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Abstract

Shells are objects considered as materialization of the curved surface. Despite structural advantages and architectural
aesthetics possessed by shells, relative degree of unacquaintance with shell behavior and design is high. Thin shells are examples
of strength through form as opposed to strength through mass; their thin cross-section makes them economical due to low
consumption of cement and steel as compared to other roof coverings such as slabs. Current study presents design curves for
reinforced concrete open barrel cylindrical shells for different geometric parameters. The analysis is done in two parts namely: 1)
RC shell subjected to uniformly distributed load that remain constant along its length and curvature of the shell surface; and ii)
RC shell subjected to uniformly distributed load varying sinusoidally along its length in addition to different symmetric edge
loads present along its longitudinal boundaries. Design charts are proposed for easier solution of shell constants after due
verification of results obtained from finite element analysis. Expressions for stress resultants proposed in closed form make the
design more simple and straightforward; stress resultants plotted at closer intervals of ¢ can be useful for detailing of
reinforcement layout in RC shells. Axial force-bending moment yield interaction studied on shells under uniformly distributed
loads show compression failure, initiating crushing of concrete.
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1. Introduction

Shells are skin structures by virtue of their geometry and shell action is essentially more towards transmitting the load by direct
stresses with relatively small bending stresses. Presence of significant shear makes their behavior different from other roof
covering structures; they have remarkable reserve strength with a greater degree-of-freedom in structure layout, shape and
architecture, making them virtually impossible to collapse though their supporting structure may collapse (Rericha 1996; Ha-Wong
Song et al. 2002). A number of procedures are proposed in the literature (see, for example, Flugge 1967) for analyzing the various
types of thin shells for ultimate load but experimental evidences, however are not abundant. In many of these procedures, bending
stresses are stated to be negligibly small justifying the application of membrane theory for analyzing thin shells, where normal
forces are not necessarily tensile. Though behavior of shells to external loads is generally quite complex, thanks to second order
equations developed that are sufficient to model the behavior of most civil engineering shell structures (Jacques, 1977). Forces in
thin shells are, in a certain sense, statically determinant as they can be determined without referring to elastic property of material
used. Linear elastic behavior is applied to provide a direct relationship between stress and strains by which the equilibrium of
stress resultant and stress couples could be established. However mathematical models of thin RC shells developed on the
interpretation of their physical behavior are difficult to present rationally as the rigorous analysis is extraordinarily complex,
resolving to simplification (see, for example, Billington, 1965). These simplifications need extra caution for the design to become
conservative. Also, interestingly, load carrying capacity of thin curved shells often exceeds the prediction of even most-refined
available analysis. It is therefore commonly accepted that shells (reinforced concrete shells, in particular) are designed on the basis
of approximate analysis only, which of course exhibits defects. For example, aircraft impact on containment structures is studied
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by employing modal analysis to estimate their elastic response (Prabhakar, 2003). The study approximates shell with uniform
thickness in longitudinal and circumferential directions and orthotropic properties are obtained by scaling the Young’s modulus
values. Wheen and Wheen (2003) studied design and construction principles of a pre-stressed conical concrete tent roof idealizing
it as thin pre-tensioned radial circles suspended from a temporary central tower and anchored at the lower ends to a pre-stressed
ring beam in a catenary form. They showed that the curved concrete surface, usually a felicitous combination of sound structural
form and method of construction leading also to low cost, does not crack when suspended because of radial pre-stressing. Concrete
domes, in particular, possess limited membrane stress variations due to soundness in structural form and therefore ideal as all
stresses are compressive during construction and in final stages as well (Wheen and Anatharaman, 1998). Example structures
presented above for designing/constructing RC shell structures prove the confidence level of researchers in employing relevant
approximate theories for analyzing shell structures. This leads to the desire of simplifying the analysis procedure and adding to
architectural aesthetics and structural advantages shell possess; the objective is to simplify analysis procedure by means of ready to
use design curves and tables. This shall not only promote more construction of such advantageous and safe structures but also
improve the confidence level in design offices. However, other studies conducted by the authors emphasize verification of stress
resultants at closer intervals of geometric angles at boundaries, in particular, for appropriate detailing of reinforcement in RC shells
(see, for example, Chandrasekara et al. 2005; Chandrasekaran and Srivastava, 2006). Ramaswamy (1968) discussed limitations
and precision of various theories on shell structures and concluded that Fliigge’s theory is acceptable and can be treated as a bench
mark to assess the accuracy of other theories.

