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Abstract 
 
   In this paper, a new methodology has been proposed for attaining the maximum instantaneous wind penetration by the 
optimization of grid control parameters. Particle Swarm Optimization (PSO) based algorithm has been developed to obtain the 
maximum instantaneous penetration. The developed algorithm has been tested on modified IEEE 14-bus test system. The results 
have shown the maximum instantaneous wind energy penetration limit in percentage and also maximum bus loading point 
explicitly beyond which system drives into instability. 
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1. Introduction 
 

Modern power generating systems are fully integrated with various renewable energy resources for capacity saving, cost 
reduction, loss reduction, and for decarbonization of the power sector. Among the various renewable energy sources, wind power 
generation is having lot of advantages and is the most promising source for the future as per  by Global Wind Energy Association 
report (2008). Takur et al. (2009) mentioned that the increased penetration of wind power introduces unwanted conditions such as: 
loss of synchronism, voltage collapse, load shedding, large deviations in voltage and/or frequency, introducing flicker and 
harmonics, high transmission and distribution losses, over loading and increased power oscillation. The problem is, therefore, how 
to increase the wind penetration into the grid, and what could be the maximum wind penetration possible at any time. 
    For the above problem, a number of methodologies and techniques are available depending on the wind availability, grid 
limitation etc and varies from country to country and region to region as presented in by Hofmann et al. (2007) and Estanqueiro  et 
al. (2008) . In general, some of the methods for maximizing the wind penetration are to use suitable type of wind turbines in the 
wind farms, which are connected at suitable buses and to use suitable grid control mechanisms to enable maximum penetration as 
mentioned by Estanqueiro et al. (2007). 

Wind Turbine Generators (WTGs) can be classified into two categories – Constant Speed Wind Turbine Generators (CSWTGs) 
and Variable Speed Wind Turbine Generators (VSWTGs). One of the popular types of VSWTG is Doubly Fed Induction 
Generator (DFIG), which can be smoothly connected to the grid and can provide reactive power compensation besides excellent 
speed control. Moreover, studies done by Takur et al. (2009) have proved that DFIG based wind turbine does not provide any 
oscillatory instability problems. The wind farm should be attached to the most suitable bus for maximizing the wind penetration by 
taking into account the wind availability, closeness to load centre, strength of the grid etc. The strategic grid control mechanisms 
are suitable optimization algorithm driven control measures to accept various levels of wind penetration. 

Wind energy "penetration" refers to the fraction of energy produced by wind compared with the total available generation 
capacity. The concepts and reviews of  instantaneous wind penetration  was given in by Weisser et al. (2005), where  the ratio of 
total wind power output to the total load at any instant of time and has been termed as instantaneous penetration.. 

Earlier, the works done in the area of maximum wind penetration were based on stochastic analysis, which depended on the 
annualized energy yield calculated through the capacity credit and capacity factor as mentioned by Milligan et al. (2005) and 
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Voorspools et al. (2006) . A new computational algorithm for the calculation of maximum wind energy penetration in autonomous 
island of Greece was proposed by Kaldellis et al. (2009) and Kaldellis (2008), where the entire algorithm was based on a factor 
termed as the instantaneous upper wind energy penetration limit (λ), fixed by the network manager of Greek Public Power 
Corporation. The algorithm for λ was not available. In addition, it was also stated that there were lot of wind energy rejection 
taking place due to under limiting of λ for maximum grid stability. Moreover, the algorithm was based on stochastic analysis 
cumulated for yearly average. Another method of maximum wind penetration was explained by Papathanassiou et al. (2006) , 
where the maximum wind turbine output was limited by a constant CD, dynamic penetration limit factor ; a grid constant and the 
value was assumed between 15 and 45% but stated normally 30%. Selection of CD algorithm was not available in the literature.  
Kaldellis (2008)   also proposed a methodology for optimizing the wind in power system, where the optimization was through a 
local energy storage power electronics buffer via UPS in WTG side and not by optimizing the grid parameters and none of the 
articles, explained the methodology for instantaneous wind penetration and were treated as constant irrespective of the grid 
conditions. 

