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Abstract 
 
   Shells are objects considered as materialization of the curved surface. Despite structural advantages and architectural 
aesthetics possessed by shells, relative degree of unacquaintance with shell behavior and design is high. Thin shells are examples 
of strength through form as opposed to strength through mass; their thin cross-section makes them economical due to low 
consumption of cement and steel as compared to other roof coverings such as slabs. Current study presents design curves for 
reinforced concrete open barrel cylindrical shells for different geometric parameters. The analysis is done in two parts namely: i) 
RC shell subjected to uniformly distributed load that remain constant along its length and curvature of the shell surface; and ii) 
RC shell subjected to uniformly distributed load varying sinusoidally along its length in addition to different symmetric edge 
loads present along its longitudinal boundaries. Design charts are proposed for easier solution of shell constants after due 
verification of results obtained from finite element analysis. Expressions for stress resultants proposed in closed form make the 
design more simple and straightforward; stress resultants plotted at closer intervals of φ can be useful for detailing of 
reinforcement layout in RC shells. Axial force-bending moment yield interaction studied on shells under uniformly distributed 
loads show compression failure, initiating crushing of concrete. 
 
Keywords: cylindrical shells; design curves; open barrel; reinforced concrete; stress resultants 
 
1. Introduction 
 
   Shells are skin structures by virtue of their geometry and shell action is essentially more towards transmitting the load by direct 
stresses with relatively small bending stresses. Presence of significant shear makes their behavior different from other roof 
covering structures; they have remarkable reserve strength with a greater degree-of-freedom in structure layout, shape and 
architecture, making them virtually impossible to collapse though their supporting structure may collapse (Rericha 1996; Ha-Wong 
Song et al. 2002). A number of procedures are proposed in the literature (see, for example, Flugge 1967) for analyzing the various 
types of thin shells for ultimate load but experimental evidences, however are not abundant. In many of these procedures, bending 
stresses are stated to be negligibly small justifying the application of membrane theory for analyzing thin shells, where normal 
forces are not necessarily tensile. Though behavior of shells to external loads is generally quite complex, thanks to second order 
equations developed that are sufficient to model the behavior of most civil engineering shell structures (Jacques, 1977). Forces in 
thin shells are, in a certain sense, statically determinant as they can be determined without referring to elastic property of material 
used. Linear elastic behavior is applied to provide a direct relationship between stress and strains by which the equilibrium of 
stress resultant and stress couples could be established. However mathematical models of thin RC shells developed on the 
interpretation of their physical behavior are difficult to present rationally as the rigorous analysis is extraordinarily complex, 
resolving to simplification (see, for example, Billington, 1965). These simplifications need extra caution for the design to become 
conservative. Also, interestingly, load carrying capacity of thin curved shells often exceeds the prediction of even most-refined 
available analysis. It is therefore commonly accepted that shells (reinforced concrete shells, in particular) are designed on the basis 
of approximate analysis only, which of course exhibits defects. For example, aircraft impact on containment structures is studied 
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by employing modal analysis to estimate their elastic response (Prabhakar, 2003). The study approximates shell with uniform 
thickness in longitudinal and circumferential directions and orthotropic properties are obtained by scaling the Young’s modulus 
values. Wheen and Wheen (2003) studied design and construction principles of a pre-stressed conical concrete tent roof, idealizing 
it as thin pre-tensioned radial circles suspended from a temporary central tower and anchored at the lower ends to a pre-stressed 
ring beam in a catenary form. They showed that the curved concrete surface, usually a felicitous combination of sound structural 
form and method of construction leading also to low cost, does not crack when suspended because of radial pre-stressing. Concrete 
domes, in particular, possess limited membrane stress variations due to soundness in structural form and therefore ideal as all 
stresses are compressive during construction and in final stages as well (Wheen and Anatharaman, 1998). Example structures 
presented above for designing/constructing RC shell structures prove the confidence level of researchers in employing relevant 
approximate theories for analyzing shell structures. This leads to the desire of simplifying the analysis procedure and adding to 
architectural aesthetics and structural advantages shell possess; the objective is to simplify analysis procedure by means of ready to 
use design curves and tables. This shall not only promote more construction of such advantageous and safe structures but also 
improve the confidence level in design offices. However, other studies conducted by the authors emphasize verification of stress 
resultants at closer intervals of geometric angles at boundaries, in particular, for appropriate detailing of reinforcement in RC shells 
(see, for example, Chandrasekara et al. 2005; Chandrasekaran and Srivastava, 2006). Ramaswamy (1968) discussed limitations 
and precision of various theories on shell structures and concluded that Flügge’s theory is acceptable and can be treated as a bench 
mark to assess the accuracy of other theories.  
 
