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Abstract 
 
   A study of torsional vibrations of an infinite composite poroelastic circular solid cylinder made of two different materials is 
made. The frequency equation of such torsional vibrations is obtained following analytical model based on Biot’s theory of 
wave propagation in liquid saturated porous media. Each dilatation of the solid and the liquid media is zero and therefore the 
frequency equation of torsional vibrations is same for pervious and impervious surfaces. The plots of non-dimensional frequency 
versus ratio of thickness of casing to the wavelength for two composite poroelastic cylinders are presented, and then discussed.  
The displacements of second and third torsional modes are determined and presented graphically for the ratio of radius of 
composite poroelastic solid cylinder to the radius of the inner solid cylinder. Results of previous works are shown as special case 
of the present analysis.  By ignoring liquid effects, the results of purely elastic solid are obtained. 
  
Keywords: Biot’s theory, torsional vibrations, composite poroelastic cylinder, frequency equation, first torsional mode. 
 
1. Introduction 
 
   Employing linear theory of elasticity, Gazis (1958, 1959) studied the plane-strain vibrations and three dimensional wave 
propagation in hollow elastic cylinders of infinite extent. McNiven et al. (1963) studied dispersion of axially symmetric waves in 
composite elastic rods of infinite extent. Armenakas (1965) discussed the torsional waves of an elastic composite infinite circular 
solid rod of two different materials. Using the analytical model based on Biot’s theory (1956) of wave propagation in liquid filled 
porous media consists of an elastic solid with inter connected spaces called pores saturated with liquid, Tajuddin and Sarma (1980) 
studied the torsional vibrations of an infinite poroelastic solid cylinder. Tajuddin (1982) studied the torsional vibrations of a finite 
composite poroelastic cylinder of two different materials, either concentric or bonded end to end. Coussy et al. (1998) presented 
two different approaches to deal with the mechanics of deformable porous medium. Dynamic poroelasticity of thinly layered 
structures was given by Gelinsky et al. (1998). Degrande et al. (1998) studied the wave propagation in layered dry, saturated and 
unsaturated poroelastic medium. Yeheskel and Tevet (2000) presented a new assessment method to determine the bulk modulus 
and Poisson’s ratio of porous ceramics. Wisse et al (2002) presented the experimental results of guided wave modes in porous 
cylinders. Malla Reddy and Tajuddin (2003, 2006) studied the edge waves in poroelastic plates under plane-stress conditions and 
cylindrical stress waves in poroelastic flat slabs. Chao et al (2004) studied the shock-induced borehole waves in porous formations.  
Tajuddin and Ahmed Shah (2006, 2007) studied the circumferential waves and torsional vibrations of infinite hollow poroelastic 
cylinders in presence of dissipation. 
   In the present analysis, the composite poroelastic solid circular cylinder of infinite extent consists of an inner solid circular 
cylinder of one material bounded by and bonded to a circular casing made of another poroelastic material is considered. Let the 
inner poroelastic solid cylinder, called core of radius r1, bounded by and bonded to concentric outer shell known as casing of radius 
r2 be taken to study the torsional vibrations. Each the core and the casing of the composite cylinder are isotropic and homogeneous 
and infinite in length. The frequency equation of such vibrations is derived and discussed.  The plots of non-dimensional frequency 
versus wavelength for thin and thick casing are presented. Also normalized displacements are determined and presented 
graphically for second and third torsional modes.  This is shown for ratio of radius of composite poroelastic cylinder to radius of 
inner solid cylinder each for two types of composite poroelastic cylinders.  Results of previous works are shown as special case of 
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the present study.  By ignoring liquid effects, the results of purely elastic solid are degenerated as a particular case studied by 
Armenakas (1965). 
   The study of torsional vibrations is of importance, both from theoretical and practicable consideration.  Such vibrations, for 
example, are used in delay lines.  Further based on reflections and refractions during the propagation of a pulse imperfections can 
be identified.  Still another use is the measurement of shear modulus. 
 
2.  Governing equations 
 
   The equations of motion of a homogeneous, isotropic poroelastic solid in presence of dissipation (b) following Biot (1956), are   

                                                                                                                                                                                           (1) 

where ur  and  U
r

are solid and  liquid displacements;  ∇2 is Laplace operator and e, ∈ are the dilatations of solid and liquid media 
respectively.  A, N, Q, R are all the poroelastic constants; and τ, β and η are the mass coefficients following Biot (1956). 

 
The stresses σij and the liquid pressure s are given by 

                                                                                                                                                                                                                 (2) 
where  δij is the well-known Kronecker delta function. 

