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Abstract

Economic dispatch (ED) has the objective of generation allocation to the power generators in such a manner that the total fuel
cost is minimized while all operating constraints are satisfied. For the sake of simplicity, ED is generally solved without
accounting for transmission constraints. However, in deregulated power system environment it is essential to model the ED
problem for practical multi-area cases with tie line constraints. Most of the conventional gradient based methods are time
consuming, suffer from dimensionality problem and assume the fuel cost curves of generating units to be piecewise linear,
monotonically increasing in nature. The resulting dispatch solutions are therefore inaccurate; sometimes producing infeasible
solutions for modern generating units having non convex cost curves. On the other hand evolutionary methods do not suffer
from convexity assumptions and achieve fast solutions even for complex non-linear, non-convex, multi-modal optimization
problems. This paper reviews and compares some evolutionary techniques for multi-area economic dispatch (MAED).
The paper presents an extensive comparison of the search capability and convergence behavior of i) Classical differential
evolution (DE) and its various strategies ii) Classical particle swarm optimization (PSO) and iii) An improved PSO with a
parameter automation strategy having time varying acceleration coefficients (PSO_TVAC) for solving MAED problems for two
area and three area test power systems with 4, 10 and 40- generating units. The results are found to be superior compared to
some recently published results.

Keywords: Differential evolution, Multi-area economic dispatch, multiple fuel options, particle swarm optimization,
transmission capacity constraints. Time varying acceleration coefficients (TVAC), Valve point loading effects.

1. Introduction

The objective of Economic dispatch (ED) is to allocate power generation among available generators in the most economical
manner, while satisfying the physical and operational constraints. The cost of power generation, particularly in fossil fuel plants, is
very high and economic dispatch helps in saving a significant amount of revenue. Conventional methods like lamda iteration, base
point participation factor, gradient methods etc. rely heavily on the convexity assumption of generator cost curves and hence
approximate these curves using quadratic or piecewise quadratic, monotonically increasing cost functions (Wood et al., 1984). In
actual practice however, this assumption is not valid because the cost functions exhibit higher order non-linearities and
discontinuities due to prohibited operating zones (POZ), ramp rate limits and valve point loading effects (Walter et al., 1993,
Orero et al., 1996). In the practical ED, the cost function must be expressed as a piecewise non-linear function in place of a single
quadratic function. Therefore, ED problem with valve point effects gives rise to a non smooth optimization problem with heavy
equality and inequality constraints, having complex and nonconvex characteristics with multiple minima, which make the
challenge of obtaining the global minima very difficult. Most traditional methods fail for this NCED problem except dynamic
programming (Shoults et al., 1986) in which no restriction is imposed on the shape of cost curves, but this method suffers from the
problem of dimensionality and excessive evaluation at each stage.

Power utilities try to achieve high operating efficiency to produce cheap electricity. Competition exists in the electricity supply
industry in generation and in the marketing of electricity. The operating cost of a power pool can be reduced if the areas with more
economic units generate larger power than their load, and export the surplus power to other areas with more expensive units. The
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benefits thus gained will depend on several factors like the characteristics of a pool, the policies adopted by utilities, types of
interconnections, tie-line limits and load distribution in different areas. Therefore, transmission capacity constraints in production
cost analysis are important issues in the operation and planning of electric power systems.

The economic dispatch problem is frequently solved without considering transmission constraints. Compared to the classical
ED problem the MAED problem is more complex due to the additional tie-line constraints and area power balance requirements.
However, some researchers have taken transmission capacity constraints into consideration. A complete formulation of multi-area
generation scheduling with import/export constraints was presented in a reference (Shoults et al., 1980). Desell et al. (1984)
proposed an application of linear programming to transmission constrained production cost analysis. Farmer et al. (1990)
presented a probabilistic method which was applied to the production costing of transmission constrained multi-area power
systems. Hopfield neural network based approach was proposed to solve the MAED problem (Yalcinoz et al., 1998). Doty and
Mclntyre et al. (1982) solved multi-area economic dispatch problem by using spatial dynamic programming and optimal results
were reported considering transmission constraint with linear losses. Linear programming application is proposed in Desell et al.
(1984) to production cost analysis with transmission constraint. Area control error is solved in multi-area economic dispatch
(Hemick et al., 1985). Wang and Shahidehpour et al. (1992) proposed a decomposition approach for solving multi-area generation
scheduling with tie-line constraints using expert systems. They presented efficiency of decomposition approach by testing it on a
four area system with each area consisting of 26 units. The Newton-Rapshon's method is applied to solve multi-area economic
dispatch problem (Wernerus et al., 1995) by calculating short range margin cost based prices. An incremental network flow
programming algorithm was proposed for the MAED solution with tie-line constraints (Streifferet et al., 1995). The MAED is
solved by the direct search method with considering transmission constraint (Chen et al., 2001). Evolutionary programming is
proposed in Jayabarathi et al. (2000) for multi-area economic dispatch problem. Recently covariance matrix adapted evolutionary
strategy has been proposed for MAED problems where a Karush Kuhun Tucker (KKT) optimality based stopping criterion is
applied to guarantee optimal convergence (Manoharan et al., 2009). Determining the most economical fuel to burn poses another
optimization challenge for generators with multiple fuel options. In such cases the fuel cost curve is represented as a segmented
piecewise quadratic function similar to the valve point loading effects (Park et al., 1993). The economic dispatch problem with
multiple areas and multiple fuel options translates into a nonconvex optimization problem with complex constraints. Such
optimization problems require algorithms which avoid approximation of cost function and still do not require large computational
time. The methods found suitable include tabu search, simulating annealing, neural networks (Yalcinoz et al., 1998; Park et al.,
1993), genetic algorithm (Orero et al., 1996) , particle swarm optimization (Chaturvedi et al., 2009), harmony search (Vasebi et
al., 2007), ant colony optimization (Song et al., 1999), bacterial foraging, (Panigrahi et al., 2009), artificial immune system
(Vanaja et al., 2008) and differential evolution (DE) (Coelho et al., 2006). Among these techniques, PSO, DE and their variants
have been extensively popular due to their superior convergence characteristics, consistency and ease of implementation.