2.  Objectives and structural idealization 
 
   Based on the critical review of literature, main objective of the current study is to develop design curves based on the classical 
flexural theory for single barrel open cylindrical shells with different geometric parameters; the outcome is to derive the stress 
resultant estimates that can be readily determined without undergoing detailed computations. Though theory employed is not new 
but the attempt made to simplify the analysis procedure is relatively new and the analytical solutions proposed in the paper are not 
present in the literature. As the solution procedure of generic case of shell geometry shall involve complex mathematics, objective 
of simplifying the design procedure through design curves shall not be fulfilled; hence a particular geometric case of cylindrical 
shells is only addressed in the present study. Please note that cylindrical shells are commonly used geometry in structural/civil 
engg applications. With the use of proposed design curves, stress resultants and stress couples can easily be readily determined at 
the valley, crown or at any desired section for various type of edge loads. This shall be helpful to be employed in design offices 
while encouraging such new RC shell structures in future and also enhances the confidence of the structural designer. The study 
employs few structural idealizations namely: i) stress normal to the surface is neglected as thin shell is a curved slab whose 
thickness is relatively small compared to its other dimensions and radius of curvature; ii) deflections under load are small enough 
so that its static equilibrium remain affected due to changes in geometry, vide small deflection theorem; iii) linear elastic behavior 
is assumed in the analysis enabling a direct relationship between stress and strain; iv) for all kinematic relations, any point on the 
mid surface is considered as unaffected by the shell deformation; as well as v) all points lying normal to the middle surface before 
deformation lie on the normal after deformation.  

 
3. Mathematical development  
 
   Let us consider a cylindrical coordinate system ( )r,,x ϕ  and a cylindrical shell with thickness t.  The cylindrical shell has the 
directive along the x-axis and we denote ru,u,ux ϕ as the displacements along longitudinal (x), circumferential (φ) and radial 
directions (r), respectively. It is important to note that the displacements, strains and stress functions depend only on two variables 
namely ( x,ϕ ). Figure.1 shows the overall geometry of the shell considered for the study while Figure.2 shows the differential 
element considered for the analysis. The three strain components ϕεε ,x  and ϕγ x  of the middle surface and the three curvature 
changes ϕχχ ,x and ϕχ x  can be expressed in terms of the displacement components as given below: 
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Corresponding quantities associated with the strain components and curvatures are the membrane resultant forces ϕϕ xx N,N,N , and 
resultant moments ϕϕ xx M,M,M , respectively.  In addition, resultant shear forces Qx, Qφ are also present.  The shell is constituted 
by isotropic material characterized by two elastic constants namely: i) modulus of elasticity, E and ii) poisons modulusν . 
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Figure 1. Analytical and FEM Model 
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Figure 2. Membrane stresses, moment and shear forces acting on infinitesimal element of shell 
 
Relationships between static quantities and strain/curvature given by the Hooke’s law are shown below: 
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By substituting Eq. (1) in Eq. (2), force-displacement relationships are derived as given below: 
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For a general case in three dimensions, we can write three equation of equilibrium along x,y and z direction and three equations of 
moments with respect to the x,y, and z axes. In total there are six equations of equilibrium available for solving eight unknown 
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functions. If ϕϕ xx N,N,N  are small in comparison with their critical values at which lateral buckling of the shell may occur, their 
effect on bending becomes negligible; all terms containing the products of the resultant forces or resultant moments with the 
derivatives of the small displacements can be neglected in the equilibrium equations (Timoshenko and Krieger, 1959). With this 
hypothesis, equilibrium equations are now reduced to five as given below:  
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where rx ppp ,, ϕ are the load for unit surface along x-axis, circumferential and radial direction, respectively. Solving last two 
equations with respect to ϕQ , xQ  and substituting in remain three equations, we finally obtain the three following  relationship: 
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The shear functions have the following expression: 
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Substituting the equations (3) in equations (5), we obtain the equilibrium equation in terms of the unknown displacement functions 
rx u,u,u ϕ  as given below: 
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3.1 Analytical solution in closed form for shells under uniform distributed load 
 