2. Objectives and structural idealization

Based on the critical review of literature, main objective of the current study is to develop design curves based on the classical
flexural theory for single barrel open cylindrical shells with different geometric parameters; the outcome is to derive the stress
resultant estimates that can be readily determined without undergoing detailed computations. Though theory employed is not new
but the attempt made to simplify the analysis procedure is relatively new and the analytical solutions proposed in the paper are not
present in the literature. As the solution procedure of generic case of shell geometry shall involve complex mathematics, objective
of simplifying the design procedure through design curves shall not be fulfilled; hence a particular geometric case of cylindrical
shells is only addressed in the present study. Please note that cylindrical shells are commonly used geometry in structural/civil
engg applications. With the use of proposed design curves, stress resultants and stress couples can easily be readily determined at
the valley, crown or at any desired section for various type of edge loads. This shall be helpful to be employed in design offices
while encouraging such new RC shell structures in future and also enhances the confidence of the structural designer. The study
employs few structural idealizations namely: i) stress normal to the surface is neglected as thin shell is a curved slab whose
thickness is relatively small compared to its other dimensions and radius of curvature; ii) deflections under load are small enough
so that its static equilibrium remain affected due to changes in geometry, vide small deflection theorem; iii) linear elastic behavior
is assumed in the analysis enabling a direct relationship between stress and strain; iv) for all kinematic relations, any point on the
mid surface is considered as unaffected by the shell deformation; as well as v) all points lying normal to the middle surface before
deformation lie on the normal after deformation.

3. Mathematical development

Let us consider a cylindrical coordinate system (x,(p,r) and a cylindrical shell with thickness t. The cylindrical shell has the
directive along the x-axis and we denote U,,U,,U, as the displacements along longitudinal (x), circumferential (¢) and radial

directions (r), respectively. It is important to note that the displacements, strains and stress functions depend only on two variables
namely (@,x). Figure.1 shows the overall geometry of the shell considered for the study while Figure.2 shows the differential

clement considered for the analysis. The three strain components &,,¢, and y,, of the middle surface and the three curvature

changes y,,x,andy, can be expressed in terms of the displacement components as given below:

€ —% £ 1 _au‘p - _l@ux +—aulp
X = v P T rp txe — ’
ox R{ o¢ R dp  ox
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Corresponding quantities associated with the strain components and curvatures are the membrane resultant forces N, ,N,,N,,, and

X 2

resultant moments M,,M,,M respectively. In addition, resultant shear forces Qy, Q, are also present. The shell is constituted

XQ 2
by isotropic material characterized by two elastic constants namely: i) modulus of elasticity, E and ii) poisons modulusv.
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Figure 2. Membrane stresses, moment and shear forces acting on infinitesimal element of shell

Relationships between static quantities and strain/curvature given by the Hooke’s law are shown below:
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By substituting Eq. (1) in Eq. (2), force-displacement relationships are derived as given below:
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For a general case in three dimensions, we can write three equation of equilibrium along x,y and z direction and three equations of
moments with respect to the x,y, and z axes. In total there are six equations of equilibrium available for solving eight unknown
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functions. If N, ,N,,N,, are small in comparison with their critical values at which lateral buckling of the shell may occur, their

effect on bending becomes negligible; all terms containing the products of the resultant forces or resultant moments with the
derivatives of the small displacements can be neglected in the equilibrium equations (Timoshenko and Krieger, 1959). With this

hypothesis, equilibrium equations are now reduced to five as given below:

N oN
a—XR+ * +p,R=0
OX oo
oN oN
—R+—"-Q, +p,R=0
oX op
A, R+—>+N,+p,R=0
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where p,.p,.p,are the load for unit surface along x-axis, circumferential and radial direction, respectively. Solving last two

equations with respect to Q(p , Qx and substituting in remain three equations, we finally obtain the three following relationship:
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The shear functions have the following expression:
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Substituting the equations (3) in equations (5), we obtain the equilibrium equation in terms of the unknown displacement functions

u,,u,,u, asgiven below:
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3.1 Analytical solution in closed form for shells under uniform distributed load

1-v?2

SE

0

+

=0(7)

|

Let us consider an open barrel cylindrical shell loaded by uniform distributed load, as seen in Figure 3. The boundaries of the shell
along its length are considered as fixed support in the analysis. Stress functions will depend only on one variable, namely ¢ leading

to the following differential equations system:
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Figure 3. Shell under uniform distributed load
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From the first and fourth equations of the above set of equations, we can derive the following:
Uy (%, ©) = Po (@) +P1(e)x
U, (x.0) =00 (0)+ (@) x+ ()X
where po (@), p1(©),ao(¢), 94(¢).9,(¢) are unknown functions of variable ¢ .
By substituting Eq. (9) in the last equation of Eq. (8), we obtain the function u,, (X,(p) as given below:

dq
b0 (c0)= (o) ol 2220

where h, ((p), h, ((p) are unknown functions of variable ¢ .