Although these methods do not always guarantee global best solutions, they often achieve a fast and near global optimal
solution. Researches have constantly observed that all these methods very quickly find a good local solution but get stuck there for
a number of iterations without further improvement sometimes causing premature convergence. Time varying acceleration
coefficients (TVAC), (Chaturvedi et al., 2009) are employed countering the effect of premature convergence in PSO. The TVAC
strategy strikes a proper balance between the cognitive and social component during the initial and latter part of the search and
hence is found to avoid premature convergence of the swarm. The paper aims to test the potential of all the basic DE variants in
producing feasible solutions for the MAED problem formulated with many different constraints. The paper also compares the
solution quality of DE variants with the PSO_TVAC strategy with classical PSO. The results of all three evolutionary strategies
are found to be feasible and superior to reported results (Yalcinoz et al., 1998; Chen et al., 2001; Manoharan et al., 2009).

2. Multi-area Economic Dispatch with Multiple fuel Options

The objective of MAED is to determine the generation levels and the power interchange between areas which would minimize
total fuel costs in all areas while satisfying power balance, generating limit and transmission capacity constraints. If an area with
excess power is not adjacent to a power deficient area, or the tie-line between the two areas is at the transmission limit, it is
necessary to find an alternative path between these two areas in order to transmit additional power.

The generator cost function is obtained from the data taken during the heat-run tests, in which the input-output data is measured
to cover the operating region. Large turbine generators usually have a number of fuel admission valves which are opened one by
one when the unit is called upon to increase production. When a valve is opened, the throttling losses increase rapidly as a result of
which, the incremental heat rate rises suddenly. The valve-point effects introduce ripples in the heat-rate curves and make the
objective function discontinuous, nonconvex and with multiple minima. The fuel cost of the i" unit can be calculated as.

Fi(Pi):aiPin"biPi+Ci+‘eiXSin(fix(Pimm _Pi)] (1)
When the generating units are supplied with multiple fuel sources, the cost of each unit is represented with several piecewise

quadratic functions reflecting the effects of fuel changes; the generator has to identify the most economic fuel to burn from the
options available. The fuel cost function for such a case is represented as in Lin et al. (1984).
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where a,.,, Dk and ¢ are the fuel-cost coefficients of the i"™ unit, of m" area and k=1,2.,..., K are the available fuels. The

ED problem is to determine the generated powers Pi of units for a total load of PD so that the total fuel cost for the N number of
generating units is minimized subject to the power balance constraint and unit upper and lower operating limits. Taking into
consideration the cost of transmission though each tie-line, the objective function of multi-area economic dispatch is given in Eq.
(3) as

N M -1
MinF = DFR(PY+ D T 3)
i=1 j

f; is the cost function associated with tie line power flow from area j to area (M-1).
i)Area Power Balance Constraints
The power balance constraints for area m neglecting losses can be given as

N M -1

Z Pim =] Pom + Z Tj(M 1, |=0 4)
i=1 i

form=1,2........M (areas). Ppp, is the load demand in m'" area and T; represents the tie line flows to the jth area from other areas.

ii)Generating Limit Constraints

The power output of a unit must be allocated within the range bounded by its lower and upper limits of real power generation as
given by

pm" <P, < P™ i=12,..,N 4)
iii)Tie-line Limit Constraints

The tie line power flows to area j should be between the maximum and minimum

Ty ST ST, j=12,.. M (6)
where T; is the power flow through the tie line.

3. Review of Evolutionary Strategies

During the last decade different Evolutionary strategies have increasingly been applied by researchers for solving economic
dispatch problems (Walter et al., 1993; Orero et al., 1996; Jayabarathi et al., 2000; Coelho et al., 2006; Sinha et al., 2003) due to
their powerful search capability and ability to handle different types of cost functions. Out of the different evolutionary techniques
proposed PSO and DE have emerged as the most popular, looking at the number of papers published during the past few years.
The present paper aims to present a brief review and comparison of both the techniques and their different variants using
performance metrics such as convergence behavior, consistency and solution quality for solving the MAED problem with multiple
fuel options.

3.1 Classical PSO

A PSO is a population based modern heuristic search method that traces its evolution to the emergent motion of a flock of birds
searching for food. It scatters random particles i.e. solutions into the problem space. These particles, called swarms, collect
information from each other through their respective positions. The particles update their positions using their own experience and
the experience of their neighbors. The update mode is termed as the velocity of particles. The position and velocity vectors of the

i™ particle of a d-dimensional search space can be represented as X; = (X;;5 Xiyyerererunen. Xig) and V; = (V;,Vis,emnns Vig)
respectively. On the basis of the value of the evaluation function, the previous best position of a particle is recorded and
represented as PDESt, = (P, Pig-veve-- P,q) If the g" particle is the best among all particles in the group so far, it is represented

as pbestg = gbest = (pgl, Pgaseeeeeene pgd) The particle tries to modify its position using the current velocity and the
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distance from pbest and gbest and .The modified velocity and position of each particle for fitness evaluation in the next iteration
are calculated using the following equations:

v = Clwx vl +c¢, xrand, x (pbest, — X, ) +c, x rand , x (gbest ; — x;, )] %
X = Xig +Vig" (®)

Here w is the inertia weight parameter, C is constriction factor, c;,c; are cognitive and social coefficients,rand; and rand, are
random numbers between 0 and 1. A large inertia weight helps in good global search while a smaller value facilitates local
exploration. Therefore, the practice is to use larger inertia weight factor during initial exploration and gradual reduction of its value
as the search proceeds in further iterations. The time varying inertial weight is given by
)x (|ter_max — iter )+ W )

iter .
where iter is the current iteration number while iter,,, is the maximum number of iterations. Usually, the value of w is varied
between 0.9 and 0.4.

