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Abstract 
 
   The purpose of this work is to offer some mathematical analysis of the dynamics of a two prey one predator system in the 
presence of a time delay due to gestation. We derived criteria which guarantee the persistence of the three species and the global 
dynamics of the model system. Our study also shows that, the time delay may play a significant role on the stability of the 
system. Lastly, some numerical simulations are given to illustrate analytical results. 
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1. Introduction 
    
   The dynamic relationship between predators and their prey has long been and will continue to be one of the dominant themes in 
both ecology and mathematical ecology due to its universal existence and importance. Over the past decades, mathematics has 
made a considerable impact as a tool to model and understand biological phenomena. In return, biologists have confronted the 
mathematicians with a variety of challenging problems, which have stimulated developments in the theory of nonlinear differential 
equations. Such differential equations have long played important role in the field of theoretical population dynamics, and they 
will, no doubt, continue to serve as indispensable tools in future investigations. Differential equation models for interactions 
between species are one of the classical applications of mathematics to biology. The development and use of analytical techniques 
and the growth of computer power have progressively improved our understanding of these types of models.   Although the 
predator-prey theory has seen much progress, many long standing mathematical and ecological problems remain open.  
   Theoretical ecology remained silent about the astonishing array of dynamical behaviors of three species models for a long time. 
Of course, the increasing number of differential equations and the increasing dimensionality raise considerable additional problems 
both for the experimentalist and theoretician. Freedman and Waltman (1984) considered three level food webs – two competing 
predators feeding on a single prey and a single predator feeding on two competing prey species. They obtain criteria for the system 
to be persistent. Kar and Chaudhuri (2004) considered a two-prey one-predator harvesting model with interference. The model is 
based on Lotka-Volterra dynamics with two competing species which are affected not only by harvesting but also by the presence 
of a predator, the third species. Optimal harvesting policy and the possibility of existence of a bioeconomic equilibrium is 
discussed. Dubey and Upadhyay (2004) proposed a two predator one prey system with ratio dependent predator growth rate. 
Criteria for local stability, instability and global stability of the non-negative equlibria are obtained. They also discussed about the 
permanent co-existence of the three species. Braza (2008) considered a two predator; one prey model in which one predator 
interferes significantly with the other predator is analyzed. The analysis centers on bifurcation diagrams for various levels of 
interference in which the harvesting is the primary bifurcation parameter. Zhang et al. (2006) studied the stability of three species 
population model consisting of an endemic prey (bird), an alien prey (rabbit) and an alien predator (cat). 
   It may be pointed out here that all the above studies are based on the traditional prey dependent models. Recently, it has been 
observed that in some situations, especially when a predator have to search for food and have two different choice of food, a more 
suitable predator-prey theory should be based on the so-called ratio-dependent theory, in which the per-capita growth rate should 
be function of the ratio of prey to predator abundance, and should be the so-called predator functional response (Abrams and 
Ginzburg, 2000; Akcakaya et al., 1995; Arditi et al., 1991; Arditi and Saiah, 1992). 
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   Recently, Kesh et al. (2000) proposed and analyzed a mathematical model of two competing prey and one predator species 
where the prey species follow Lotka-volterra dynamics and predator uptake functions are ratio dependent. They derived conditions 
for the existence of different boundary equilibria and discussed their global stability. They also obtain sufficient conditions for the 
permanence of the system. Hsu et al. (2001) studied the qualitative properties of a ratio dependent predator-prey model. They 
showed that the dynamics outcome of interactions depend upon parameter values and initial data.  
   Three general forms of functional response are commonly used in ecological models: linear, hyperbolic, and sigmoidal. How 
predators respond to changes in prey availability (functional response) is an issue of particular importance. There is evidence from 
several models that the type of functional response specified can greatly affect model predictions (Gao et al., 2000; Kar and 
Chaudhury, 2004). 
   To have a perfect model we would need to consider so many factors, namely, growth rate, death rate, carrying capacity, stage 
structure, predation rate, stochasticity etc. However, it is obvious that a perfect model can not be achieved because even if we 
could put all these factors in a model, the model could never predict ecological catastrophes of Mother Nature caprice. Therefore, 
the best we can do is to look for analyzable model that describes as well as possible the reality.  
   In this paper, we shall study the dynamical behaviors of a two prey one predator system. Before we introduce the model and its 
analysis we would like to present a brief sketch of the construction of the model which may indicate the biological relevance of it. 
 