By substituting Eqgs (9-10) in Eq. (8), we obtain the following relationships:
a4(¢) = C4c089 - Cysing
q, (@)= Cycosp+C,sing
hy(@)=Cscosp+C,sing+Cs
Po(¢)=r(C4c080—-Cysing)+C; +Ceo
p1(@) = 2r (C4c08¢ + C,sing)+Cg

By substituting in Egs. (9-10), the displacements functions are obtained as given below:

®)

)

(10)

(11)
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U, (x,@)=C; +Cqx+Cqp+rcosp(C, +2C,x)-rsing(C4 —2C,x)
Uy (X) = hg (@) + xsing(Cx +C )+ xcosp(C 5 — Cx)+Cs (12)
U, (%,0) = g (@) +xcosp(C1x+C, )~ xsing(C4 —C,x)
The uniform distributed load applied on surface of the shell is resolved into components along (x,q),r)as given below:
Py =0
Po =P sin(py —¢) (13)
pr =p cos (o —¢)
where @, is total shell angle in radians. By substituting Eq.(12) in equilibrium Eq. (7), the first condition is verified. Further, by
substituting the functionq ((p) with its first derivative, the third equation of Eq. (12) becomes:

ur(x,(p):dqdo—(f)@+ xcos¢(Cyx +C, ) xsing(C5 —C,x) (14)

Now, the second and third equations of Eq. (7) become:
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By substituting in Eq. (16) we get the following differential equation inq (go) :
5
Et? dqu(‘P)+ quS( 9),d d%s(‘P)}(uR?+tZIEt(Cg+06Rv)+2pR2(1—v2)cos(go—gok)]:0 (18)
¢ ¢
By solving, function qo((p) is obtained and is given as below:
4o (0)= pR2(12R2+t2Xv2— )[8(pCOS(p+(2(p —11)5|n(p]003cpk (12R2+t2XC9+C RV)@+(Cyy +Cyq +9Cyy Jsing
0 8Et3 t? 19)
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+F ( X 1(([) % Lo (p]s (Pk+(C12_C13_QDC14)°°3<P+C15

8Et3

Now the hypothesis is verified to satisfy the equilibrium and compatibility conditions. By substituting Eq. (19) and Eq. (17) in Eq.
(12), displacement functionsu, ,u,,.,u, are obtained in a closed form. The integration constants C;_;, 4 (the constant C5 is not
present in displacement function as the function u, is considered as a derivative of is present the derivate of function qo((p) given
by Eq. (14)) are determined by imposing the boundary conditions at fixed supports and using polynomial identity rule. The
following sets of algebraic equations are obtained.
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u(xe=0)=0  Vx = py(p=0)=0;ps(p=0)=0
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u d d d
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u d d d
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® do do do

(20)

It can be easily seen from the above that there are only 14 independent equations (as same as the integration constants to be

determined); the remaining are linearly dependent ones.
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Substituting the integration constants in the displacement function, we get the following displacement functions:
u, =0
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The stress functions are given by:
My =0, My, =0, Ny, =0, Q, =0, N, =vN,, M, =vM,
12R? -t —2|12R? +12 Josi
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+pwR?® (v2 —1)[sin(pk(2(12R2 +t2 )(pCOS(p—3(4R2 +t2 )sin(p)— COSQ (3(4R2 112 )COS(p+2(12R2 12 )cpsin(p)]
cosgy [212R? + 12 Jpcosg+ (12R? —t? Jsing) }
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1

where U oR 12R? +¢2)[v2 -1

3.2 Analytical solution in closed form for shells under edge loads

The open barrel RC cylindrical shell in now analyzed under uniformly distributed surface load varying sinusoidal in addition to the
edge loads. Bellington (1965) presented the general equations of equilibrium under certain assumptions to simplify the stress
functions. Poisson’s modulus is neglected in this treatment to get the following relationships:

au ou
N =Bty B oy B e 100, (31a)
Rox' ° R\ aop ® 2 ox Rag

_EC P, EC [, oy _Et o L ou
2 e Y R de ae? ) T T 2R&x g

3 2 2 3 2
Qg =- Et3 5_2[u¢+%J+R25‘_2(%+U¢] , Qg =- EtZi i(u(p+aij+R26—uz' (3lc)
12R° | o ¢ ox~ \ 0p 12R* Ox| 0@ el OX

