⎜ ⎟− + −⎝ ⎠

 at 0y =         (58)                   

                                                   
(1)

(1) 0d
t

dy
θ

= −   at  1y = − ,   (2) 0t =   at  1y =    

                                                        (1) (2)t t= ,  ( )(1) (1) (2) (2)
y y

kt i t t i t
h

λ λ+ = + at  0y =            (59) 

  We restrict our attention to the real parts of the solutions for the perturbed quantities ψ , t , 1u  and 1v . 
    Consider only small values of λ  on substituting  

                                                               ( )
0

, r
r

r
yψ λ λ ψ

∞

=

= ∑ ,         ( )
0

, r
r

r
t y tλ λ

∞

=

= ∑                               (60) 

into Eqs. (54) to (59) we obtain to the order of λ , the following set of ordinary differential equations 
Zeroth order  

2
10
2 0

d t
dy

=  

4
10 10

4 0
d dt

Gr
dydy

ψ
− =  

2
20
2 0

d t
dy

=  

        
4

3 2 220 20
4 0

d dt
Gr h m r

dydy
ψ

β− =                                (61) 
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First order  
(1)2

(1) 011
0 10 102 Pr

dd t
i u t

dydy
θ

ψ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

2 2 (1)4
(1) 10 011 11
0 104 2 2

d d ud dt
i u Gr

dydy dy dy
ψψ

ψ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 

(2)2
(2) 021
0 20 202

Pr

p

dd t
i u t

kmC dydy
θ

ψ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

            
2 2 (2)4

(2) 3 2 220 021 11
0 204 2 2

d d ud dt
i u Gr h m r

dydy dy dy
ψψ

ψ β
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

              (62) 

 Zeroth order boundary and interface conditions in terms of stream function and temperature are  
(1)

10 0d du
dy dy
ψ

= ,        10 0ψ =    at        1y = −  

                  20 0
d
dy
ψ

= ,     20 0ψ =    at    1y =                   

10 201d d
dy mhr dy
ψ ψ

= ,     10 20
1

mhr
ψ ψ= ,     

2 2
10 20
2 2 2 2

1d d
dy m h r dy
ψ ψ

=   at     0y =        

         
3 3

3 2 210 20
10 203 2 3 3

1d d
Gr t Gr h m r t

dy r m h dy
ψ ψ

β
⎛ ⎞

− = −⎜ ⎟
⎝ ⎠

  at       0y =        

         
(1)
0

10
dt
dy
θ

= −    at  1y = − , 20 0t =    at  1y =  

                                                   10 20t t= ,           10 20dt dtk
dy h dy

=  at        0y =                  (63) 

  First order boundary and interface conditions in terms of stream function and temperature are  
11 0

d
dy
ψ

= ,     11 0ψ =    at         1y = −  

21 0
d
dy
ψ

= ,       21 0ψ =    at          1y =  

11 211d d
dy mhr dy
ψ ψ

= ,    11 21
1

mhr
ψ ψ= ,   

2 2
11 21

2 2 2 2

1d d
dy m h r dy
ψ ψ

=  at        0y =  

(1) (2)3 3
(1) (2) 3 2 210 0 20 011 21
0 10 11 0 20 213 2 3 3

1d du d dud d
i u i Gr t i u i Gr h m r t

dy dy dy dydy r m h dy
ψ ψψ ψ

ψ ψ β
⎛ ⎞

− + + − = − + + −⎜ ⎟
⎝ ⎠

  

                                                                                                                                             at  0y =  
 11 0t =    at  1y = − , 21 0t =    at  1y =  

                                             11 21t t= ,     11 21
10 20

dt dtki t i t
dy h dy

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
 at        0y =                                        (64) 

The set of Eqs. (29) to (32) subjected to boundary and interface conditions Eqs. (41) and (42) have been solved exactly for ( )
0

ju  
and ( )

0
jθ , and the set of Eqs. (61) and (62) subject to boundary and interface conditions Eqs. (63) and (64) have been solved 

exactly for jψ  and jt  ( )1,2j = . From these solutions, the first order quantities can be put in the form,   