w = (Wmax - Wmin

3.2 PSO with Time-Varying Acceleration Coefficients (PSO_TVAC)

Though the PSO technique with time varying inertia weight can locate good solution at a significantly fast rate, its ability to fine
tune the optimum solution is weak, mainly due to the lack of diversity at the end of the search. It has been observed by most
researchers that in PSO, problem-based tuning of parameters is a key factor to find the optimum solution accurately and
efficiently. (Kennedy and Eberhart et al., 1995) stated that a relatively higher value of the cognitive component, compared with the
social component, results in roaming of individuals through a wide search space. On the other hand, a relatively high value of the
social component leads particles to a local optimum prematurely. In population-based optimization methods, the policy is to
encourage individuals to roam through the entire search space during the initial part of the search, without clustering around local
optima. During the latter stages, convergence towards the global optima is encouraged, to find the optimal solution efficiently. The
idea behind TVAC is to enhance the global search in the early part of the optimization and to encourage the particles to converge
towards the global optima at the end of the search. This is achieved by changing the acceleration coefficients ¢, and c, with time in
such a manner that the cognitive component is reduced while the social component is increased as the search proceeds. With a
large cognitive component and small social component at the beginning, particles are allowed to move around the search space
instead of moving toward the population best during early stages. On the other hand, a small cognitive component and a large
social component allow the particles to converge to the global optima in the latter part of the optimization process. The
acceleration coefficients are expressed as (Ratnaweera et al., 2004):

iter (10)
c, = (c - ¢, )J——+ ¢,
1 (lf ll)iter o Li

iter
Cr, = (sz - CZi)iter—+ Coi (11)

max

where Cyj, Ci¢, Cyj and ¢y are initial and final values of cognitive and social acceleration factors respectively.
3.3 Differential evolution

DE is a population-based stochastic function minimizer (or maximizer) based on evolutionary computation, whose simple yet
powerful and straightforward features make it very attractive for numerical optimization. DE differs from conventional genetic
algorithms in its use of perturbing vectors, which are the difference between two randomly chosen parameter vectors, a concept
borrowed from the operators of Nelder and Mead’s simplex optimization technique. The DE algorithm was first introduced by
Storn and Price et al. (1995) and was successfully applied in the optimization of some well-known nonlinear, non-differentiable,
and non-convex functions. DE works on three basic operations, namely mutation, crossover and selection.

Mutation is an operation that adds a vector differential to a population vector of individuals according to the chosen variant. The
different variants of DE are classified using the notation DE /a/B/d where o indicates the method for selecting the parent
chromosome that will form the base of the mutated vector, j indicates the number of difference vectors used to perturb the base
chromosome, and $ indicates the recombination mechanism used to create the offspring population. Most papers have explored the
variant DE / rand / 1 / bin (Coelho et al., 2006). The best performing variant is found to be problem specific and needs detailed
investigation. The donor or mutant vector for each population member is generated for different variants in classic DE as given
below
1) DE/rand/1

Zi(t+1)= X, () + fr[Xi2(t) = Xj3(t)]
2) DE/best/1
Zi(t+1)= Xjpest (1) + Fr[Xira(t) = Xj 3(1)]
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3) DE/rand-to-best/1
Zi(t+1)=x;(t)+ fp[Xjps ()= Xi (O] + fm [xir () — x;ry ()]
4) DE/best/2
Zi(t+1) = Xjpgq () + frlxj () — xiry (O] + M [xr;3 (1) = xjrg ()]
5) DE/rand/2

Zi(t+1)=Xj,s(t)+ Frlxj ()= Xir (O] + fm [x5r3(t) = Xjry (1)] (12)
where i = 1,2 ..., R is the individual’s index of population and j = 1, 2,...,N is the position in n-dimensional individual; t is the
time (generation); I , I, I3, Iy and rs are mutually different integers and also different from the running index, i, randomly selected
with uniform distribution from the population set and f, > 0 is a real parameter called mutation factor, which controls the
amplification of the difference between two individuals so as to avoid search stagnation and is usually taken from the range [0,
2].Following the mutation operation, recombination is applied to the population. Recombination is employed to generate a trial
vector by replacing certain parameters of the target vector with the corresponding parameters of the randomly generated donor
vector.

Uy D)= {z” (t +1),....if (rand( j) < CR)or(j = rand int(i)) (13)

X (Qseeenn if (rand(j) > CR)or(j # rand int(i))

In the above rand(j) is the j" evaluation of a uniform random number generation within range [0, 1], and CR is a crossover or
recombination rate in the range [0, 1]. The performance of a DE algorithm usually depends on three variables; the population size
N, the mutation factor f,, and the recombination rate CR. Selection is the procedure of producing better offspring. To decide
whether or not the vector should be a member of the population comprising the next generation, it is compared with the
corresponding vector. Thus, it denotes the objective function under minimization, and

U (t+ Do if (u(t+1) < f(x, (1)
X (t+1) = .
X; (t),.... otherwise (14)

In this case, the cost of each trial vector Uj(t+1) is compared with that of its parent target vector xj(t). Here, a detailed study of
all the basic DE variants is carried out to find the best strategy for a given MAED problem with multiple fuel options. The
performance is then compared with classical PSO and PSO_TVAC.

4. Implementation of MAED Problem with Multiple Fuel Option

The paper presents a solution of the MAED problem with multiple fuel options and valve point loading employing PSO and
DE strategies and critically compares their features for practical power system operation.

Step 1) Parameter setup

The PSO and DE parameters such as population size, the boundary constraints of optimization variables, cognitive and social
acceleration coefficients, the mutation factor (f;) ,the crossover rate (CR), and the stopping criterion of maximum number of
iterations (Gp.x), are selected.