Stochastic analysis based on annualized energy yield required the instantaneous wind energy absorption/rejection strategy of the 
concerned Electricity Authority for accurate analysis. Most of the prevailing approaches as per the literatures assumed a constant 
value for wind acceptance/rejection factor set by concerned Electricity Authority.  In the deregulated electricity market, authorities 
always underestimate the factor for maximum grid stability and the calculation remains as the trade secret of the electricity 
authority.  Lots of wind energy rejections were taking place because of that; moreover, the factor is quite time varying in nature 
depending on the dynamic nature of the grid and can no longer be treated as constant and hence, maximum penetration 
calculations based on annualized energy yield assuming, a constant value of, λ has got inherent limitations of inaccuracy. 

Many researchers have made immense contribution as explained above for enhancing the wind share to the grid. However, no 
significant research focused on the development of a good transparent methodology for increasing the instantaneous wind share in 
the grid by optimizing the grid control parameters, especially, based on advanced techniques such as Particle Swarm Optimization 
(PSO). 

For increasing the penetration in maximum wind penetration study, the load has to be varied in a fuzzy fashion to reach the 
maximum penetration strategy, without violation of system parameters as mentioned by Kazantzakis (1985). Among the various 
meta heuristic optimization methods, particle swarm optimization  method seems to be simple in approach, fast in convergence and 
robust in action and found to be healthy and promising for  maximum wind penetration problems as mentioned by Harley (2008) 
and hence has  been incorporated  in this paper . 

DFIG based wind turbine has been used for the formation of wind farms. The best location for connecting the wind farm was 
judged by the calculation of Wind Farm Placement Index (WFPI) by taking into account the parameters such as voltage limits and 
voltage stability, wind speed, interconnecting cable length and bus load absorption capability. 

In this paper, a novel concept of maximum safe instantaneous wind energy penetration limit ( )ψ have been introduced and the 
methodology has been proposed by suitable placement of wind farms, considering voltage stability index. 

The paper has been organized as follows. In section 2, proposed methodology has been explained with the help of the block 
diagram. The maximum instantaneous wind penetration problem formulation has been explained in section 3. Section 4 presented 
some interesting numerical results along with some discussions based on the test systems used. Finally, conclusions and major 
contributions of the paper have been summarized in section 5. 
 
2.  Proposed Methodology and Problem Formulation 
 

The proposed methodology consisted of placing the DFIG based wind farm at suitable location and utilizing a suitable algorithm 
to enable maximum grid penetration as given in Figure 1. The development of algorithm required detailed problem formulation 
with dynamic modeling of wind farm and power system and the model details are given in appendix (Table 4). 

 
 
 
 

 

 

 

 

Figure1. Proposed methodology 
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Wind has been modeled as a Weibull distribution by taking into account its composite nature by including average, ramp, gust 
and turbulence components. The turbine generator used is DFIG whose stator is directly connected and the rotor was connected 
through slip rings and assuming lossless power electronic converter and the model details are given in appendix (Table 5). 

 
3.  Problem Formulation for Maximum Instantaneous Wind Penetration 

 
The quality of the interconnected operation of DFIG to the grid has been assessed in terms of operational constraints and the 

normal operation presupposed that a number of constraint parameters are maintained within predetermined limits of which the 
most significant ones were voltage and frequency. Only fundamental frequency based analysis has been considered and the 
analysis assumed suitable buffer energy storage to handle the unpredicted power level fluctuations in additional to the adequate 
spinning reserve. Among the various factors for increasing wind penetration, those considered were, voltage setting of PV buses, 
synchronous compensators, and the load sharing between the system generators and the wind generator. 