( ) 0 1,j r i j jjiψ ψ ψ ψ λψ= + = +  

                                             ( ) 0 1j r i j jj
t t i t t tλ= + = +   ( )1,2j =                        (65) 

where suffix r  denotes the real part and i  denotes the imaginary part.  Considering only the real part, the expression for first order 
velocity and temperature become 

                                            ( ) ( )
( )( )

( )
1 cos sin ,

jj
j ir dd

u x x
dy dy

ψψ
λ λ λ= − +               (66) 
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                                              ( ) ( )( ) ( ) 2 ( )
1 sin cos ,j j j

r iv x xλψ λ λ ψ λ= − −                 (67) 

                                                   ( ) ( )( ) ( ) ( )
1 cos sinj j j

r ix t x tθ λ λ λ= −               (68) 
The zeroth order, first order and total solutions are given in the Appendix section. 

 
3.1. Skin friction and Nusselt number: 

The shearing stress xyτ at any point in the fluid is given by 

                                                     

( ) ( ) ( )

2

2

' '
0 1 1 ,

xy xy

i x i x

h u v
y x

u y e u y i e v yλ λ

τ τ
ρυ

ε λε

⎛ ⎞ ∂ ∂
= = +⎜ ⎟ ∂ ∂⎝ ⎠
= + +

               (69) 

At the wavy wall ( )1 cosy xε λ= − + skin friction take the form  

                                                     ( )0 '' '
1 0 1Re ( 1) ( 1)i x

w e u uλτ τ ε−= + − + −                   (70) 
and at the flat wall 1y = ,  

                                                                   ( )0 '
1 1Re (1)f uτ τ ε= +               (71) 

where  
(1)

0 0
1

1y

du
dy

τ−

=−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  
(2)

0 0
1

1y

du
dy

τ
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

The dimensionless Nusselt number is given by 

                                                         ( ) ( )( )' '
0 1Re i xNu y e y

y
λθ θ ε θ∂

= = +
∂

              (72) 

At the wavy wall ( )1 cosy xε λ= − +  Nu takes the form 

                                                               ( )( )0 '
1 Re 1 ,i x

wNu Nu e tλε−= + −                 (73) 
and at the flat wall 1y = , 

                                                                   ( )( )0 '
1 Re 1 ,i x

fNu Nu e tλε= +                (74) 
where  

(1)
0 0
1

1y

d
Nu

dy
θ

−

=−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 
(2)

0 0
1

1y

d
Nu

dy
θ

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

and Re  represents the real part 
Velocity and temperature solutions are numerically evaluated for several sets of values of the parameters such as, free 

convective parameter Gr , viscosity ratio m , width ratio h  and conductivity ratio k . Also, the wall skin friction ,w fτ τ  and the 
wall Nusselt number ,w fNu Nu  are calculated numerically and some of the qualitative interesting features are presented 
graphically. 
 
4. Results and discussion 

 
Analytical solutions for the steady mixed convection of two immiscible viscous fluids in a vertical channel consists of left wall 

to be wavy and right wall to be flat is analyzed. The non-linear equations are solved by linearization technique wherein the flow is 
assumed to be in two parts; a mean part and a perturbed part. Exact solutions are obtained for the mean part and the perturbed part 
is solved using long wave approximation. The solutions of zeroth order velocity 0u and the zeroth order temperature 0θ  are 
applicable to the case of a channel both of whose walls are flat.  The solutions for mean ( )0 0,u θ  and perturbed part ( )1 1 1, ,u v θ  are 
evaluated numerically and represented graphically for various governing parameters in Figures (2) to (7).  The parameters such as 
thermal conductivity coefficient ratio, specific heat at constant pressure ratio, density ratio, wave number, Prandtl number, 
amplitude parameter are fixed as 1, 1, 1, 0.05, 0.7, 0.02 respectively for 0.785398xλ = . The other parameters such as Grashof 
number, viscosity ratio, width ratio, thermal conductivity ratio are fixed as 5, 1, 1, 1 respectively except the varying one for all the 
graphs.  
The behavior of the non-dimensional zeroth and first order velocities with changes in the convective parameter Gr  is shown in 
Figure 2 for different values of wall temperature ratio θ ( 1θ = −  means that the average of the temperatures of the two walls is 
equal to that of the static temperature, 0θ =  corresponds to the  temperature of flat wall is equal to static temperature and 1θ =  
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means that the wavy and flat wall are maintained at equal temperature and 1θ > implies wall temperatures are unequal). The effect 
of Grashof number on zeroth order velocity 0u  is to increase the velocity for 0and1θ =  whereas, for 1θ = −   zeroth order 
velocity increases as Gr  increases for the half of the channel width from the left wall and decreases at the right wall from 0y =  