 
3. Solution of the problem 

 
Consider a composite infinite solid homogeneous, isotropic poroelastic cylinder with the radii of the core and casing r1 and r2, 

respectively. The subscript ‘1’ and ‘2’ are used to denote the two materials of the composite cylinder.  The quantities with the 
subscript ‘1’ refer to the core while ‘2’ refer to the casing.  The poroelastic constants of the considered problem are mA, mN, mQ, 
mR,  (m=1,2). Let (r, θ, z) be the cylindrical polar coordinates such that z-axis coincides with the axis of the cylinder. The only 
non-zero displacement functions of solid and liquid are ur (0, v, 0) and U

r
(0, V, 0) where  

                                                                                                                                                                                                             (3) 

Here mv and mV are functions of r, z and time t.  Also each of the longitudinal wavenumber k and the circular frequency ω are 

identically same for both materials of the composite cylinder since they are bonded at the interface r=r1. 

From equation (3) it can be seen that the normal strains err, eθθ and ezz are all zero each for the core and the casing.  Hence the 
dilatation (sum of normal strains) of solid and liquid is zero for both the core and the casing of the composite poroelastic cylinder.  
Therefore the waves considered are essentially shear waves.  Since each of the dilatations of solid and liquid are zero, the liquid 
pressure ms, (m=1,2) developed in the solid-liquid aggregate following equation (2) is zero.  Then the equations of motion reduces 
to 

                                                                                                                                                                                                             (4) 

 

Eq.(4) with the help of Eq.(3) reduces to  
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                                                                                                                                                                                                             (5) 

where 

and 

                                                                                                                                                                                                             (6) 

 

A solution of equation (5) gives 

                                                                                                                                                                                                             (7) 

In equation (7), Z1 denotes J1 or I1 i.e., Bessel or modified Bessel function of first kind and W1 denotes Y1 or K1 i.e., Bessel or 
modified Bessel function of second kind each of order one, respectively, depending on the values of  mq, (m=1,2) are real or 
imaginary, and  

                                                                                                                                                                                                             (8) 
where V3 is shear wave velocity (Biot, 1956). The only non-zero stress both for the core and the casing is 

                                                                                                                                                                                                             (9) 
where a ‘prime’ over a quantity denotes differentiation with respect to ‘r’. 
 
4. Frequency equation 
 
   The boundary conditions for stress free outer surface r = r2 and perfect bonding between the core and the casing at the interface r 
= r1, are 

                                                                                                                                                                                                    (10) 

                                                                                                                                                                                                    (11) 

                                                                                                                                                                                                    (12) 

Equations (10) and (11) are to be satisfied for a pervious surface while equations (10) and (12) are to be satisfied for an impervious 
surface.  Since the liquid pressure in the core and the casing is zero, therefore the equations (11) and (12) are satisfied identically. 
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   Substitution of (7) into (9) and (3) and then the resultant into (10) gives three homogeneous equations for three constants C1, C2 
and D1.  For a non-trivial solution to exist the determinant of the coefficients of these equations must vanish.  By eliminating these 
constants the frequency equation of torsional vibrations is   

                                                                                                                                                                                                           (13) 
where the elements Cij are  

  
         C21, C22 are similar expressions as C11, C12 with r2 replaced by r1,                                                                                          (14) 
 
where λ is 

                                                                                                                                                                                                           (15) 

Here parameter ‘λ’ is introduced in order to account the difference in sign in the recurrence relations to the derivatives of aforesaid 
Bessel functions, respectively. By ignoring the liquid effects in equation (13), the results of purely elastic solid considered by 
Armenakas (1965) are obtained. 
   Due to the dissipative nature of the medium, the waves are attenuated.  Attenuation presents some difficulty in the definition of 
wave velocity, therefore we set b=0 in what follows.  In addition, it is convenient to introduce the non-dimensional variables as 
follows:  

                                                                                                                                                                                                           (16) 

where ‘h’ is the thickness of casing, L is wavelength,   1ρ = 1τ + 2 1β + 1η, and  Ω  is non-dimensional frequency and  1C0 is the 
reference velocity ( 1C0

2 = 1N/1ρ).  Let 

                                                                                                                                                                                                                                                  (17)  
 
Employing the non-dimensional quantities defined in equations (16) and (17), the frequency equation of torsional vibrations of a 
composite poroelastic cylinder (13) reduces to 

                                                                                                                                                                                                                                                              (18) 
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                                                                                                                                                                                                           (19) 
  

The parameter λ appearing in (19) is defined in equation (15) and x and y are 

 

5. Displacement of torsional mode 
 
   The displacement of the composite poroelastic solid cylinder is determined by using the boundary conditions that the outer 
surface of composite cylinder is free from stress and at the interface displacements are equal.  The normalized displacement 
v*=v/1v (where v=1v+2v) of torsional modes, after a long calculation, when ω>׀kv3׀, reduce to 
 

                                                                                                                                                                                                                                                (20) 
6. First torsional mode 
 
   If mq2 (m=1, 2) vanishes, i.e., ω = mV3 k, then the equation (5) will not yield to Bessel differential equation. Accordingly for 
composite poroelastic cylinders, Eq.(8) becomes  

                                                                                                                                                                                                       (21) 
where 

                                                                                                                                                                                                           (22) 
 

Then for composite poroelastic cylinder having same shear wave velocity iv3 (i=1,2), we see that jq (j=1,2) vanishes and a solution 
of eq.(5) is 
 
                               1h(r)= A1r,               2h(r)=A2r.                                                                                                                            (23)     
                                     
where A1 and A2 are constants. 
 