 
3.1. Objective function and constraints: 

The objective of the penetration problem is to maximize the wind share into the grid. Accordingly, the objective function has 
been formulated for any time period (t) as 
Maximize 
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3.1.1 Power balance constraints: 

Equality constraints are mainly nodal power equations, which have to be satisfied in each time interval 
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3.1.2 Generator and system operating constraints: 
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3.1.3. Wind power constraints: 

The wind power used for dispatch should not exceed the available wind power from the wind park: 

M
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3.1.4 Optimization algorithm: 
 
Fitness function for the above problem have been formulated as 
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As mentioned before, the algorithm consisted of two stages; identify the bus to which the wind farm is to be placed by using 
WFPI calculation and second, formulation of maximum penetration model by using the particle swarm optimization. 

3.2. Wind farm placement: 

 
The bus at which the wind farm to be placed was identified by the calculation of wind farm placement index based on assessing 

the impacts and benefits as mentioned by Teng et al. (2005).  The wind farm placement index has been calculated from the 
equation given as follow. 

 
             (7) 

 

wjR = 1; if  96 ≤≤ jW  ; wjR = 2; if 6≤jW  ; wjR = 3; if 9≥jW  

0=VjR ; For generator bus; rank from high voltage to low voltage. 

)(/1 VSIabsRVSIj = ; Rank bus bars from higher value to lower. 

ljlj RR /1= ; Rank bus bars from higher value to lower. 

jgridi , = 0; for major power system grid else jgridi , = Number of buses in the small mesh of load buses getting connected to the 
single node of the major grid. The constants are suitably chosen depending on the grid by giving suitable weight. 
 
3.3 Voltage sensitivity index: 

Voltage sensitivity index based on the tangent vector at the collapse point was explained by Benabid et al. (2007). It is given by 
the expression 

∑
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The highest sensitivity index results in the weakest bus and vice versa. The tangent vector of the node voltage determines the 
relative weakness of the bus with respect to the reactive power. 

 
3.4 Particle swarm optimization: 

The particle swarm optimization (PSO) is a population based optimization method inspired by the social behavior of bird 
flocking or fish schooling. The PSO as an optimization tool provides a population based search procedure in which individuals 
called particles change their position (state) with time. In a PSO system, particles fly around in multi dimensional search space. 
During flight, each particle adjusts its position according to its own experience (The value is called Pbest) and according to the 
experience of neighboring particle (This value is called Gbest), makes use of the best position encountered by itself and its 
neighbour. The modification can be represented by the concept of velocity. Velocity of each agent can be modified by the 
following equation. The velocity (position change) of the ith particle is denoted as 
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In the updating, a new velocity for each particle based on its previous velocity k
iV is determined. The particle’s location at 

which the best fitness ( k
bestiP ) and the best particle among the neighbours ( k

bestG ) have been achieved. The inertia weight kω  
controls the exploration properties of the algorithm. The learning factors, a1 and a2, are the acceleration constants which change 
the velocity of a particle towards Pbest and Gbest. The random numbers, rand1 and rand2, are uniformly distributed numbers in range 
[0, 1].  Finally, each particle’s position k

iX  is updated by (10). 
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For the Inertia Weigh Approach (IWA) PSO, particles are updated according to (9) and (10). The linearly decreasing inertia 
weight from the maximum value ωmax to the minimum value ωmin is used to update the inertia weight as 

max min
max

max

k k
k

ω ωω ω −
= − ∗              (11) 

where, maxk  is number of maximum iteration. 
In this paper, neutral network trained inertia weight approach based particle swarm optimization algorithm has been employed to 

focus to global optima under dynamic variations of load. 