and onwards i.e., flow reversal is observed at the right wall. The magnitude of velocity 0u  is optimum for 1θ = and minimum for 

1θ = −  and the velocity profiles for 0θ =  lies in between 1 and 1θ = − . Figure 2b depicts the behavior of perturbed (first order 
solution) quantities 1u  for 0 1θ = ± . We observed that the fluid velocity 1u  decreases steadily for a fixed value of y up to 

0.55y = −  approximately, while for values of 0.55y ≥ −  the fluid velocity 1u  increases for increasing values of Grashof number 
for all values of θ . Figure 2c shows the behavior of the total fluid velocity ( )0 1u u u= + . The effect of Grashof number on the 

total velocity u is similar to the zeroth order velocity 0u  for variousθ . That is, for 0θ =  and 1, velocity increases as Gr  
increases. Physically, an increase in the value of the Grashof number means an increase in the buoyancy force which supports the 
motion. For 1θ = − , velocity increases at the left wall (wavy wall) and decreases at the right wall. This is due to the fact that, 

1θ = −  imply, the temperature at the left wall is greater than at the right wall. Hence, velocity increases at the left wall and 
decreases at the right wall. Figure 2d describes the behavior of the total fluid velocity ( )1v v=  perpendicular to the channel length 

and it is noticed that the velocity v  diminishes sharply as Grashof number increases for 0 1θ = ± . 
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Figure 2: Velocity profile for different values of Grashof number Gr, (a) Zeroth order, (b) First order, (c) Total in u and (d) Total in v.
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Figure 3 shows the effect of viscosity ratio ( )(1) (2)m μ μ= on the velocity for variations of θ . As the viscosity ratio 

( )(1) (2)m μ μ=  increases, the zeroth order velocity increases in both the regions for wall temperature ratio 0 and 1θ = , whereas, 

for 1θ = −  zeroth order velocity is invariant in the region-I and decreases in  region–II.  Flow reversal is observed at the right wall 
for values of 1θ = −  only. Figure 3b depicts that as the viscosity ratio m  increases, first order velocity 1u  decreases at the left 

wall i.e., from 1to0y = −  whereas, it increases at the right wall i.e., from 0 to 1y =  for all values of wall temperature ratio θ . 
The effect of viscosity ratio on total fluid velocity ( )0 1u u u= +  shows the similar nature as that for zeroth order velocity as seen in 
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Figure 3c. Physically, for 0θ =  and 1, as m  increases, the fluid becomes more viscous in region-I and hence velocity is reduced 
in region-I when compared to region-II. 1θ = − , temperature in region-I is higher than in region-II. Hence, velocity variations are 
observed in region-II for variations of viscosity ratio. Physically, higher the temperature lowers the viscosity. Figure 3d shows the 
behavior of the total fluid velocity ( )1v v=  perpendicular to the channel length. We notice that as the viscosity ratio increases, 
velocity v  increases in magnitude in both the regions.  