(i) There are three populations namely, two prey whose population densities are x and y, the predator whose population density 

is denoted by z. 
(ii) In the absence of the predator the prey population density grows according to logistic law of growth. 
(iii) Two prey species are competitive in nature. 
(iv) One prey is much higher in abundance and more vulnerable compare to other. 
(v) Handling time for one prey is negligible, where as the predator needs sufficient handling time for other prey. These are 

incorporated using Holling type I and II functional response. 
(vi) There is a reaction time for predator. 
 
   On the basis of the above assumptions, our proposed model is as follows: 
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   In model (1), r and s are the intrinsic growth rate of two prey species, K and L are their carrying capacities, c is the mortality rate 
coefficient of the predator, a1, a2 are inter-species interference coefficient of two prey species, ω1 is the first prey specie’s 
searching efficiency and ω2 is the second type prey specie’s searching efficiency of the predator, b1 and b2 are the conversion 
factors denoting the number of newly born predators for each captured of first and second prey respectively, and  m is the half 
saturation co-efficient. A discrete time delay ( 0≥τ ) is introduced to the functional response term involved with the growth 
equation of predator to allow for a reaction time (Liu, 1994). 
   Section 2 deals with the determination of plausible steady states and their existence conditions. Dynamical behavior of these 
steady states is discussed in section 3. Global stability and persistence of the system is studied in section 4. Section 5 deals with 
simulation and discussion of the problem.   
 
2. Equilibrium analysis 
 
   It can be checked that the system (1) has seven non-negative equilibria and three of them namely Eo (0, 0, 0), Ex (K, 0, 0), Ey (0, 
L, 0) always exist. We show the existence of other equilibria as follows: 
Existence of Exy (x4

*, y4
*, 0) 

Here x4
*, y4

* are the positive solution of the following algebraic equations. 
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Solving (2), we get  
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Thus, the equilibrium Exy (x4
*, y4

*, 0) exists if ( )Lar 1− and ( )Kas 2−  are of same sign, that is either 

Lar 1>  and Kas 2>                                                                                                                                         (4a) 

Or, Lar 1< and Kas 2<                                                                                                                                    (4b) 
  
Existence of Eyz (0, y5

*, z5
*) 

 Here y5
*, z5

* are the positive solution of the following algebraic equations. 
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Solving (5), we get  
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It can be seen that Eyz (0, y5
*, z5

*) exists if  
( ) .22 cmcbL >−ω                                         (7) 

Existence of Exz (x6
*, 0, z6

*) 
Here x6

*, z6
* are the positive solution of  
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It can be seen that Exz (x6

*, 0, z6
*) exists if  

 .11 cKb >ω                                        (10) 
Existence of Exyz (x7

*, y7
*, z7

*) 
Here ( )*

7
*

7
*

7 ,, zyx  is the positive solution of the system of algebraic equations given below: 
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Solving (11a) & (11b), we get  
( ) ,0, =zyf                                                                                                                                                             (12) 

where 
).()())(()(),( 212122 ymKLzaymKLyaaLzrymyLrsymLrKazyf +−+−++−−+= ωω                          

Also solving (11a) & (11c), we obtain 
( ) ,0, =zyg                                                                                                                                                             (13) 

where  
( ) .)()(})({)(, 1

2
11112211 zymbKymybKaybymcrymKrbzyg +−+−−+−+= ωωωω                           

From (12) we note the following.  
When z→ 0, then y→ ya, where  
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We note that ya > 0, if the inequality (4a) holds. 

Also from the equation (12), we have
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Again from (13), we note that when z→ 0, then y → yb, where  
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Clearly A2 < 0  and  C2 > 0 if the inequality (10) is satisfied. 
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From the above analysis we note that two isoclines (12) and (13) intersect at a unique  (y7
*, z7

*) if in addition to conditions (4a), 
(10), (15) and (16), the inequality 
  ya < yb                                        (17) 
holds. 
Knowing the value of y7

* and z7
*, the value of x7

* can be calculated from  
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It may be noted that for x7
* to be positive, we must have  

 .)( *
722 ycbcm −> ω                                       (19) 

This completes the existence of ),,( *
7

*
7

*
7 zyxExyz . 