Step 2) Initialization of an individual population
For a population size R, the particles are randomly generated and normalized between the maximum and the minimum operating
limits of the generators. If there are N units, the i particle is represented as

R R R B T T T o) T (15)

The j™ Dimension of The i™ Particle is normalized as given below to satisfy the generation limit constraint given by (5). Here, r
[0,1].
P,"=P

i jmn T T (P, = Pyin ) (16)

ij max
Step 3) Evaluation of the individual population

The strength of each individual particle in the swarm is evaluated to judge its merit using a fitness function called evaluation
function. The evaluation function should be such that cost is minimized while constraints are satisfied. One of the methods for this
is the popular penalty function method. In this method, the penalty functions composed of squared or absolute violations are
incorporated in the fitness function, and are set to reduce the fitness of the particle according to the magnitude of the violation. The
penalty parameters are chosen such that an infeasible solution is awarded lesser fitness than the weakest feasible particle string.
Since two infeasible particles are not treated equally, the string further away from the feasibility boundary is more heavily
penalized. The penalty function approach, thus, converts a constrained optimization problem into an unconstrained optimization
problem. The fitness function values need to be calculated for each particle in order to find its merit. The evaluation function used
here is given by
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min il F.(P )+ o{i i P, —[PDm + (MZJI)TJ(MI>J:| (17)

m=1 i=1
Here, o is the penalty parameter. The second term imposes a penalty on the particle in terms of increased cost, if power balance
constraints of all the areas are not satisfied. The first term is calculated using Fi(Pi) from eq. (1) for solution considering the valve
point effects and eq. (2) for units with multiple fuel options. Transmission losses are neglected here for the sake of simplicity.

Step 4) Iterative Parameter Updation

In each iteration the parameters are updated to improve the fitness. In PSO the parameters are updated using eq. (7)-Eq. (11) while
in DE mutation adds a vector differential to a population vector of individuals; the donor or mutant vector is generated by using eq.
(12) corresponding to the chosen DE variant.

Step 5) Recombination operation
Recombination is applied in DE using eq. (13) to generate a trial vector by replacing certain parameters of the target vector with
the corresponding parameters of the randomly generated donor in step 4.

Step 6) Selection operation
Finally the selection operation produces better offspring. The values of the evaluation function are calculated for the updated
positions of the particles. In PSO if the new value is better than the previous pbest, the new value is set to pbest. Similarly, value
of gbest is also updated as the best of pbest. In DE the trial vector U;j(t+1) replaces its parent target vector X;t) if its cost is found
to be better otherwise the target vector is allowed to advance to the next generation.

Step 7) Stopping criterion: A stochastic optimization algorithm is stopped either based on the tolerance limit or maximum number
of iterations. For comparison with other strategies, the number of iterations is adopted as the stopping criterion in this paper.

5. Results and Discussion

The additional tie-line constraints and area power balance constraints make the MAED problem much more complex and
difficult to solve as compared to the classical ED problem. The PSO and DE based evolutionary strategies are tested for the
proposed practical MAED problem on three test systems having different sizes and nonlinearities. The performance was compared
with previously published results (Yalcinoz et al., 1998; Chen et al., 2001 and Manoharan et al., 2009) and was found to be better.

5.1 Description of the test systems

i) The first test system consists of a two-area system with four generating units (Yalcinoz et al., 1998; Chen et al., 2001) as shown
in Fig. 1. This system is considered here for the purpose of comparison with previous results. The percentage of the total load
demand in area 1 is 70% and 30% in area 2. The cost coefficients and limits are taken from (Chen et al., 2001). The load demand
(PD) and tie-line flow limit are set at 1120 MW and 200MW respectively. The global best for this system has been reported at
$10,605 (Yalcinoz et al.1998,Chen et al.2001) . Reference (Manoharan et al., 2009) has reported $10,574 but the reported results
are infeasible because though their solutions satisfy the power balance and generating limit constraints, it does not satisfy the arca
power balance constraints.

ii) The second system (Manoharan et al., 2009, Lin et al., 1984) comprises of three areas, 10 generating units, with three fuel
options. The total system demand is 2700 MW. The 10 generating units are divided into three areas, as shown in Fig. 2. Area 1
comprises the first four units (P1, P2, P3, P4); area 2 includes three units (P5, P6, P7); and area 3 has the remaining three units (P8,
P9, P10). Each area has both generation and load and each area is represented as having tie-line connections to each of the other
areas. The load demand in area 1 is assumed as 50% of the total demand. The load demand in area 2 is assumed as 25% and in area
3 the load is 25% of the total demand. The tie line flow limit is set at £100 MW for each tie line. The global best for this system
has not yet been reported. The minimum cost for this system using covariance matrix adapted evolutionary strategy (CMAES)
technique (Manoharan et al., 2009 ) is $686.9850 which is infeasible as area power balance constraints are not satisfied in this case
too. DE and PSO_TVAC algorithms used in this paper have achieved lower and feasible results for this system.

iii) Test system three was selected for testing the performance of the evolutionary methods for MAED problem of a large system.
This system has 40-generating units with valve point loading effects taken from (Sinha et al., 2003), randomly distributed into two
areas such that both areas include half the units. The total system load is 10,500MW (Sinha et al., 2003). The classical PSO is not
able to find the best solution for this system but DE and PSO_TVAC converge to global best solutions.
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For the purpose of comparison the cost of tie-line power flow is neglected in all three test cases. In classical PSO both the
acceleration coefficients are taken equal to 1.5 for all systems. Simulations were carried out using MATLAB 7.0.1 on a Pentium
IV processor, 2.8 GHz. with 512 MB RAM.

P1 and P2 P3 and P4
AREA 1 AREA 2

70% of PD 30% of PD

Figure 1.Two-area, four unit system.

P — —— Ps
P, | — P
P, | L,
P, (250 of Py)
(50% of Pp)
Pg
| P
P

(25% of Pp)

Figure 2. Three area ten generating unit system.

5.2 Testing Strategies

The MAED problem was solved using the classical PSO, PSO_TVAC and DE and their performance was compared with some
already reported results (Yalcinoz et al., 1998; Chen et al., 2001; Manoharan et al., 2009). During recent years DE and its hybrid
variants have been proposed for many power system applications but a detailed comparative study of all its basic variants for
MAED problem with complex constraints has not been reported yet. The paper i) Compares different DE variants for the MAED
problem ii) Compares the best DE variant with its close competitor PSO and its effective variant PSO_TVAC iii) Investigates the
influence of tie-line power limits on the total fuel cost. Through out this paper DE/rand to best/1 variant of DE is applied for
comparison with PSO and PSO_TVAC as it was found to be the best among various DE variants defined by eq. (12).