3.5 Proposed methodology: 

Step 1: Input line data, bus data, wind data, voltage limits, line limits and PSO settings. 
Step 2: Identify the best location for wind farm placement by the calculation of wind farm placement index and connect the wind 
farm to that particular bus. 
Step 3: Calculate the base case power flow with the wind farm connected at the identified bus. 
Step 4: Randomly generate an initial population (array) of particles with random positions and velocities on dimensions in the 
solution space. Set the iteration counter k = 0 
Step 5: For each particle, calculate and compare its objective function value with the individual best. If the objective value is 
higher than Pbest, set this value as the current Pbest and record the corresponding particle position. 
Step 6: Choose the particle associated with the minimum individual best Pbest of all particles, and set the value of Pbest as the current 
overall Gbest. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow chart of proposed methodology 
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Step 7: Update the velocity and position of particle using the velocity and position update equations. 
Step 8: If the iteration number reaches the maximum limit, go to step 9. Else set iteration index k = k+1 and go back to step 5. 
Step 9: Print out the optimal solution to the target problem. The best position includes the maximum load in each load bus , the 
initial MVA , power angle settings  of slack generators and the initial voltage settings of all  the PV buses .The fitness value gives 
the maximum  instantaneous wind penetration limit (ψ) . 

 
4.  Results and Discussions 

 
The proposed methodology has been tested on IEEE 14-bus modified test system as shown in Figure 3. The wind farms have 

been connected to wind bus and the loads have been scaled down to 50% from 100% initially to form the base case. Bus-2 is PV 
bus and 3, 6 and 8 are synchronous compensator buses. Loads were modeled as constant power loads (PQ load) and were solved 
by using Newton Raphson power flow routine. The load sharing between the wind generators and the system generators is through 
the initial power angle setting. The program was coded in PSAT/MATLAB integrated environment as suggested by Milano F 
(2005) and was run for 75 iterations. As discussed, the algorithm was implemented in two stages. 

 

Figure 3. IEEE 14 bus modified test system 

4.1. Wind farm placement 

The Wind Farm Placement Index (WFPI) calculation identified bus-3 as the most suitable bus and accordingly wind farm of 600 
MVA / 69kV capacity comprising of 300 wind turbines has been connected to this bus by creating another bus (bus no: 1) through 
a transformer of tap ratio unity. 

 
Table 1. WFPI and maximum penetration in various buses 

 

 
 

Table 1 showed the wind farm placement calculation and the associated penetration. Wind bus is the bus to which the wind farm 
is attached. Different buses have different power absorption capability and accordingly maximum penetration varies. Bus-3 has 
been found as the best bus for maximum penetration, followed by bus-2 and bus-6. 

It is also interesting to note that maximum penetration can be attained by connecting the wind farm at bus-3 as obtained from 

WFPI rank Wind bus Max wind share (pu) Max penetration (%) 
1 BUS-3 0.9894 44.88 
2 BUS-2 0.9678 43.89 
3 BUS-6 0.9098 42.14 
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In Figures 4 to 7, it was assured and proved that all voltages, generations, load variations, line flows were held within 
permissible limits of the IEEE 14-bus system. 

Table 3. Maximum penetration in various control dimensions. 
PSO 

Parameters  Remarks Control strategy 
1 2 3 

V1 (V) 
Slack bus 

PS
O

 
V

A
R

IA
B

IL
ES

 1.0 1.0 1.0 
V15(V) 1.1 1.1 1.07 
θ15(Rad) 0.1 0.1 0.1 
V2(V) PV 1.1 1.0 1.0 
V6(V) SC bus* 1.0 1.07 1.1 
V3(V) SC bus* 1.08 1.05 1.1 
V8(V) SC bus* 1.0 1.04 1.08 
Pw (pu) Max wind share 0.985 0.99 0.9926 

Ψ (%) Max 
penetration 45.14 44.9 44.6 

*SC- Synchronous compensator bus 

For maximizing the penetration, different control strategies have been formulated for comparison as given in Table 3 and the 
best can be chosen and adapted depending on the flexibility of the grid in terms of AVR ratings, response characteristics, losses, 
load level etc. In the IEEE 14-bus test system, bus-2 is PV and 6, 3 & 8 are synchronous compensator buses. The PSO variables 
are voltage and angle of slack bus, voltages of PV buses and the voltages of the synchronous compensator buses. The maximum 
penetration depends on the optimal setting of these variables. OLTC transformer tap setting was not taken into account in this 
work. 