The effect of width ratio parameter ( )(2) (1)h h h=  on the velocity is shown in Figure 4. As the parameter h increases, zeroth 

order velocity increases for wall temperature ratio 0 and 1θ =  in both the regions. For 1θ = −  the zeroth order velocity increases 
as h  increases in region–I whereas, it decreases in region–II. It is also observed that flow reversal is observed at the right wall as 
h  increases when 1θ = − as seen in Figure 4a. The effect of width ratio h  on first order velocity 1u (Figure 4b) shows that as h  
increases, first order velocity decreases near the left wall (region–I) whereas, it increases at the right wall (region–II) for all values 
of θ . It is observed from Figure 4c that the effect of width ratio h  on the total fluid velocity 
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Figure 3: Velocity profile for differet values of viscosity ratio. a. zeroth order, b. first order, c. total velocity in u and d. total velocity in v.
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( )0 1u u u= +  is similar to that on zeroth order velocity 0u . The effect of width ratio h  on total velocity ( )1v v=  increases in 

magnitude as the width ratio h  increases, i.e., v  diminishes for various values of h  as seen in Figure 4d. 
The effect of width ratio ( )(2) (1)h h h=  on zeroth order temperature is to increase the temperature in both regions when 

1 and 0θ = −  whereas, there is no effect of h  for 1θ =  as seen in Figure 5a. Figure 5b shows that the first order temperature 
decreases in region-I as h  increases when 1 and 0θ = − . The effect of h  is dominant in region–I when compared to region–II. 
However, for 1θ =  the first order temperature remains invariant for different values of h .  The effect of width ratio h  on the total 
temperature is similar to zeroth order temperature as seen in Figure 5c. Physically, as h  increases velocity increases; this in tern 
enhances dissipations and results in enhancement of temperature fields also. 

The effect of conductivity ratio ( )(2) (1)k k k=  on the velocity is shown in Figure 6. As the conductivity ratio ( )(2) (1)k k k=  

increases, the zeroth order velocity decreases in both the regions for 1 and 0θ = −  and remains constant for 1θ =  as seen in 

Figure 6a. The first order velocity 1u  increases as the conductivity ratio k  increases in region–I for values of 1 and 0θ = −  from 
1to 0.55y = − −  (approximately) and decreases from 0.55 to 1y = − .  
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The first order velocity 1u  remains constant for different values of k  when wall temperature ratio is 1 as shown in Figure 6b. The 

effect of conductivity ratio k  on total velocity ( )0 1u u u= +  is similar to the zeroth order velocity 0u  as seen in Figure 6c. 
Physically, larger the conductivity of the fluid in region-II compared to region-I, the smaller the flow field. The behavior of the 
total fluid velocity ( )1v v=  perpendicular to the channel width decreases in magnitude as conductivity ratio k  increases for 

1 and 0θ = −  and remains invariant when 1θ =  as seen in Figure 6d.  

The effect of conductivity ratio ( )(2) (1)k k k=  on zeroth order temperature 0θ  is to decrease the temperature in both regions 

when 1 and 0θ = − whereas, there is no effect of k  for 1θ =  as seen in Figure 7a. The first order temperature 1θ  increases in 
both the regions as the conductivity ratio k  increases for 1 and 0θ = − whereas, it is invariant for 1θ =  as seen in Figure 7b. 
Here also the effect of conductivity ratio k  on total temperature ( )0 1θ θ θ= +  is similar to effect on zeroth order temperature as 
seen in Figure 7c. 

The heat transfer coefficient Nu  for different values of Grashof number Gr  and wall temperature ratio θ  is shown in Figure 8. 
For 0θ =  the Nusselt number at the wavy wall wNu  and Nusselt number at the flat wall fNu  remains invariant considering the 

same fluid in both the regions ( )1m h k= = =  and variations of viscosity ratio m . Varying the width ratio h , the Nusselt number 
at the wavy wall is vary small compared to the Nusselt number at the flat wall, whereas, the Nusselt number at the flat wall is vary 
small compared to the Nusselt number at the wavy wall for different values of conductivity ratio k  as seen in Figure 8a. Similar 
effect is observed for 1θ = −  as seen in Figure 8b. The effect of Nusselt number does not vary when 1θ =  and hence, not shown 
graphically. It is also observed that the Nusselt number do not change as Grashof number increases. 