5.3 Effect of tuning parameters

An attempt has been made here to compare the PSO and DE strategies extensively, to find similarities and differences; merits
and shortcomings; solution quality and consistency and dependence on tuning parameters. A deeper understanding of these
strategies can save a lot of time and effort which is otherwise wasted in tuning the different parameters of these algorithms. The
mean and standard deviation (S.D.) out of 50 trials for DE algorithm are tabulated in Table 1 for 4-unit system and in Table 2 for
10-unit system. From both the tables it is evident that better results are available for fm and CR pairs lying in a diagonal. Higher
fm supports higher CR and best results are obtained for f,=CR=0.9 (and/or 0.8) for both the systems. This behavior was found to
be consistent for other mathematical benchmark problems too. It can be seen from the two tables that for some combinations of
fm and CR, the DE algorithm did not converge.

Similar to DE and other evolutionary techniques, the performance of PSO algorithm is quite sensitive to the various parameter
settings. The initial and final values of the acceleration coefficients have a significant effect on the solution. Based on empirical
studies on a number of mathematical benchmarks, reference (Ratnaweera et al., 2004) has reported the best range of variation as
2.5-0.5 for ¢; and 0.5-2.5 for c,. In reference (Chaturvedi et al., 2008). It is observed that initial value of the cognitive coefficient
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cli and final value of social coefficient Cy control the range of the search space. Therefore in PSO_TVAC the values of ¢;; and Cy¢
are varied between 2.5-1.8 keeping c;r and c,; fixed at 0.2 (Chaturvedi et al., 2008). It is seen that a high initial value of the
cognitive coefficient ¢, makes use of full range of the search space while a low social coefficient ¢, helps in avoiding premature
convergence. As the search progresses C; is reduced to reduce search space and ¢, is increased to accelerate the solution towards
global convergence. The best parameter combination is found to depend on the nature of the objective function. However all the
tested functions were found to achieve optimal results in the above variation range of ¢, and ¢,.

Table 3 and Table 4 present the effect of acceleration coefficients on the MAED solution of 4-unit and 10-unit system by
PSO_TVAC strategy. It can be seen that for all combinations of c¢;; and cyr around 2.0, the PSO_TVAC strategy converges to near
global results indicated by a small value of S.D. Best results in this case are found for cli = c2f =1.8. On comparison of DE with
PSO_TVAC it can be seen that DE converges to the global solution for f,, =CR=0.9 for both the test systems with zero S.D. but for
other values of fm and CR the S.D. is quite high, sometimes indicating non convergence. To summarize, it can be said that DE is
capable of producing guaranteed global best results accurately for fm =CR=0.9 while PSO_TVAC converges to near global values
for all combinations of tuning parameters; the global best is also achieved in PSO_TVAC for some of the runs but the optimal
parameter combination for achieving global best is problem specific, based on trial and error. The S.D. of PSO_TVAC is also
higher than that of DE.

Table 1. Effect of mutation factor and cross over rate on mean and S.D.in DE (4-unit system; 50 Trials)

F CR=0.1 CR=0.2 CR=0.3 CR=0.5 CR=0.7 CR=0.9

0.1 10810 10733 10711 10685 10719 10729
(99.6394)* (39.0909) (33.6134) (28.4186) (35.7129) (38.2988)

0.2 10880 10828 10740 10696 10714 1013706
(357.3825) (104.5888) (43.8385) (27.8735) (34.2938) (1965906)

03 12255 11063 10804 10686 10718 10738
(1194.103) (289.4027) (74.0974) (33.3560) (35.2041) (42.5106)

0.5 15154 13241 10126 10654 10652 10678
(3522.145) (2111.83) (355.7964) (31.2656) (26.1138) (28.8017)

0.7 23134 14234 12046 10654 10613 10622
(11299.48) (3249.13) (12959) (32.1260) (13 .3654) (25.2936)

0.9 35033 15326 13025 10672 10612 10604.6740
(23422.788) | (4809.67) (2941.9) (47.2911) (13.2254) (7.4942-012)

*the bracketed value indicates the standard deviation

Table 2. Effect of mutation factor and cross over rate on mean and S.D.in DE (10-unit system; 50 Trials)

fu CR=0.1 CR=D.2 CR=0.3 CR=0.5 CR=0.7 CR=09

01 |683.9946 604.9258 686.9954 20462607 268654508 112560609
(10.7250)* (18.4492) (12.1843) (30113007) (193060087) (405980080)

02 | 705.6402 689.7573 607.9706 6714506 12243007 343786708
(18.5378) (14.3429) (17.9246) {10742007) (14691076) (145408008)

03 | 7348387 771.7220 1007.88 757.8201 698.0343 13198007
(42.3035) (47.3775) (173.1886) (45.2385) (19.3298) (15668007)

05 |116493 1827.665 1541.23 489749 703.5082 657.7347
(281.8871) (384.4720) (299.2481) (2932.63) (17.0304) (10.5408)

0.7 | 2109.80 3222.70 3498.97 12694 .89 820.2417 638.2807
(6533723 (630.7551) (585.2700) (7510.73) (68.8499) (1.0305)

09 [275473 9100.40 16316.94 36463 .64 6774.00 638.3134
(1326.35) (4555.58) (5649.03) (14280.74) (3018.33) (1.0288)

*the bracketed value indicates the standard deviation
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Table 3. Effect of acceleration coefficients on performance of PSO_TVAC (4 unit system ; 50 trials)

SNo. |ex | cx Coi car Minimum Average Max cost($/h) SO
Cost($/h) cost($/h)

1 0.2 02 15 10609.6667 10817.648 10917.5782 71.1407
2 25102 02 22 |10607.6732 10755.6347 10907.8235 69.2345
3 0.2 0.2 1.9 | 10608.6667 10815.4927 10905.6529 70.3498
4 0.2 0.2 1.6 |10607.7735 10803 .2487 10875.8723 68.2745
5 0.2 02 25 10608.9701 10796.095 10864.7893 58.167
6 22102 02 22 |10608.7812 10698 4685 10876.3468 66.7386
7 0.2 0.2 1.9 |10609.3489 10657.4768 10748.3578 499442
8 0.2 0.2 1.6 |10605.3583 10695 .8690 10859.8603 68.3472
9 0.2 02 25 10606.5983 107746503 10885.5079 64.6315
10 2 0.2 02 21 |10606.0085 10784.0247 10905.8432 66.3462
11 0.2 0.2 1.9 |10605.0443 10738.8400 10870.3476 54.5689
12 0.2 0.2 1.6 |106054114 10749.5489 10807.8305 506521
13 0.2 02 25 10605.0248 10746.5799 10812.5908 30.5683
14 18 |02 0.2 2.2 |10604.8452 10734.5678 10810.8909 28.5578
15 0.2 02 1.9 |10604.6781 10717 5431 10864.3588 278354
16 0.2 0.2 1.7 | 106048250 107195367 10864.3459 27.9487