The boundary conditions are satisfied iff    A1=A2.  Hence as a special case when both materials of the composite poroelastic 
cylinder have same shear wave velocity, the first torsional mode exists uncoupled. 
 
 If the shear wave velocity of the core is different from that of the casing, then we consider two different cases. 
 
a) When  1q = 0, we have ω = k ( 1V3 ) and  
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then the non-zero solution of equation (5) reduces to  

                                                                                                                                                                                                           (24) 
 
where A1, C1 and C2 are constants.  Equation (24) with (9) gives the corresponding stresses.  These stresses with the help of 
equations (24) and (3) when substituted into boundary conditions (10) give the frequency equation: 
 
                        C11C22 - C12C21 = 0,                                                                                                                                      (25) 
 
where C11, C12, C21 and C22 are defined in equation (14).  Equation (25) will impose a restriction of the values of k for which this 
torsional mode exists uncoupled. 
 
b) When  2q = 0, we have ω = k  ( 2V3 ) and  

 
then the non-zero  solution of equation (5) is 

                                                                                                                                                                                                           (26) 

where D1 and A2 are constants.  Eq.(26) with (9) gives the corresponding stresses.  Such stresses with the help of (26) and (3) when 
transformed into boundary conditions (10) yields the frequency equation: 
 
                                             C23 = 0.                                                                                                                                                  (27) 
 
where C23 is defined in (14).  Equation (27) imposes a restriction on values of k for which this torsional mode exists uncoupled. 
 
 Therefore, it is concluded that with the exception of poroelastic cylinders made of one material having the same shear 
wave velocity a mode similar to the first torsional mode of simple poroelastic cylinder exists uncoupled in composite poroelastic 
cylinders only for certain values of wavelength.  The phase velocity of this uncoupled mode in the absence of dissipation will be 
equal to 

 
depending on whether the values of wavelength satisfy equation (25) or (27) respectively, where iK (i=1, 2) is defined in (22). 
 
7. Special cases 
 
   The composite poroelastic solid cylinder will reduce to poroelastic solid cylinder and hollow poroelastic cylinder depending on 
the poroelastic constants of the core, discussed below: 

 
7.1 Poroelastic solid cylinder: 
   When the poroelastic constants of the two materials of the composite cylinder are same, the composite cylinder will become a 
solid cylinder made of one material.  In this case let 2N = 1N = N, 2q = 1q = q.  The frequency equation of torsional vibrations (13) 
of a composite poroelastic cylinder when ω>⎟kv3⎟, reduces to  
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             D21, D22 are similar expressions as D11, D12 with r2 replaced by r1. 
                                                                                                                                                                                                           (29) 
 
Equation (28) when expanded gives the product of two factors 
 
                                   D11(D21D32-D22D31)=0.                                                                                                                                   (30) 
 
The second factor is not equal to zero since it simplifies to 2/πqr1  (Abramowitz and Stegun, 1965), while first factor reduces to 

                                                                                                                                                                                                           (31) 
 
Equation (31) is the frequency equation of torsional vibrations of an infinite poroelastic solid cylinder discussed by Tajuddin and 
Sarma (1980). 
 
 
7.2 Poroelastic hollow cylinder: 
   When the material constants of the core vanish, the composite poroelastic cylinder will become a hollow poroelastic cylinder.  
Setting 1N=0, 2N=N, 2q=q and 1q=2q at the interface r = r1, the frequency equation of torsional vibrations of a composite 
poroelastic cylinder (13) when ω>⎟kv3⎟, reduces to  

                                                                                                                                                                                                           (32) 
where 

 

               E21, E22 are similar expressions as E11, E12 with r2 replaced by r1.                                                                                     (33) 

Expanding equation (32) and using the well-known Bessel functions recursion relations (Abramowitz and Stegun, 1965), it reduces 
to  
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Equation (34) is the frequency equation of torsional vibrations of hollow poroelastic cylinders of infinite extent discussed by 
Tajuddin and Ahmed Shah (2007). 
 