Figure 9 shows the behavior of skin friction τ  at the channel walls. When 0 1θ = ± , the effect of increase in Grashof number is 
to increase the skin friction at the wavy wall and decreases at the flat wall. The effect of viscosity ratio m  does not affect the skin 
friction at the wavy wall, whereas, skin friction decreases as viscosity ratio decreases at the flat wall for 1θ = − . The effect of 
conductivity ratio k  increases the skin friction at the wavy wall, whereas, it decreases at the flat wall for 1θ = −  as seen in      
Figure 9a.  
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When the wall temperature ratio θ  is zero, as the viscosity ratio decreases, skin friction decreases at the wavy wall and increases 
at the flat wall. As the width ratio h  decreases, skin friction decreases at the wavy wall whereas; it increases at the flat wall. As the 
conductivity ratio k  increases, skin friction decreases at the wavy wall and increases at the flat wall as seen in Figure 9b. For 

1θ = , as the viscosity ratio m  increases, skin friction at the wavy wall increases, whereas, it decreases at the flat wall. The effect 
of width ratio h  is similar to the effect of viscosity ratio on the skin friction at both the walls. There is no effect of conductivity 
ratio k  on skin friction at both the walls as seen in Figure 9c. 

The effect of convective parameter Gr on temperature is shown in Table 1 for various values of wall temperature ratioθ . The 
zeroth order temperature equation consists of only conductivity term; hence, the temperature remains invariant for variations of 
Grashof number. The temperature at the left wall is 1, and the right wall is θ  and so the temperature for different values of θ  
varies at the right wall only. The temperature decreases as the wall temperature ratio θ  decreases. When the wall temperature 
ratio is 1θ = − , there is no effect of Grashof number on the zeroth order temperature. The first order temperature decreases as the 
Grashof number increases after two decimal points for 1θ = − . The total temperature decreases as the Grashof number increases 
as seen in Table 1a to the order of 310− .  From Table 1b it is seen that for 0θ =  the similar effect is observed as that of 1θ = − . 
For 1θ =  there is no effect of Grashof number on the temperature as seen in Table 1c. Since the zeroth order energy equation do 
not have Grashof number, whereas, the first order energy equation consist velocity term which contains Grashof number. Hence, 
the effect of Grashof number on the temperature is only on the first order and total temperature. 

The effect of viscosity ratio ( )(1) (2)m μ μ=  on zeroth, first and total temperature is similar to the effect of Grashof number as 
seen in table 2. The first order temperature decreases as the viscosity ratio increases to two decimal points as seen in Table 2a and 
2b. The total temperature effect is same as the first order temperature effect as seen in Table 2a and 2b. 
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Table 1. Values of the Temperature field at different Grashof number. 
 

Table 1a. 1θ = −  
0θ  1θ  0 1θ θ θ= +  y  

5,10,15Gr =  5Gr =  10Gr =  15Gr =  5Gr =  10Gr =  15Gr =  
-1 1 0.70711 0.70711 0.70711 1.01414 1.01414 1.01414 

-0.8 0.8 0.63557 0.63474 0.63391 0.81271 0.81269 0.81268 
-0.6 0.6 0.56407 0.56246 0.56084 0.61128 0.61125 0.61122 
-0.4 0.4 0.4927 0.49043 0.48816 0.40985 0.40981 0.40976 
-0.2 0.2 0.42155 0.41883 0.41612 0.20843 0.20838 0.20832 

0 0 0.35068 0.3478 0.34493 0.00701 0.00696 0.0069 
0 0 0.35068 0.3478 0.34493 0.00701 0.00696 0.0069 

0.2 -0.2 0.28011 0.27738 0.27465 -0.1944 -0.19445 -0.19451 
0.4 -0.4 0.20983 0.20752 0.20522 -0.3958 -0.39585 -0.3959 
0.6 -0.6 0.13976 0.1381 0.13644 -0.5972 -0.59724 -0.59727 
0.8 -0.8 0.06984 0.06897 0.06809 -0.7986 -0.79862 -0.79864 
1 -1 -3.06659E-19 -6.13317E-19 0 -1 -1 -1 

 
Table 1b. 0θ =  

0θ  1θ  0 1θ θ θ= +  y  
5,10,15Gr =  5Gr =  10Gr =  15Gr =  5Gr =  10Gr =  15Gr =  