Table 4. Effect of acceleration coefficients on performance of PSO_TVAC (10 unit system ; 50 trials)

SNo. | ey | ex oo o Minimum Average Max cost($/h) SO
Cost($/h) cost($/h)

1 0.2 0.2 25 651.4823 723.5144 820.8545 28.9526
2 25102 0.2 22 653.6663 7324137 817.8545 30.6502
3 0.2 0.2 19 664.4861 727.2150 810.4392 24.6154
4 0.2 0.2 16 674.4861 730.6202 807.6596 26.1154
5 0.2 0.2 25 667.4167 714.0780 811.4392 28.6167
6 22102 0.2 22 654.7213 716.8977 786.5088 21.9986
7 0.2 0.2 19 648.1626 7253440 805.8798 26.1154
8 0.2 0.2 16 657.8305 714.5460 777.3873 228756
9 0.2 0.2 25 649.0590 715.3508 804.9547 26.4128
10 2 0.2 0.2 22 648.8459 714.2288 790.2899 22,3930
11 0.2 0.2 19 659.1083 713.8741 770.1692 21.3704
12 0.2 0.2 16 646.4651 708.4158 787.3428 23.2639
13 0.2 0.2 25 647.5590 718.0856 814.4787 27.4808
14 1.8 | 0.2 02 |22 |640.7223 724.4681 803.2147 28.2623
15 0.2 02 |19 |637.5015 647 4455 694.4076 22.2389
16 0.2 0.2 16 643.4693 7251177 810.0181 28.5387
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5.4 Effect of population size

In addition to tuning parameters, the population size is another important issue in stochastic search based optimization
methods. Studies have been carried out on the role of population size and it has been reported that increasing population improved
the performance of PSO algorithm (Chaturvedi et al., 2008, Alrashidi et al., 2007). The optimal population size depends on the
problem dimension. Reference (Storn and Price et al., 1997) suggested a population size of 5-10 times that of the problem
dimension. It was shown that for various ED problems, larger the dimension, larger is the population size required to achieve good
results, (Noman et al., 2008).

In this paper, tests were carried out for different population sizes and results are tabulated in Table 5 and Table 6 for 4-unit and
10-unit systems for the DE algorithm. In Table 7 and Table 8 the results of the two test systems for PSO_TVAC algorithm are
presented. The DE algorithm converges to the global best solution for the 4-unit system for a population size of 20 with a S.D. of
7.31. However when the population is increased to 25, the S.D. becomes zero. Similar results are found for the 3-area, 10-unit, test
system with multiple fuels. The system was found to converge with zero S.D. for a population size of 120. For the 40-unit system a
population size of 1000 was found to be optimum for PSO TVAC. The DE algorithm converged for a population of 200.
However, the S.D. was found to increase for DE as well as PSO_TVAC for the larger system.

Table 5. Effect of population size on performance of DE (4 unit system; 50 trials) (F=CR=0.9)

Population Minimum Cost Mean Cost Maximum Cost S.D.

5 10623.3464 52090783.9498 16944434366.7507 852287008 4450
10 10605.6387 10680.2010 10860.2458 443875

20 10604.6740 10620.2195 10760.1419 7.3176

25 10604.6740 10604.6740 10604.6740 7.2760e-012

Table 6. Effect of population size on performance of DE (10- unit system ; 50 trials) (F=CR=0.9)

Population Mimnnun Cost Mean Cost Maximum Cost 5.D.

10 674.5913 3006706.6734 15031007.3091 4809606.6783
20 6G3.2747 7176755 TG2.T7A83 248071

50 642.3585 672.5037 713.2084 24,1987

110 637.4111 637.6007 638.3001 0.2797

120 637.4111 6374111 637.4111 3.9563e-012

Table 7. Effect of population size on performance of PSO_TVAC (4 unit system ; 50 trials)

Population Minimum Cost Mean Cost Maximum Cost S.D.

5 10623.3464 20783.9498 36366.7507 8522.4450

10 10605 .6387 10680.2010 10860.2458 44.3875

20 10604.6740 10620.2195 10760.1419 73176

25 10604.6740 10604.6740 10604.6740 7.2760e-012

Table 8. Effect of population size on performance of PSO_TVAC (10 unit system; 50 trials)

Population Minimum Cost Mean Cost Maximum Cost 5.D.
Size

10 662.0611 6218606.5325 220890879.2353 1193 4538

25 659.8983 714.3048 773.7123 23.3584

50 G658.1030 714.4209 789.7930 25.4602

100 6554841 710.9050 793 4703 21.0466

200 655.1745 710.9297 791.3363 25.5107

400 637.5915 647.4455 694.4076 22.2389
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5.5 Convergence characteristics

To test the convergence behavior of the evolutionary strategies under study, i.e. DE, PSO and PSO TVAC the convergence
test was carried out employing the same evaluation function and same initial population for the same number of iterations. The
results for all three strategies for one trial of 100 iterations are shown in Fig. 3 and Fig. 4 for the 4-unit and 10-unit systems
respectively. It can be seen that the TVAC strategy provides the PSO algorithm with optimal search capability due to the proper
tuning of social and cognitive coefficients during the search. When search advances and reaches a certain iteration count, the
classical PSO characteristic saturates but the PSO _TVAC still continues to improve and thus shows the best convergence
characteristics. It is seen that DE takes longer to converge than PSO_TVAC.

x 168

6 .
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'\ PSO_TVA
5T SPSO ]
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Il 1 I 1
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Trials

Figure 3. Convergence characteristics of the three evolutionary strategies. (4-unit system)

80 90 100

63{ 1(‘? . i .
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'\ PSO TVA
5 SPSO iy
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0790 20 30 40 50 60 70 8 90 100
Trials

Figure 4. Convergence characteristics of the three evolutionary strategies. (10-unit system)
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5.6 Robustness

The performance of heuristic search based optimization algorithms is not judged by the results of a single trial due to the
randomness involved in its functioning. Many trials with different initial populations were carried out to test the
robustness/consistency of the different evolutionary algorithms. The lowest cost for each of the 50 different trials has been plotted
in Fig. 5 and Fig. 6 from which it can be seen that DE produces lowest cost with zero standard deviation indicating its highest
consistency. The PSO_TVAC performs much better than classical PSO as it achieved near best results in many trials.