Let us consider an open barrel cylindrical shell loaded by uniform distributed load, as seen in Figure 3. The boundaries of the shell 
along its length are considered as fixed support in the analysis. Stress functions will depend only on one variable, namelyϕ leading 
to the following differential equations system: 
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Figure 3. Shell under uniform distributed load 
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From the first and fourth equations of the above set of equations, we can derive the following: 
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where ( ) ( ) ( ) ( ) ( )ϕϕϕϕϕ 21010 qqqpp ,,,,  are unknown functions of variable ϕ . 
By substituting Eq. (9) in the last equation of  Eq. (8), we obtain the function ( )ϕϕ x,u as given below: 
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where ( ) ( )ϕϕ 10 hh ,  are unknown functions of variable ϕ . 
By substituting Eqs (9-10) in Eq. (8), we obtain the following relationships: 
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By substituting in Eqs. (9-10), the displacements functions are obtained as given below: 
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The uniform distributed load applied on surface of the shell is resolved into components along ( )r,,x ϕ as given below: 
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where kϕ  is total shell angle in radians.  By substituting Eq.(12) in equilibrium Eq. (7), the first condition is verified. Further, by 
substituting the function ( )ϕ0q  with its first derivative, the third equation of Eq. (12) becomes:  
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By integrating Eq. (15) twice we get: 
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By substituting in Eq. (16) we get the following differential equation in ( )ϕ0q : 
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By solving, function ( )ϕ0q is obtained and is given as below: 
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Now the hypothesis is verified to satisfy the equilibrium and compatibility conditions. By substituting Eq. (19) and Eq. (17) in Eq. 
(12), displacement functions rx u,u,u ϕ are obtained in a closed form. The integration constants 14,....,2,1iC =  (the constant 15C  is not 
present in displacement function as the function ru is considered as a derivative of is present the derivate of function ( )ϕ0q given 
by Eq. (14)) are determined by imposing the boundary conditions at fixed supports and using polynomial identity rule. The 
following sets of algebraic equations are obtained.  
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It can be easily seen from the above that there are only 14 independent equations (as same as the integration constants to be 
determined); the remaining are linearly dependent ones. 
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Substituting the integration constants in the displacement function, we get the following displacement functions: 

0ux =                                                                           (27) 
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The stress functions are given by: 
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where ( )( )1tR12R2
1

222 −ν+
=ω  

 
3.2 Analytical solution in closed form for shells under edge loads 
 
The open barrel RC cylindrical shell in now analyzed under uniformly distributed surface load varying sinusoidal in addition to the 
edge loads. Bellington (1965) presented the general equations of equilibrium under certain assumptions to simplify the stress 
functions. Poisson’s modulus is neglected in this treatment to get the following relationships: 
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In equations (31b), terms of radial displacement ϕu are neglected and ϕQ terms in Eq. (4) are also dropped. By utilizing namely: i) 
equilibrium equations given by Eq. (4); ii) relationships given by Eq. (31); as well as the compatibility conditions between the 
displacement components and stresses forces, the elastic problem is now reduced in to a single eighth order partial differential 
equation with displacement along the radial direction as the only unknown. The modified differential equation is given by:  
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Where the differential operator r
8u∇  and r

4p∇  are given by the following expressions: 
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Let the shell be subjected to surface load ‘p’ that is distributed uniformly over the shell surface and also varying sinusoidal along 
its length. The load can be resolved into its components along longitudinal, circumferential and radial directions as given below:  
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                                                                         (34) 

where, p = load per unit surface area of the shell surface and L is the span of shell. Equilibrium equations given by Eq. (4) can be 
satisfied by a particular integral of the form: 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ϕ−ϕ=ϕ

L
xπsincosCx,u k0r                                                                         (35) 

By substituting, the value of constant C0 that depends on the geometric parameters of the shell is determined as: 
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Further by substituting C0 at any desired section, Eq. (35) gives the displacement in terms of load and geometric characteristics of 
the reinforced concrete shell. However, particular integral of Eq. (35) does not provide the complete solution and hence 
complimentary function of Eq. (32) is now considered. Equating the RHS of Eq. (32) to zero, the complimentary function assumes 
the following form: 