 
3.   Linear stability analysis 
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The characteristic equation for the model (1) is given by 0=−+ − IeBA λλτ , 
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We first consider the case where τ =0: 
At ( )0,0,00E  the characteristic equation becomes (λ –r) (λ –s) (λ +c) =0. So, we arrive at a conclusion:                                                             
 Theorem 3.1.   Eo is always a saddle node and there can not be total extinction of the system (1) for positive initial conditions ⁭ 
 For )0,0,(KEx the characteristic equation becomes ( )( )( ) ,0112 =−−−−−− λωλλ cKbKasr  
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Observing the sign of eigenvalues we can state the following theorem: 
Theorem 3.2   a) Ex is a saddle point with locally stable manifold in x directions and with locally unstable manifold in y – z plane 
if s – a2K > 0 and Kb1ω1 < c hold, but if s – a2K < 0 and Kb1ω1 < c, then Exz does  not exist and in that case Ex is locally 
asymptotically stable in x – y – z space.   

b) If inequalities r – a1L > 0 and ( ) .22 cmcbL >−ω  hold then Ey is a saddle point with locally stable manifold in y – 

direction and with locally unstable manifold in x – z plane. But if r – a1L < 0 and 022 <−
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, then Eyz does  not exist and in 

that case Ey is locally asymptotically stable in x – y – z space⁭  
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 respectively. Clearly, when the inequality (4a) holds, the sum of other two eignevalues is negative and 

product is positive. But when the inequality (4b) holds then the product of other two eignevalues is negative. Hence we state out 
the following theorem: 
Theorem 3.3.  If the inequality (4a) holds then Exy exists and is asymptotically stable in x – y plane but if the inequality (4b) holds 
then Exy exists and in that case it will be unstable in x-y plane. Moreover, it will be stable in x – y – z space if  
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we state out the following theorem: 
Theorem 3.4    Eyz    exists and is asymptotically stable in y – z plane if the inequality  
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So as before we state out the following theorem: 
Theorem 3.5    If Exz exists, then it is asymptotically stable in x – y – z space if the following inequality holds. 
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Now, to investigate the local stability of interior equilibrium, we first linearize the system (1) using the following transformations  
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We consider the following positive definite function  

2
*

7

22
*

7

12
*

7 222
1 Z

z
d

Y
y
d

X
x

U ++= , where d1, d2 are positive constants to be chosen later. 

Differentiating U with respect to time t along the solution of linear model 23(b) it can be seen that 
•

U is negative definite if we 

choose ( ) .0
)(

4and
)(

,1
2*

7

*
7212

121*
71

2
1

1
2 ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−−+

+
==

ym
z

L
s

K
drdaa

ymb
mbd

b
d ω

                            23(c)                 

Hence we arrive at a conclusion: 
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4.  Global stability and persistence of the system 
 
Theorem 4.1   a) If the equilibrium Exy exists and is locally asymptotically stable in the interior of positive quadrant of x – y plane 
then it will be globally asymptotically stable there.  
b) If Eyz exists and is locally asymptotically stable in y-z plane then it will be globally asymptotically stable in the region 2

+R  of y-

z plane, where .0)(,0,0:),( 2
22

⎭
⎬
⎫

⎩
⎨
⎧ >−+>>≡+ z

s
LymzyzyR ω  

 c) If Exz exists and is locally stable then it will be globally asymptotically stable in the positive        
 
     quadrant of x – z plane ⁭ 
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Clearly Δ (x, y) does not change sign and is not identically zero in the positive quadrant of   x – y plane. Therefore, by 
Bendixson-Dulac criterion there exists no limit cycle in the positive quadrant of x-y plane.  So, if Exy  is locally asymptotically 
stable then it will be globally asymptotically stable in the interior of positive quadrant of x – y plane (Hale, 1969). 
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Theorem 4.2    Let the following hold 
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where d1, d2 are same as defined in 23(c), then the positive equilibrium Exyz is globally asymptotically stable with respect to all 
solutions initiating in the interior of 3

+R  ⁮ 
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Differentiating V with respect to t along the solution of model (1), we get 
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The above equation can further be written as 
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= , then the sufficient condition for 
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V to be negative definite is 011 >b , and  

 04 2211
2

12 ≤− bbb .                                                                 (25)          
We note that b11 > 0 always. Also (24) ⇒  (25),   
Hence V is a Lipunov function with respect to Exyz. 
To examine the permanence of the system (1) we shall use the method of “average lyapunov function” 
( Gard and Hallam, 1997; Hafbauer, 1981). This method was first applied by Hutson and Vickers (1983) to ecological problems. 