1.003-19 — — -

DE
1.09 PSO TVA

1.085 PSO
1.0 1
1.07% 1
cost1-07
1.065 N
1.0 1
1.055% 1
1.0 i
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10475 10 15 20 25 30 35 40 45 50
Trials
Figure 5. Best results of DE, PSO and PSO_TVAC variants (4-unit system); 50 trials
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Figure 6. Best results of DE, PSO and PSO_TVAC variants (10-unit system); 50 trials
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5.7 Effect of variation of tie-line power flow

By increasing the power transfer limit between the three areas of the 10-unit system, the operating cost for the same load can
be reduced as cheaper generators generate more and transfer the surplus power to the deficient area. Table 9 shows using DE that
the operating cost can be reduced from $637.4111/hr to $630.9390/hr if the inter area tie line limit is increased uniformly from

100 MW to 150 MW. The cost drops further to $623.6298 if the limit is raised to 200 MW.

Table 9. Effect of variation of Tie line limits

Tie line 100 (MW 150 (MW) 200 (MW)
P1(MW) 215.9300 239.4103 218.2328
P2(DMW) 210.8343 221.2633 211.8571
P3(MMW) 4843316 343.0508 280.7010
PAIW) 238.0041 246.2666 230.6262
PS(MMW) 2491304 274.2847 278.4674
PG(MW) 2343569 238.8752 239.6262
P7(MW) 260.3054 284.5275 288.5558
PS(MW) 2343560 238.8750 2306262
POMW) 3253913 342.6461 428.4696
P1OMW) 246.4592 270.7916 274.8375
T12(MW) 100.000 150.0000 160.4671
T23(MW) -100.000 -150.000 -230.116
T31(MW) 31.2073 27.3127 28.8177
Cost($/h) 6374111 630.9390 623.6298

Table 10. Comparison of Classic DE variants with PSO and PSO_TVAC (4-unit system;50 trials)

Strategy Minimum Cost Mean Cost Maximum Cost S.D.
DE/bestil 10609.1576 2032406.3572 40412074.3682 3068046
DEfrand1 10604.6740 10613358 10907.3789 16.2773

DE/rand to best /1 10604.6740 10604.6740 10604.6740 TA942e-012
DE/best/2 10604.6740 227535.3582 8811106.3587 412005
DE/rand/2 10604.6740 10607.3482 10726.3591 4.7648

Pso 10605.2022 10752.5428 10917.6879 133.5446
PSO-TVAC 10604.6781 10717.5431 10864.3588 27.8354

Table 11. Comparison of Classic DE variants with PSO and PSO_TVAC (10-unit system;50 trials)

Strategy Mindmum Cost Mean Cost Maximum Cost S.D.
DE/best/1 G38.0457 6549837 677.6207 153887
DE/rand/1 G38.5622 641.2084 6452246 1.9605

DE/rand to best /1 637.4111 6374111 6374111 39563012
DE/best/2 077.04098 14239308 3475.03006 520.4701

DE/rand/2

5814.0845

60390.84

126510.5087

41939.0454

PSO

649.3405

706.5991

813.5800

34.6467

PSO-TVAC

037.5015

647.4455

6944076

22,2389
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Table 12. Time (cpu seconds) comparison of DE, PSO and PSO_TVAC

DE PSSO PSO_TWVAC
2-area d-wmmt 301875 03012 o 3594
F-area, 10 mut | ©0. 5000 12,4176 13.1406
2 area, 40 vt 423 3434 123 4312 1288332

Table 13. Comparison of best results of evolutionary strategies for 4-unit system
Strategy P1 P2 3 P4 P12 Cost($/H) | V1 V2
CMAES(Manoharan | 560.9383 | 168.9300 | 99.9890 2001427 -194.39 10574 140.00 | -140.00
et a.2000)
DE 4451223 | 1388777 | 212.0427 | 3239573 -200.0000 | 10604.6740 | 0.0000 | 0.0000
PEO-TVAC 4448047 | 1391953 | 211.0609 | 3249391 -200.0000 | 10604.6781 | 0.0000 | 0.0000
P50 4494771 | 134.5786 | 202.0271 | 3339173 -1999443 | 10605.2022 | 0.0000 | 0.0000

* V1 and V2 are area power balance violations for the two areas

Table 14. Comparison of best results of evolutionary strategies for 10-unit system with multiple fuel options

Tie line DE | PSO-TVAC PSO CMAES (Manoharan

et al 2009)
P1{(DMW) 2159300 1520205 121.9659 2498233
P2{(DMW) 2108343 2728974 264.9114 229 8882
P3(MW) 484.3316 491 9497 500.0000 500.0000
P4(MW) 2389041 232.2235 265.0000 256.4765
P35 (MW) 2491304 245.5643 240.1560 227.5199
P6(MW) 234.3569 265.0000 196.1941 230.7744
P7(MW) 260.3054 214.5668 236.77206 2427438
PE(MW) 234.3569 227.3739 234.9414 229.4518
PO(MV) 3253913 346.2924 440.0000 223.1725
P1O(MW) 246 .4592 251.2024 200.0586 310.1497
T12 (MW 100.000 100.00:00 081227 06.5661
T23 (VW) -100.000 -100.00:00 -100.0000 25,7853
T31 (VW) 31.2073 49,8688 100.0000 0.0419
Cost($/h) 637 4111 637 4989 649.3495 686.9850
Violation Areal 0.0000 0.0000 0.0000 -43.0312
Violation Area 2 0.0000 0.0000 0.0000 -70.4861
Violation Area 3 0.0000 0.0000 0.0000 113.5174