( ) ∑ ⎟
⎠
⎞

⎜
⎝
⎛=ϕ

∞

=1,3,5..n

φM
mr L

xπsineAx,u                                                                             (37) 

where, Am represents the eight arbitrary constants depending on the longitudinal boundary conditions and M (in eMΦ ) represents 
the corresponding roots. Variation of ( )ϕx,ur  along the longitudinal boundary can be described by Fourier series considering only 
the first term of the series. By substituting Eq. (37) in homogenous form of Eq. (32), roots M are determined. On substitution, we 
get: 

0
LtR

π12k
R
M

422

44
2

2

2
=+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−                                                                                   (38) 

where 
L

k π
= . Eq. (38) in now expressed as: 
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where, 

4
3

t
3r

L
Q, π
== 2

64
8

t
Rk3Q                                                                                (40) 

By introducing the constant
Q
Rk 22

=γ , Eq. (39) is rewritten as: 
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By applying the Euler’s equation, Eq. (41) becomes: 
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By solving, we obtain the follows roots: 
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Now, the complimentary function of Eq. (32) is given by: 
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For ( )ϕx,ur  to be real, the integration constants 1,2,3,4)(iB,A ii =  must be complex; by recalling the integration constants, the 
displacement function ( )ϕx,ur  is written as:  
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where 6,7,8)1,2,3,4,5,(iDi = are integration constants. The final solution is the sum of particular integral given by Eq. (35) and 
complementary function given by Eq. (46). By substituting in Eq. (31) and utilizing the equilibrium conditions given by Eq. (4), 
we obtain the stress functions as follows: 
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By introducing the following vector, displacement function can be written in more compact form: 
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where [ ]T821 D,.....,D,DD = . In explicit form the stress functions are given by: 
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where H0 assumes different values for different stress functions as given below: 
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The matrices [ ] [ ]λ,Γ  are given by:  
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An open barrel reinforced concrete cylindrical shell with geometric properties given in Table 1 is analyzed under uniform surface 
load varying sinusoidally in addition to the sinusoidal symmetric edge loads namely: i) fixed unitary moment; ii) unit axial edge 
load; and iii) unit shear edge load, considered to act one-by-one successively along the longitudinal boundaries. Figures 4-5 show 
the stress resultants obtained from the analysis using proposed close form expressions, for different values of φ. It can be seen 
from the figures that stress resultants are symmetric with respect to the crown of the shell and qualitatively similar under different 
edge loads. It is also seen that the obtained results on the basis of proposed expressions closely agree with those obtained from the 
detailed FEM analysis based on the procedures discussed by Stanley and Huges (1984). The stress resultants obtained from 
detailed FEM analysis are shown in Figure 6, for comparison.  
 

Table 1 Geometric properties of the RC shell (case i) 
Description values 
Φk 45º 
L 26.67m 
R 8m 
t 80mm 
Concrete Mix and steel grade M25 and Fe 415 steel 
Dead load 25 x 0.08 = 2.0 kN/m2 
Live load for inspection 0.5 kN/m2 
Load due to finishes 0.75 kN/m2 
Total load 3.25 kN/m2 
Young’s modulus  of concrete, E  25 x 106 kN/m2 
Poisson’s ratio of concrete, ν  0.20 
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Figure 4. Stress resultants for RC shell at φ = 45º 
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Figure 5. Stress resultants for RC shell at φ = 35º 
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Figure 6. Stress resultants and displacement of RC shell obtained from FEM at φ = 45º 

 
3.3 Design charts 
 
After satisfactory comparison of stress resultants and displacement of RC shells obtained by employing the proposed expressions 
with that of detailed FEM, RC shell is now analyzed for different R/L ratios and angles of curvature to obtain Design charts for 
closer intervals of φ while Table 2 shows the stress resultants for edge loads. Based on classical flexural theory, using the proposed 
expressions in close form, Design charts are developed for computing the stress resultants in open cylindrical shells with varying 
geometric parameters. Figures 7-9 show the proposed Design charts plotted for different R/L ratios for practical cases of R/t and Φ 
angles those can be readily used for analyzing the shells without undergoing detailed computations. The expressions are also 
proposed in closed form for analysis of RC shells under sinusoidal surface load in addition to unit edge loads of different types. It 
is seen from the design curves that they follow the same trend for all edge load cases namely: i) fixed moment couple along 
longitudinal edge; ii) axial load along the longitudinal edge; as well as iii) shear edge load. The design curves can be readily used 
to obtain the stress resultants for RC open barrel cylindrical shell for varying R/L values. The stress resultants can also be obtained 
for any desired values of φ that can be necessary for detailing of reinforcement, particularly near the crown and the valley. The 
numerical problem solved using the design charts show computation of final stress resultants at closer intervals of Φ. Results 
obtained closely agree with that of the results obtained through finite element analysis. The proposed design curves shall be readily 
used in design offices that do not have access to high end software. Further, they shall also serve as an easy checking tool for 
assessing the correctness of the results given by the software. The proposed design curves shall enable the design engineers to 
understand the qualitative range of deviation, if any, from the results given by the software. 