     Let the average Liapunov function for the system (1) be σ(X) = 21 ppp zyx , where p, p1and p2 are positive constants. Clearly 
in the interior of R+

3 we have  
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Let us assume that inequalities (4a), (7) and (10) hold. Also the hypothesis of theorem 4.1 holds.  
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Then Exy, Eyz and  Ezx exist, further there are no periodic orbits in the interior of x – y plane,  x – z plane and in the region R+
2  of y 

– z plane.  
Thus to prove the uniform persistence of the system, it is enough to show that ψ(X) > 0 in the domain D of R+

3 where 
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for a suitable choice of p, p1 and p2 > 0. 
That is one that has to satisfy the following conditions. 
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We note that by increasing p to sufficiently large value, ψ(Eo) can be made positive. Thus inequality 26(a) holds. Inequalities (4a) 
& (10) imply that 26(b) holds. So we state out the following theorem. 
Theorem  4. 3   In addition to inequalities (4a) and (10) let the hypotheses of theorem 4.1 hold, and then the system (1) is 
uniformly persistent if the following inequalities hold 

 c
KasrLKLaarsm

KasrLb
KLaars

LarsKb
>

−−−
−

+
−

−
)()(

)()(

221

222

21

111 ωω
 ,                                 27(a) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+
−

>
cb

cmm
cbL

cms
cb

cmar
22222

1

22

1

)(
1

ωωω
ω

ω
,                                                                         27(b) 

 01
111

2

11

2 >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

ωω
ω

ω Kb
cr

mb
cas  ⁯                                  27(c) 

 
Theorem 4. 4.   If 23(c) holds, then the equilibrium  Exyz   is asymptotically stable for τ < τo and unstable for τ > τo. Further, as τ 
increases through τo, , Exyz (x7

*, y7
*, z7

*) bifurcates into small amplitude periodic solutions, where τo = τon as n = 0  ⁭. 
Proof.  The characteristic equation for the case where τ ≠ 0 is given by 
λ3 + λ2 (A + B) + λ (AB -C) + e-λτ {λ (D+E) + AD + BE – F} = 0                                                                      28(a)  
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Now λ = iω (ω> 0) in 28(a) gives 
 
-iω3 - ω2 (A + B) + iω (AB -C) + (cos ωτ - i sin ωτ){iω(D+E)+ AD + BE – F} = 0. 
 
Comparing real and imaginary parts we get,  
 
− ω3 +ω (AB -C) = (AD + BE – F) sin ωτ - (D+E)ω cos ωτ,                                                                                        28(b) 
− ω2 (A + B) = −(D+E)ω sin ωτ − (AD + BE – F) cos ωτ.                                                28(c) 
Squaring and adding 28(b) and 28(c) we get, ω6 + Q1ω4 + Q2ω2 + Q3 = 0,                                                                      28(d) 
where, .)(},)(){(),2( 2

3
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2
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So equation 28(d) has unique positive solution ωo
2  irrespective of the sign of 2Q , as 1Q > 0 

 and 3Q  < 0. Now, from 28 (b) and 28 (c) we get, 
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Now differentiation of 28(a) with respect to τ gives, 
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> 0. Therefore the 

transversability condition holds and hence Hopf-bifurcation occurs at τ = τo . This completes the proof.  
 
5. Simulation and discussion  
 
   In this paper we studied the dynamical behaviors of a two prey one predator system. . Holling type I response function is taken to 
represent the interaction between one of the prey and predator. The interaction between the other prey and the predator is assumed 
to be governed by a Holling type II response function. Such different choices of functional responses may be particularly useful 
when handling time for one prey is negligible, whereas the predator needs sufficient handling time for other prey. A good example 
of a two prey one predator system is minke whale (predator) and two of its main prey juvenile herring and capelin. 
   To illustrate the results numerically, choose r=3.5, K=150, a1=0.001, w1=0.24, s=4.5, L=150, a2=0.1, w2=0.21, m=15, b1=0.5, 
b2=0.6, c=3.9 in appropriate units.   
With the above parameter values, system (1) has a positive equilibrium (31.72, 42.89, 11.32), which is globally asymptotically 
stable (see Figs. 1, 2). 
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Fig.1. Time evolution of all the population for the model system (1).  

Population converges to the positive equilibrium (31.72, 42.89, 11.32). 
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Fig.2. Phase portrait of the system (1), corresponding to different initial levels. The figure clearly indicates that the interior 

equilibrium point (31.72, 42.89, 11.32) is globally asymptotically stable. 
 