In equations (31b), terms of radial displacementu,, are neglected and Qq) terms in Eq. (4) are also dropped. By utilizing namely: 1)

(31b)

equilibrium equations given by Eq. (4); ii) relationships given by Eq. (31); as well as the compatibility conditions between the
displacement components and stresses forces, the elastic problem is now reduced in to a single eighth order partial differential
equation with displacement along the radial direction as the only unknown. The modified differential equation is given by:

Et’ Et)o* o° o* o?
0 O PO a0 i o
12 re) ox r° oxop® r° op( ox*  r° 0o
Where the differential operator Vaur and V4pr are given by the following expressions:
%, LA oy, .6 oy, i oy, L oy,
ox®  r? oxbap®  rt axtoet  r® %00 r® ag®
_o%, 2 o% 12,
axt o r? ox?oe? rt oot
Let the shell be subjected to surface load ‘p’ that is distributed uniformly over the shell surface and also varying sinusoidal along
its length. The load can be resolved into its components along longitudinal, circumferential and radial directions as given below:

veu

)
(33)
v*p

r
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px:0
. . mX
%=m&dw—@m{TJ (34)

p, =p cos(¢, —¢) Sin(%j

where, p = load per unit surface area of the shell surface and L is the span of shell. Equilibrium equations given by Eq. (4) can be
satisfied by a particular integral of the form:

[ TX
u,(x¢) = Cq cos(p, —¢) sm(T) (35)
By substituting, the value of constant C, that depends on the geometric parameters of the shell is determined as:
4, pd(n4 2. 2p2 , _4p4
c, - 12LR (L* + 412 m2R? + 1 RY) 36)

Et[tz(Lz s R2)f 11214t RO }

Further by substituting Cy at any desired section, Eq. (35) gives the displacement in terms of load and geometric characteristics of
the reinforced concrete shell. However, particular integral of Eq. (35) does not provide the complete solution and hence
complimentary function of Eq. (32) is now considered. Equating the RHS of Eq. (32) to zero, the complimentary function assumes
the following form:

u(xe)= 3 M@Wﬁ{lﬂ (37)

n=135. L
where, A, represents the eight arbitrary constants depending on the longitudinal boundary conditions and M (in e"®) represents
the corresponding roots. Variation of u, (x,go) along the longitudinal boundary can be described by Fourier series considering only

the first term of the series. By substituting Eq. (37) in homogenous form of Eq. (32), roots M are determined. On substitution, we
get:

M2, 12m*
[E?—kJ + s =0 (38)
where k = % . Eq. (38) in now expressed as:
(M2-k2R2) +4Q8 =0 (39)

where,

Q° =

3k‘RS _\/?4&/5
7 Q- ZM t (40)

, Eq. (39) is rewritten as:

M2 =2y + 21 ) (1)
By applying the Euler’s equation, Eq. (41) becomes:

2p2

By introducing the constanty =

M2 = Q?(y+1+i) (42)
By solving, we obtain the follows roots:
M1 =i((l1i‘B1), Mz :i(az iBz) (43)
where,
) QJ (o9 1) QJJm—w2+1—m—w
1= ) 2= ,
2 2 (44)
(1+y)* +1-(1+y) JO=9)? +1+(1-y)
B =Q 2 . B, =Q 2 ’

Now, the complimentary function of Eq. (32) is given by:
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A0 L B B0 | p oo g olemife .
x,0) = inl =

mX
: . . oo |sin] == (45)
+ Ase—(01+'ﬁ1)¢ + Bae—(qflﬁm’ + A4e—(02+|32)¢ + B4e—(°z—'ﬁz)‘l’

For u, (X,(p) to be real, the integration constants A;,B; (i=1,2,3,4) must be complex; by recalling the integration constants, the

displacement function u, (x,¢) is written as:

D,cos D,sin % 4+ (D,cos D,sin e
={( 1€08B1 +Dysi [31%0)9 +( 3C08B1@ +Dyysi [31%0)9 }in(¥j (46)