Table 2 Stress resultants of RC shell under sinusoidal surface load and different edge loads (case ii) 

 Shells under uniform distribued load  Surface load + moment edge load  Surface load + axial edge load  Surface load + shear edge load
f N N M Q

(deg) (kN/m) (kN/m) (kN-m/m) (kN-m/m) (kN/m) (kN/m) (kN/m) (kN-m/m) (kN-m/m) (kN/m) (kN/m) (kN/m) (kN-m/m) (kN-m/m) (kN/m) (kN/m) (kN/m) (kN-m/m) (kN-m/m) (kN/m)

0 -4.988 -31.177 0.231 1.447 -2.298 1283.62 0.000 2.237 1.000 0.000 1372.76 1.00 2.52 0.00 0.00 1482.95 0.00 2.98 0.00 -1.00

10 -4.560 -28.499 -0.070 -0.439 -0.566 181.59 -8.464 1.506 -0.445 -2.947 176.91 -8.13 1.67 -1.44 -3.09 153.08 -9.82 1.93 -2.50 -3.87

20 -4.199 -26.247 -0.088 -0.549 0.278 -218.88 -24.066 0.795 -4.875 -4.042 -241.31 -24.44 0.86 -5.99 -4.19 -277.95 -26.46 0.96 -7.76 -4.66

30 -3.940 -24.625 0.004 0.023 0.449 -261.97 -35.258 0.216 -9.511 -3.164 -271.41 -35.80 0.22 -10.73 -3.25 -274.24 -37.25 0.20 -12.83 -3.44

40 -3.804 -23.778 0.081 0.507 0.197 -211.41 -40.322 -0.110 -12.285 -1.164 -206.95 -40.77 -0.14 -13.55 -1.19 -180.18 -41.57 -0.22 -15.74 -1.23

50 -3.804 -23.778 0.081 0.507 -0.197 -211.41 -40.322 -0.110 -12.285 1.164 -206.95 -40.77 -0.14 -13.55 1.19 -180.18 -41.57 -0.22 -15.74 1.23

60 -3.940 -24.625 0.004 0.023 -0.449 -261.97 -35.258 0.216 -9.511 3.164 -271.41 -35.80 0.22 -10.73 3.25 -274.24 -37.25 0.20 -12.83 3.44

70 -4.199 -26.247 -0.088 -0.549 -0.278 -218.88 -24.066 0.795 -4.875 4.042 -241.31 -24.44 0.86 -5.99 4.19 -277.95 -26.46 0.96 -7.76 4.66

80 -4.560 -28.499 -0.070 -0.439 0.566 181.59 -8.464 1.506 -0.445 2.947 176.91 -8.13 1.67 -1.44 3.09 153.08 -9.82 1.93 -2.50 3.87

90 -4.988 -31.176 0.231 1.447 2.298 1283.62 0.000 2.237 1.000 0.000 1372.76 1.00 2.52 0.00 0.00 1482.95 0.00 2.98 0.00 1.00
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Figure 7. Design charts for RC shells under surface load and moment edge loads 
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Figure 8. Design charts for RC shells under surface load and axial edge loads 
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Figure 9. Design charts for RC shells under surface load and shear edge loads 
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4. Axial force-bending moment interaction 
 