   Often we come across several biological systems in nature exhibiting cycle behavior. Due to this cyclic nature some population 
exhibit periodic fluctuation in abundance, with periodic crashes. One could avoid such crashes and stabilize the population by 
controlling one of the interacting species. (Hudson et al., 1998). Thus it is relevant to find conditions under which a multispecies 
system exhibits cyclic behavior and it is equally important to find conditions under which cycles can be prevented in a 
multispecies system.   
   By using Liu’s criterion (see appendix) It is interesting to observe that, when the inter-species interference co-efficient a1 of two 
prey species is increased, the positive equilibrium losses its stability and a Hopf- bifurcation occurs when a1 passes a critical value.  
   With parameter values r=3.5, K=150, w1=0.24, s=4.5, L=150, a2=0.2731614, w2=0.21, m=15, b1=0.5, b2=0.6, c=1.7 in 
appropriate units, a super critical Hopf bifurcation occurs when a1*=0.01981331. Now, if we gradually increase the value of a1, 
keeping other parameters fixed, then Exyz losses its stability as a1 crosses its critical value a1

*=0.01981331 (see Figs 2-4). 
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Fig. 3.  When a1 =0.01<a1*, clearly the populations approach their equilibrium values in finite time. Here parameter values are 

r=3.5, K=150, w1=0.24, s=4.5, L=150, a2=0.273164, w2=0.21, m=15, b1=0.5, b2=0.6, c=1.7 in appropriate units. 
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Fig.4. Unstable  solution of system (1).  Here all the parameters are same as in Fig.3. except a1 = 0.025>a1*. 
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Fig.5. For a1 = a1*, there is a limit cycle near Exyz. 

 Also as before we can consider c (the mortality rate co-efficient of the predator) as the bifurcation parameter. With parameter 
values  r=3.5, K=150, w1=0.24, s=4.5,L=150, a1=0.015, a2=0.27, w2=0.21, m=9.0, b1=0.5, b2=0.6 in appropriate units, a 
supercritical Hopf bifurcation occurs  when c* = 1.674233. 

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

time 

po
pu

la
tio

ns

x

y

z

 
Fig.6. When c= 1.7 >c*, clearly the populations approach their equilibrium values in finite time .Here 

parameters values are r=3.5, K=150, w1=0.24, s=4.5, L=150, a1=0.015, a2=0.27, w2=0.21, m=9.0, b1=0.5, 
b2=0.6 in appropriate units. 
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Fig.7.  Unstable solutions of system (10).  Here all the parameters are same as Fig.6. except c = 1.5<c*. 
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                             Fig.8.  For c = c*  there is a limit cycle near Exyz. 

 
   The numerical study presented here shows that, using parameter a1 or c as control, it is possible to break unstable behaviour of 
the system (1) and drive it to a stable state. In the similar fashion we can consider a2 as a control parameter. Also it is possible to 
keep the population levels at a required state using the above control. So, we see that in our model dynamics competition plays an 
important role.  
   Our results established criteria which guarantee the persistence of the three species and the global dynamics of the model system. 
   It has long been recognized that most of the studies of continuous time deterministic models reveal two basic patterns: approach 
to an equilibrium or to a limit cycle. The basic rationale behind such type of analysis was the implicit assumption that most food 
chains we observe in nature correspond to stable equilibria of the model. From this viewpoint, we presented the stability and 
bifurcation of the most important equilibrium point Exyz. We see that Exyz (x7

*, y7
*, z7

*) is locally asymptotically stable in the 
absence of delay. Now for the same values of parameters as for the first figure, it is seen from the Theorem 4.4, that there exists a 
critical value of τ = τ0=0.0726532 and Exyz losses its stability as τ crosses the critical value τ0. 
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  We have also given some graphical representation in favors of our numerical results. 
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Fig.9. When τ =0.06 <τ0,   clearly the populations approach their equilibrium values in finite time. 
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Fig.10.  Unstable solution of system (1).  Here all the parameters are same as in figure 1, except τ =0.08 >τ0. 
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Fig.11. For τ = τ 0 = 0.0726532, there is a limit cycle near Exyz. 

 
   In most of the ecosystems, population of one species does not respond instantaneously to the interactions with other species. To 
incorporate this idea in modeling approach, the time delay models have been developed. Our result indicates the fact that a 
sufficient large time delay has ability to destabilize the model system. Considering gestation delay as a bifurcation parameter we 
have shown that the system undergoes Hopf-bifurcation as ‘τ’ passes through its critical value τ 0 from lower to higher and 
individual population exhibit small amplitude oscillations around their steady-state value. 
 
Appendix.  Liu (1994), derived a criteria of Hopf bifurcation without using the eigenvalues of the variational matrix of the interior 
equilibrium point. We specify below the Liu’s criterion. 
Liu’s criterion:  If the characteristic equation of the interior equilibrium point is given by,  
 ,0)()()( 32
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 then a simple Hopf bifurcation occurs at θ= θ*. 
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