+(D5c08B ¢ + Dgsin,¢)e 2 + (D;cosP,p + DgsinB e 2

where D, (i=1,2,3,4,5,6,7,8) are integration constants. The final solution is the sum of particular integral given by Eq. (35) and
complementary function given by Eq. (46). By substituting in Eq. (31) and utilizing the equilibrium conditions given by Eq. (4),

we obtain the stress functions as follows:
3 4, 4 4
_Et [Ra 2 o', 1 d% ]—DZR @

* T2 " oxt  Rox? 8(p TRE o¢*
3 5 5, 4y
NX(P:I Et 84 22 82 146 +8pr_pq) dx 8)
12 6x6(p R? ox2ag® "R 09° ) 0o
3 6 2 0
N, =“~ Et 64u, 22 62u 14 %, pr2 N Po dxdx (49)
12R | ox* o> R ox*o¢* R 0¢° Racp Roe R@x
3 3
q, - EC[2% b2 Ot (50)
12 6x R 6x6(p
3
Q, - E 12 o, o azur 51)
“12R(R o9  0x%09
By introducing the following vector, displacement function can be written in more compact form:
w,e®®
w, e _ |cos _ |cos
T=| where ©, :{ . (51@)}’ w, :{ . (Bz(P)} (52)
w,e%" sin(B1p) sin(B)
wze'GZ(p
_ =1 (X
0 x0) = [eoslo )+-Dlon( T 53)
where D = [D1,D2, ..... ,Dg]T . In explicit form the stress functions are given by:
— mX
My Mo NNy = =5 [HOCOS((p (p)+w-([l’]~ )]sm( Lj
Et® — = X
MygsNsp == [HO sin (o, (p)+w-([l']~[)\]-D)]cos(Tj
(54)

0, - E iy sy )+ 1) s T2
Q, Z%[Hosm(tpk )+w- (][] )]S.n( j

where Hy assumes different values for different stress functions as given below:
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The matrices [F],[k] are given by:
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An open barrel reinforced concrete cylindrical shell with geometric properties given in Table 1 is analyzed under uniform surface
load varying sinusoidally in addition to the sinusoidal symmetric edge loads namely: i) fixed unitary moment; ii) unit axial edge
load; and iii) unit shear edge load, considered to act one-by-one successively along the longitudinal boundaries. Figures 4-5 show
the stress resultants obtained from the analysis using proposed close form expressions, for different values of ¢. It can be seen
from the figures that stress resultants are symmetric with respect to the crown of the shell and qualitatively similar under different
edge loads. It is also seen that the obtained results on the basis of proposed expressions closely agree with those obtained from the
detailed FEM analysis based on the procedures discussed by Stanley and Huges (1984). The stress resultants obtained from
detailed FEM analysis are shown in Figure 6, for comparison.

Table 1 Geometric properties of the RC shell (case i)

Description values

D, 45°

L 26.67m

R 8m

t 80mm

Concrete Mix and steel grade M,;s and Fe 415 steel
Dead load 25 x 0.08 = 2.0 kN/m’
Live load for inspection 0.5 kN/m’

Load due to finishes 0.75 kN/m’

Total load 3.25 kN/m”
Young’s modulus of concrete, E 25 x 10° kKN/m”
Poisson’s ratio of concrete, v 0.20
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Figure 4. Stress resultants for RC shell at ¢ = 45°
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Figure 5. Stress resultants for RC shell at ¢ = 35°
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Figure 6. Stress resultants and displacement of RC shell obtained from FEM at ¢ = 45°
3.3 Design charts

After satisfactory comparison of stress resultants and displacement of RC shells obtained by employing the proposed expressions
with that of detailed FEM, RC shell is now analyzed for different R/L ratios and angles of curvature to obtain Design charts for
closer intervals of ¢ while Table 2 shows the stress resultants for edge loads. Based on classical flexural theory, using the proposed
expressions in close form, Design charts are developed for computing the stress resultants in open cylindrical shells with varying
geometric parameters. Figures 7-9 show the proposed Design charts plotted for different R/L ratios for practical cases of R/t and ®
angles those can be readily used for analyzing the shells without undergoing detailed computations. The expressions are also
proposed in closed form for analysis of RC shells under sinusoidal surface load in addition to unit edge loads of different types. It
is seen from the design curves that they follow the same trend for all edge load cases namely: i) fixed moment couple along
longitudinal edge; ii) axial load along the longitudinal edge; as well as iii) shear edge load. The design curves can be readily used
to obtain the stress resultants for RC open barrel cylindrical shell for varying R/L values. The stress resultants can also be obtained
for any desired values of ¢ that can be necessary for detailing of reinforcement, particularly near the crown and the valley. The
numerical problem solved using the design charts show computation of final stress resultants at closer intervals of ®. Results
obtained closely agree with that of the results obtained through finite element analysis. The proposed design curves shall be readily
used in design offices that do not have access to high end software. Further, they shall also serve as an easy checking tool for
assessing the correctness of the results given by the software. The proposed design curves shall enable the design engineers to
understand the qualitative range of deviation, if any, from the results given by the software.