-1 1 0.35355 0.35355 0.35355 1.00707 1.00707 1.00707 
-0.8 0.9 0.31799 0.31778 0.31758 0.90636 0.90636 0.90635 
-0.6 0.8 0.28244 0.28204 0.28163 0.80565 0.80564 0.80563 
-0.4 0.7 0.24692 0.24635 0.24578 0.70494 0.70493 0.70492 
-0.2 0.6 0.21145 0.21077 0.21009 0.60423 0.60422 0.6042 

0 0.5 0.17606 0.17534 0.17462 0.50352 0.50351 0.50349 
0 0.5 0.17606 0.17534 0.17462 0.50352 0.50351 0.50349 

0.2 0.4 0.14074 0.14005 0.13937 0.40281 0.4028 0.40279 
0.4 0.3 0.10549 0.10491 0.10434 0.30211 0.3021 0.30209 
0.6 0.2 0.0703 0.06988 0.06946 0.20141 0.2014 0.20139 
0.8 0.1 0.03514 0.03492 0.0347 0.1007 0.1007 0.10069 

1 0 1.53329 
E-20 

3.06659 
E-20 

-6.13317 
E-20 

3.06659 
E-22 

6.13317 
E-22 

-1.22663 
E-21 

 
Table 1c. 1θ =  

0θ  1θ  0 1θ θ θ= +  y  
5,10,15Gr =  5Gr =  10Gr =  15Gr =  5Gr =  10Gr =  15Gr =  

-1 1 0 0 0 1 1 1 
-0.8 1 0 0 0 1 1 1 
-0.6 1 0 0 0 1 1 1 
-0.4 1 0 0 0 1 1 1 
-0.2 1 0 0 0 1 1 1 

0 1 0 0 0 1 1 1 
0 1 0 0 0 1 1 1 

0.2 1 0 0 0 1 1 1 
0.4 1 0 0 0 1 1 1 
0.6 1 0 0 0 1 1 1 
0.8 1 0 0 0 1 1 1 
1 1 0 0 0 1 1 1 
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Table 2. Values of the Temperature field at different viscosity ratio m  ( 0.02ε = ). 
 

Table 2a. 1θ = −  
0θ  1θ  0 1θ θ θ= +  y  

0.1,1, 2m =  0.1m =  1m =  2m =  0.1m =  1m =  2m =  
-1 1 0.70711 0.70711 0.70711 1.01414 1.01414 1.01414 

-0.8 0.8 0.63599 0.63557 0.6354 0.81272 0.81271 0.81271 
-0.6 0.6 0.5649 0.56407 0.56374 0.6113 0.61128 0.61127 
-0.4 0.4 0.49388 0.4927 0.49221 0.40988 0.40985 0.40984 
-0.2 0.2 0.42297 0.42155 0.42093 0.20846 0.20843 0.20842 

0 0 0.35221 0.35068 0.34996 0.00704 0.00701 0.007 
0 0 0.35221 0.35068 0.34996 0.00704 0.00701 0.007 

0.2 -0.2 0.28161 0.28011 0.27934 -0.19437 -0.1944 -0.19441 
0.4 -0.4 0.21114 0.20983 0.2091 -0.39578 -0.3958 -0.39582 
0.6 -0.6 0.14074 0.13976 0.1392 -0.59719 -0.5972 -0.59722 
0.8 -0.8 0.07038 0.06984 0.06952 -0.79859 -0.7986 -0.79861 
1 -1 -2.83659E-19 -3.06659E-19 2.45327E-19 -1 -1 -1 

 
Table 2b. 0θ =  

0θ  1θ  0 1θ θ θ= +  y  
0.1,1, 2m =  0.1m =  1m =  2m =  0.1m =  1m =  2m =  

-1 1 0.35355 0.35355 0.35355 1.00707 1.00707 1.00707 
-0.8 0.9 0.31806 0.31799 0.31791 0.90636 0.90636 0.90636 
-0.6 0.8 0.28257 0.28244 0.28227 0.80565 0.80565 0.80565 
-0.4 0.7 0.24709 0.24692 0.24668 0.70494 0.70494 0.70493 
-0.2 0.6 0.21164 0.21145 0.21115 0.60423 0.60423 0.60422 