 
5. Conclusion 

 
In this paper, a new concept of wind farm placement index has been proposed to identify the best suitable location for the 

placement of wind farm by taking into account the voltage sensitivity index. Also, a new concept of maximum instantaneous wind 
energy penetration limit (ψ) has been introduced and methodology has been proposed. A particle swarm optimization based 
algorithm has been used to obtain the maximum instantaneous wind penetration. The developed algorithm also gives explicitly the 
maximum permissible loadings at each bus. The result seemed to be quite promising, when tested on IEEE 14-bus system. 

 
Nomenclature 
 

lC  Interconnection cable length constant  

VSIC  Voltage sensitivity index constant  
vC Voltage constant  

dVk Voltage tangent vector of bus-k 
wpjI  Wind farm placement index of bus-j 

jgridi ,  Index of grid connection of bus-j 
nkk ,  Violated constraint Index, Total number of violated constraints 

M Total number of existing generators in the grid other than wind 
lineMVA   MVA rating of the line 

NFNT ,  Total number of wind turbines, farms 
    , ii QP  Active & reactive power injection of  bus-i 

kk UPf ,  Penalty factor & violation of constraint-k. 
wf

wiP  Real power delivered by wind turbine wt of wind Farm wf  
 , DiDi QP  Active and reactive power demand  at bus-i 

 , GiGi QP  Active and reactive power generation at bus-i. 
LD PP  ,  Total real power demand and losses 

WP  Total real power output of all the wind Farms  
wjR  Wind speed rank of bus-j 
VjR  Voltage rank of bus-j 
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VSIjR  Voltage sensitivity index rank of bus-j 
ljR  Interconnection cable length rank of bus-j 
wfS Wind farm placement distance from the  wind bus 

ωv  Wind speed at the wind farm 
VSI Voltage sensitivity index 

wbV  Voltage of the wind bus 
iiV δ,  Voltage & voltage angle of bus-i 

Nb Total number of buses in the system 
 ijji   , θY  Admittance and  angle of line 

ji  

wi ,wf Index of wind turbine , wind farm 
ψ  Maximum Instantaneous wind energy penetration limit. 

 
Appendix 

Wind was modeled as Weibull distribution as proposed by Milano F (2005) by taking into account the composite nature of wind 
which included average, ramp, gust, turbulence and low pass filters were used to smooth the wind speed variations.. 

 
Table 4. Wind model parameters. 

Nominal wind speed/ air density 15m/s /1.225Kg/m3 
Filter time constant/sample time 4s,0.1s 
Weibull constant C & K 20,2 
Ramp constants [ wrersr Att ,,  ] 5s,15s,1m/s 
Gust constants [

wgegsg Att ,,  ] 5s,15s,0m/s 
Turbulence constants [ ndfZh ,,, 0  ] 50m,0.01,0.2Hz,50 

DFIG Model: 
 
Assuming lossless converter and the active power of the converter coincides with the rotor active power; the active and reactive 

power injected to the grid by the DFIG turbine was expressed as a function of stator and rotor currents as proposed by Milano F 
(2005). 

 
Table 5. DFIG parameters. 

[MVA,KV,Hz], kWs/kVA [600  69   60], 3pu 
[Rs,Xs] [Rr,Xr] Xm [0.01  0.10] [0.01  0.08] 3.00 pu 

Kp, Tp, Kv, Te [10pu 3s], 10pu, 0.01s 
Pole, Gear Ratio, [4 1/89] 

Blade length and number [75.00m  3] 
Pmax, Pmin; Qmax, Qmin [1.00  0.00]pu; [0.7  -0.7] pu 

No of generators 300Nos 
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