8. Numerical discussion 
 
   The non-dimensional frequency equation related to torsional vibrations of a composite poroelastic cylinder, Eq.(18) is solved to 
determine non-dimensional frequency as a function of ratio of thickness of the casing to wavelength for two types of composite 
poroelastic cylinders, namely composite cylinder-I and composite cylinder-II.  Composite cylinder-I consists of the core made of 
sandstone saturated with water (Yew and Jogi, 1976) and the casing made of sandstone saturated with kerosene (Fatt, 1959); while 
in composite cylinder-II, the core is made of sandstone saturated with kerosene and the casing with sandstone saturated with water. 
The materials chosen are just opposite in characteristic phenomenon.  It is also intended to examine the effect of non-polar and 
polar fluid.   The physical parameters of these composite cylinders are given under in Table-I. 

Table-I.    Material parameters 

Material Parameter d1 d2 d3 g1 g2 g3 d 

Composite Cylinder-I 0.887 -0.001 0.099 0.877 0 0.123 0.30 

Composite Cylinder-II 0.891 0 0.125 0.901 -0.001 0.101 3.33 

 

   For a given material, the frequency equation (18) constitutes the relation between the non-dimensional frequency (Ω) and the 
ratio of thickness of the casing to wavelength h/L (=δ).  δ take all the values between 0 and 1 including 0 and 1.  The values of g 
are taken as 1.01 and 4 which represent thin and thick casing respectively, of the solid composite poroelastic cylinder.  A number 
of roots are obtained each describing a mode of vibration. Variation of frequency Ω is presented as a function of δ for composite 
cylinders-I and II having thin casing in Fig.1.  Fig.1 shows that second and third modes have maximum frequency for composite 
cylinder-II at δ=0.8 and minimum at δ=0.4. Also frequency for composite cylinder-II is more than composite cylinder-I in  

0.4 ≤ δ < 0.6 and 0.6 < δ ≤1, but at δ=0.6 the frequency is minimum. 
 Fig.2 shows the variation of frequency Ω versus δ, of composite cylinders-I and II, having thick casing.  It is clear that as δ 
increases, the frequency increases for both the composite cylinders, for second and third modes. Frequency for composite cylinder-
II is more than that of composite cylinder-I.  Normalized displacements are shown in Fig.3 for the above mentioned two composite 
poroelastic cylinders with thick casing and δ=0.1, for second torsional mode.   
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Similarly in Fig.4, the normalized displacement is represented for third torsional mode.  Figs.3 and 4 shows that these 
displacements are non-linear.   
Fig-5 shows the frequency of composite poroelastic cylinders when the wavelengths are large for second and third modes. These  

 
Thick casing (r2=4*r1) and δ=0.1 

 
 
modes have minimum frequency at δ=0.04 and 0.06 and maximum at δ=0.05.  Fig.5 shows that the frequency of second torsional 
mode is same for two above mentioned composite cylinders in  0 ≤ δ ≤ 0.01, while this is not true for the frequency of third 
torsional mode. 
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Thick casing (r2=4*r1) and δ=0.1 

 

 
9.  Concluding remarks 
 
  The investigation of torsional vibrations of composite poroelastic cylinders in case of thin and thick casing has lead to the 
following conclusion: 
 
1. For the tested cases, the motion is coupled in the core and the casing of the composite poroelastic cylinders. 
2. If the shear wave velocity is same in the core and the casing, the first torsional mode exists uncoupled. 
3. The frequency for composite cylinder-I for thin casing is higher than that of corresponding modes of thick casing. 
4. For the tested cases, the frequency of poroelastic composite cylinder-II is higher than that of poroelastic composite cylinder-I.  

This phenomenon is not true when the wavelength is large. 
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5. The variation of normalized displacement is more for composite cylinder-I than that of composite cylinder-II. 
6. For the tested cases, the frequency and the displacements are non-linear.  
 
Nomenclature 
 
( z θ, r, )     Cylindrical polar coordinates 
ur             Solid displacement  
U
r            Liquid displacement  

r1              Radius of core (inner cylinder) 
r2              Outer radius of casing (outer cylindrical shell) 
e             Dilatation of solid 
∈            Dilatation of liquid 

2∇           Laplace operator in cylindrical polar coordinates 
b               Dissipation 

ijσ            Stresses 
s               Liquid pressure 
k             Wavenumber 
A, N, Q, R   Poroelastic constants 

ηβ,τ,          Mass coefficients 

2
22

2

k
r
1

dr
d

r
1

dr
dΔ −−+=  

(x)I   (x),J nn
      Bessel function and modified Bessel function of first kind of order n and argument x            

(x)K   (x),Y nn
    Bessel function and modified Bessel function of second kind of order n and argument x 

3V          Shear wave velocity 
ω             Circular frequency 
δ            Ratio of thickness of casing to wavelength 
Ω           Non-dimensional frequency 
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