5.8 Comparative analysis

A detailed study of classic DE variants is carried out to judge their merit for the complex MAED problems. Table 10 and table
11 show the best results out of 50 trials for these strategies. Observing the minimum cost and standard deviation it can be
concluded that out of the DE variants, the “DE/rand to best /1” strategy performs the best for all the systems followed by
DE/rand/1 and DE/rand/2 strategies. The DE/best/1 and DE/best/2 strategies do not converge in most trials. PSO_TVAC strategy
gives better performance than the classical PSO and unlike DE convergence is achieved for all values of acceleration coefficients.
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Another significant difference is that DE requires less population but takes larger number of iterations to converge while PSO
works with larger populations and lesser iterations as reported in Table 12. Table 13 and Table 14 give the comparison of reported
results with already published results. The superiority of the reported results is evident from their ability to satisfy all constraints
and produce feasible results. The solution reported in Manoharan et al. (2009) by the CMAES method satisfies the power balance
constraint but the individual area balance constraints are violated.

5.9 Performance on a large system

The performance of DE and PSO strategies is also tested on a large system for ED with tie-line constraints and area power
balance constraints. Fig. 7 shows the cost/MW of generators in the two areas. The overall cost will be heavily influenced by tie-
line limits, area loads and cost curves. The problem is complex as the unit valve point effects are also considered. Cost curves for
some generators are plotted in Fig. 8 to show the effect of valve point loading effects. The DE and PSO_TVAC strategies could
handle this complex problem effectively, with full constraint satisfaction, but the S.D. increases for both. The optimal generation
schedules, the tie line power flow and operating cost for this system are tabulated in Table 15 for different loading conditions. Fig.
9 shows the best results of 50 different trials for DE, PSO and PSO_TVAC. The DE strategy is most consistent followed by
PSO_TVAC.

Rt Cost p'ver MW m
1600 i
1400 7
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80q 7
60q
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Area one Generators Area Two Generators
Figure 7. Per MW generation cost of 2-area, 40 unit system
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Figure 8. Cost characteristics of some generators of the 2-area 40-unit system with valve point loading
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Figure 9. Best results of DE, PSO and PSO_TVAC variants (40-unit system); 50 trials

Table 15. DE Results for 2-area, 40-unit system with valve point loading effects

PD1=6000, PD2=4500 PD1=6500, PD2=4000
P1 72.6733 P22 5123501 | Pl 1106035 | P22 343.6729
P2 1107950 | P23 522.9567 | P2 1108448 | P23 343.6756
P3 97.4138 P24 523.1559 | P3 1190457 | P24 523.2895
P4 1795084 | P25 5221513 | P4 1205861 | P25 523.2779
P3 87.7555 P26 523.1610 | PS 96.7378 P26 433.5002
P6 1051929 | P27 10.0757 P6 1399824 | P27 10.0649
P7 2603616 | P28 10.1302 P7 2506255 | P28 10.0002
Ps 2856335 | P20 10.0152 P8 284.6046 | P29 10.0179
Po 2097219 | P30 47.0502 P9 2845867 | P30 87.9075
P10 2796238 | P31 158.5759 | P10 2796250 | P31 159.7272
P11 2433351 | P32 159.5350 | P11 3183028 | P32 159.6006
P12 1687127 | P33 1596218 | P12 3183144 | P33 109.8664
P13 4841367 | P34 189.2346 | P13 4834463 | P34 114.8240
P14 3030142 | P33 1649628 | P14 4835403 | P35 164.7162
P15 3041924 | P36 1643703 | P15 4840276 | P36 90.0228
P16 3939511 | P37 37.0693 P16 4832328 | P37 250026
P17 4892049 | P38 87.4335 P17 4802594 | P38 57.0734
P18 4892507 | P39 48.9374 P18 4802182 | P39 57.0582
P10 5113221 | P40 421.0089 | P19 5456891 | P40 4215172
P20 518.1037 | T12(Tieline) | 0.0124 P20 5112033 | T12 (Tieline) | -78.3417
P21 4331825 | - . P21 4335177 | - .

SD. 1.7012 SD. 1.7634

Cost $/H 124714.2876 Cost $H 128138.0739

V1 0.0000 V1™ 0.0000

v2© 0.0000 V2 0.0000
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6. Conclusions

Evolutionary strategies are increasingly being proposed for solving non-convex, discontinuous, multi-modal ED problems
with complex constraints. In multi-area ED problem additional tie-line and area balance constraints are introduced which present
difficulty in obtaining feasible solutions. The paper explores the ability of DE and PSO strategies to produce global best solutions
for the complex MAED problems. A comparative study of classic DE variants with PSO and its variants is made to find their
abilities and limitations. Simulations on three systems of different sizes and areas, having different complexity levels clearly reveal
that

e The DE/rand to best/1 strategy performs best for all tested systems closely followed by DE/rand/1 and DE/rand/2
strategies. The other DE variants do not converge for MAED problems.

e PSO_TVAC and classic PSO converge to near global solutions in all trial runs, for all tested values of tuning parameters
though global best performance is not guaranteed; but the S.D. is higher than DE.

o DE converges to the global best solution with zero S.D. in a very narrow range of tuning parameters. For other
combinations it either diverges or produces low quality solutions; hence very little parameter tuning is required in DE as
compared to PSO and its variants which work for a very broad range of acceleration coefficients.

e DE works with lesser population size but require more number of iterations to converge while the PSO and PSO_TVAC
require larger populations but converge earlier.

e Due to their speed and efficiency, the evolutionary optimization algorithms prove to be very effective in analyzing the
effect of tie-line power limits on the cost of operation.

It is shown through different trials that the DE outperforms other methods, particularly for MAED problems, in terms of

solution quality, computational efficiency, dynamic convergence, robustness and stability.
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