Concrete under multi-axial compressive stress state exhibits significant nonlinearity that can be successfully represented by 
nonlinear constitutive models capable of handling inelastic deformations and cyclic loading. Further, it is necessary to describe a 
suitable failure criterion for complete description of ultimate strength. A reinforced concrete element of rectangular cross-section 
is studied for axial force-bending moment yield interaction behaviour for different percentage of tension and compression 
reinforcements (Chandrasekaran et al. 2009). Bernoulli hypothesis of linear strain over the cross-section, both for elastic and 
elastic-plastic responses of the element, under bending moment combined with axial force was assumed. The interaction behaviour 
becomes critical when one of the following conditions apply namely: i) strain in reinforcing steel in tension reaches ultimate limit; 
ii) strain in concrete in extreme compression fibre reaches ultimate limit; as well as iii) maximum strain in concrete in compression 
reaches elastic limit under only axial compression. Axial force-bending moment limit domain consisting of six sub-domains are 
described; collapse in sub-domains (1) and (2) is caused by yielding of steel whereas for sub-domains (3) to (6), the collapse is 
caused by crushing of concrete. Table 3 gives the resume of expressions for various sub-domains, as reported by the researchers; in 
general terms, axial force-bending moment interaction can be expressed as below: 
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where Ac is the area of concrete in compression; if the section is in full tension, the integral vanishes as the neutral axis is negative. 
For the neutral axis greater than the depth of the section, say in this case, thickness of the shell, the integral shall extend for the 
total thickness of the shell. In general, as the shell remains in compression, the depth of neutral axis is always greater than the 
thickness of the shell. Figure 10 shows the cross-section element of the shell; axial force normal to the section, Nφ and moment 
about the section, Mφ are now considered for studying the interaction. The stress resultants (Nφe, Mφe) are determined from the 
proposed equations (case i) presented above and the values are plotted in the P-M domain. Points A to E correspond to shells with 
different values of φk. It can be seen that the stress resultants lie in the sub-domain (3) for all values of φk indicating a compression 
failure initiated by crushing of concrete. For the failure point on the P-M boundary, for example, A′ , following equation holds 
good: 

0)(xM
M
N

)(xN cu
e

e
cu =− ϕ

ϕ

ϕ
ϕ                                                                                    (62) 

By iteration, Eq. (62) is solved for xc and further by substitution, (Nφu, Mφu) are determined using Eq. (30). Depths of neutral axis 
thus obtained for different angles of curvature and the corresponding points on the P-M boundary namely: A’ to E’ are shown in 
Figure 9. Factor of safety (F.S) is obtained from the following relationship: 

AO
OAF.S
′

=                                                                                                      (63) 

Using the above equation, factor of safety for shells with different φk are computed and shown in Figure 10. It can be seen from the 
figure that factor of safety reduces with increase in angle of curvature of the shell. Also, strain in concrete, for all cases, reaches 
ultimate limit prompting a compression failure while those in tension and compression steel are within the yield limits. The failure 
points interpreted on the P-M domain show compression failure of shell section initiating crushing of concrete. 



    Chandrasekaran et al. / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 148-171 

 

168

 

Table 3. Resume of expressions for P-M interaction (Chandrasekaran et. al. 2009) 
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Point N M F.S.
(deg) (kN/m) (kN-m/m) (kN/m) (kN-m/m)

(m) (kN/m  )

A 30 87.162 0.628 862.85 6.22 9.90

0.079 0.003500 11023 -0.00083 -174581 0.0026 360870

B 35 89.881 1.477 631.24 10.38 7.02

0.059 0.003500 11023 0.00006 12243 0.0023 360870

C 40 92.801 2.708 421.08 12.29 4.54

0.044 0.003500 11023 0.00127 266762 0.0019 360870

D 45 95.928 4.451 239.47 11.11 2.50
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E 50 99.236 6.849 132.09 9.12 1.33

0.023 0.003500 11023 0.00549 360870 0.0005 105996

N Mf ff k u ue e f f

xc ec,max s c,max est s st s scesc

-250

0

250

500

750

1000

1250

-12 -10 -8 -6 -4 -2 2 4 6 8 10 12

A'

B'

C'

D'
E'

2a

2b

3

4

5

6

Mu (kN-m)

Pu (kN-m)

Point

A'
B'
C'
D'
E'

k=45°

pz = constant

fixed edge
fixed edge

R

2 (kN/m  )2 (kN/m  )2

Point

A'
B'
C'
D'
E'

A B C D
E

1.00m

80m
m

pz= 3.25 kN/m2

pt = pc = 0.5%
Rck= 25N/mm2

fy= 415N/mm2

R/L=
R/t=

0.3
100

R=8m Nf

Mf

 
 

Figure 10. Axial force-bending moment interaction of RC shells under uniformly distributed surface loads (P-M interaction)