0 0.5 0.17625 0.17606 0.17572 0.50352 0.50352 0.50351 
0 0.5 0.17625 0.17606 0.17572 0.50352 0.50352 0.50351 

0.2 0.4 0.14093 0.14074 0.1404 0.40282 0.40281 0.40281 
0.4 0.3 0.10566 0.10549 0.10519 0.30211 0.30211 0.3021 
0.6 0.2 0.07043 0.0703 0.07007 0.20141 0.20141 0.2014 
0.8 0.1 0.03521 0.03514 0.03502 0.1007 0.1007 0.1007 

1 0 4.53999 
E-20 

1.53329 
E-20 

6.13317 
E-20 

9.07997 
E-22 

3.06659 
E-22 

1.22663 
E-21 

 
Table 2c. 1θ =  

0θ  1θ  0 1θ θ θ= +  y  
0.1,1, 2m =  0.1m =  1m =  2m =  0.1m =  1m =  2m =  

-1 1 0 0 0 1 1 1 
-0.8 1 0 0 0 1 1 1 
-0.6 1 0 0 0 1 1 1 
-0.4 1 0 0 0 1 1 1 
-0.2 1 0 0 0 1 1 1 

0 1 0 0 0 1 1 1 
0 1 0 0 0 1 1 1 

0.2 1 0 0 0 1 1 1 
0.4 1 0 0 0 1 1 1 
0.6 1 0 0 0 1 1 1 
0.8 1 0 0 0 1 1 1 
1 1 0 0 0 1 1 1 

 
Conclusion 

 
When the wall temperatures are 0 and 1, the Grashof number, viscosity ratio, width ratio promotes the flow whereas, 

conductivity ratio suppresses the flow. The effect of Grashof number, viscosity ratio, and width ratio on fluid velocity 
perpendicular to the channel length diminishes the flow whereas, it increases as the conductivity ratio increases. The Nusselt 
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number remains invariant on Grashof number and decreases at the wavy wall and increases at the flat as width ratio decreases and 
conductivity ratio increases. The skin friction increases at the wavy wall and decreases at the flat wall as Grashof number increases 
for different wall temperature ratio θ . 
 
Nomenclature 
 
a  amplitude ( )m  

( )j
pC  specific heat at constant pressure ( )-1 -1kJ kg K  

pC  dimensionless specific heat at constant pressure ( )(1) (2)
p pC C   

g  acceleration due to gravity ( )-2ms  

Gr  Grashof number ( )3 2(1) (1)h g Tβ νΔ  

h  width ratio of the channel ( )(2) (1)h h  

K  thermal conductivity  ( )-1 -1W m K  

k  thermal conductivity ratio ( )(2) (1)k k  

m  viscosity ratio ( )(1) (2)μ μ  
Nu  Nusselt number 
P  pressure ( )-2Nm  
p  dimensionless pressure  

Pr  Prandtl number ( )(1) (1) (1)
pC Kμ  

sp  static pressure ( )-2Nm  

r  density ratio ( )(2) (1)ρ ρ  
Re  real part 
T  temperature ( )K  

sT  static temperature ( )K  

,U V  velocities along X and Y  directions  ( )-1ms  
,u v  dimensionless velocities  
,X Y  space co-ordinates ( )m  

,x y  dimensionless space co-ordinates 
Greek Symbols 
β  dimensionless co-efficient of thermal expansion ( )(2) (1)β β  

( )jβ   co-efficient of thermal expansion 

ε  non-dimensional amplitude parameter ( )(1)a h  

λ∗  wave length ( )m  

λ      non-dimensional wave number ( )( ) ( )/i ihλ∗  

μ  viscosity ( )-1 -1kg m s  

ν  kinematic viscosity ( )( ) ( )i iμ ρ  

θ  dimensionless temperature 
ρ  density ( )-3kg m  

0ρ  static density ( )-3kg m  
τ  skin friction 
ψ  stream function 
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Superscripts 
1 and 2 refer quantities for the fluids in region-I and region-II respectively 
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