5. Conclusions 
 
   Design curves for stress resultants based on the classical flexural theory for single barrel open cylindrical shells are presented 
with analytical expressions in closed form. The effect of variation of angle of curvature of shell geometry on the final stress 
resultants is demonstrated using the proposed design curves. Plots of axial force-bending moment values on the P-M domain are 

illustrated to show the compression failure in RC shells initiated by crushing of concrete.  As the behavior of the plots for various 
values of R/L is nonlinear, interpolations for still closer values of fraction of R/L is not recommended. 
   Common theories adopted for analysis of cylindrical shells interpret the design behavior in different ways. Therefore every 
design procedure developed without undergoing rigorous analysis leads to simple and close form solution but of course with some 
defects. Despite shell structures possess inherent advantages gained by its structural form, they are not very common due to their 
analysis complexities.  Current study attempts to make shell analysis easy, popular and develops confidence in design offices, 
encouraging the designer to handle a complex problem through a simple graphical tool. With the use of proposed Design charts, 
stress resultants can be readily determined at the valley, crown or at any desired section for various type of edge loads. In the 
present context of design offices highly influenced by use of software, this study is an attempt in the direction of developing 
simple graphical tools based on well established theories so that the designer is sure to know the error, if committed both 
qualitatively and quantitatively.  
 

Nomenclature 

R radius (m)      L  length (m) 
kϕ  angle of the shell (deg)     t thickness of the shell (mm)  

E Young’s modulus  of concrete (kN/m2)  ν  Poisson’s ratio of concrete    
ϕ   generic angle  in shell (deg)  

xM  Bending moment  in plane x-z   ϕM  Bending moment  in plane r-ϕ  

ϕxM       Torque moment  in plane x-z    xMϕ       Torque moment  in plane r-ϕ  

xN  Axial force in x-direction     ϕN  Axial force in ϕ -direction 

ϕxN  Shear  force in x –direction     

xQ  Shear force in radial direction along longitudinal edges 

ϕQ  Shear force in radial direction along transversal edges 

xε    normal strain in x-direction    ϕε    normal strain in ϕ -direction  

ϕγ x    shear strain in plane x-ϕ     xφ  curvature in plane x-z 

ϕφ  curvature  in plane r-ϕ     ϕφ x       curvature  in plane x-z 

xp   surface load on the shell in x-direction (kN/m2) ϕp  surface load  in ϕ -direction (kN/m2) 

rp   surface load on the shell in radial direction (kN/m2) zp   surface load on the shell in z-direction (kN/m2) 

xu   displacement component in x-direction   ϕu   displacement component in ϕ -direction  

ru  displacement component in radial direction   zu  displacement component in z- direction  
8∇          differential operator of eight order      4∇   differential operator of fourth order 

d   effective cover of the section (m)    

cx   depth of neutral axis measure from extreme compression fibre (mm) 

"'
c

"
c

'
c

0
c x,x,x,x  limit position neutral axis  (mm)                     q depth of plastic kernel of  concrete (mm) 

y depth of  generic fibre of concrete measured from extreme compression fibre (mm) 

εc             strain in generic fibre of concrete   εc,max maximum strain in concrete 

εc0 elastic limit strain in concrete   εcu ultimate limit strain in concrete 

εst strain in tensile reinforcement   εsc strain in compression reinforcement  

εs0 elastic limit strain in reinforcement    εsu ultimate limit strain in reinforcement  

Es               modulus of elasticity in steel  (kN/m2)   Rck compressive cube strength of concrete (kN/m2) 

σc           stress in generic fibre of concrete (kN/m2)  σc,max maximum stress in concrete (kN/m2)  

σc0 design ultimate stress in concrete in compression (kN/m2)  
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σy yield strength of steel (kN/m2)   σs0 design ultimate stress in steel (kN/m2)    

σst stress in tensile reinforcement (kN/m2)   σsc stress in compression reinforcement (kN/m2)                 

pt percentage of tensile reinforcement   pc percentage of compression reinforcement  

Ast area of tension reinforcement (m2)   Asc area of compression reinforcement (m2) 

cA          area of concrete in compression    F.S.  safety of safety in P-M interaction 

eϕN  Axial force in ϕ -direction in elastic range (kN) uNϕ  Axial force in ϕ -direction at collapse (kN)  

eϕM  Bending moment in plane R-ϕ in elastic range (kN-m) uϕM  Moment  in plane R-ϕ at collapse (kN-m) 
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