Table 2 Stress resultants of RC shell under sinusoidal surface load and different edge loads (case ii)

p, =constant

fixed edge

Shells under uniform distribued load

p(X)=p-sin(TX)

Surface load + moment edge load

Surface load + axial edge load

Surface load + shear edge load

f Ny Nt My M r Ny Nt My M Qr Ny Nt My Ms Qr Ny Nf My M Qr
(deg) | (kN/m) | (kN/m) |(kN-m/m)|(kN-mim)| (kN/m) | (kN/m) | (kN/m) | (kN-mim) | (kN-mim)| (KN/m) | (KN/m) | (KN/m) | (kN-m/m) | (kN-m/m) | (kN/m) | (kNAm) | (kN/m) | (kN-mim) | (kN-mim) | (kN/m)
0 | -4988 | -31.477 | 0231 | 1447 | 2298 | 128362 | 0000 | 2237 | 1.000 | 0000 |137276| 1.00 | 252 | 000 | 000 |148295| 000 | 298 | 000 | -1.00
10 | -4560 | 28499 | -0.070 | -0439 | -0.566 | 181.59 | -8464 | 1506 | -0.445 | -2.947 | 17691 | -813 | 1.67 | -144 | -309 | 15308 | -982 | 193 | 250 | -3.87
20 | 4199 | -26247 | -0.088 | -0549 | 0278 | -218.88 | -24.066 | 0.795 | -4.875 | -4.042 | 24131 | 2444 | 086 | -599 | -419 | 27795 | -2646 | 096 | -7.76 | -4.66
30 | -3940 | -24.625 | 0004 | 0023 | 0449 | 26197 | 35258 | 0.216 | -9511 | -3464 | 27141 | -3580 | 022 | -10.73 | -325 | -27424 | -37.25 | 020 | -12.83 | -344
40 | -3804 | -23778 | 0081 | 0507 | 0197 | -211.41 | 40.322 | 0.110 | -12.285 | -1.164 | -206.95 | 40.77 | 014 | 1355 | -1.19 | -180.18 | -4157 | -0.22 | -1574 | -1.23
50 | -3804 | -23.778 | 0.081 | 0507 | -0197 | -211.41 | 40.322 | 0.110 | -12.285 | 1.164 | -206.95 | -40.77 | 0.4 | -1355 | 119 | -180.18 | -4157 | -022 | -1574 | 1.23
60 | -3.940 | -24625 | 0.004 | 0023 | -0449 | 26197 | 35258 | 0.216 | -9511 | 3164 | 27141 | -3580 | 022 | 1073 | 325 | 27424 | -3725 | 020 | -12.83 | 3.44
70 | 4199 | -26.247 | -0.088 | 0549 | -0.278 | -218.88 | -24.066 | 0795 | -4.875 | 4.042 | 24131 | 2444 | 086 | -599 | 449 | -277.95 | -2646 | 096 | -7.76 | 466
80 | -4560 | -28499 | -0.070 | -0439 | 0566 | 181.59 | -8464 | 1506 | -0445 | 2947 | 17691 | 813 | 167 | -144 | 309 | 15308 | -982 | 193 | 250 | 3.87
90 | -4.988 | -31176 | 0231 | 1447 | 2298 | 128362 | 0000 | 2237 | 1.000 | 0000 |137276| 100 | 252 | 000 | 000 |148295| 000 | 298 | 000 | 1.00
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4. Axial force-bending moment interaction

Concrete under multi-axial compressive stress state exhibits significant nonlinearity that can be successfully represented by
nonlinear constitutive models capable of handling inelastic deformations and cyclic loading. Further, it is necessary to describe a
suitable failure criterion for complete description of ultimate strength. A reinforced concrete element of rectangular cross-section
is studied for axial force-bending moment yield interaction behaviour for different percentage of tension and compression
reinforcements (Chandrasekaran et al. 2009). Bernoulli hypothesis of linear strain over the cross-section, both for elastic and
elastic-plastic responses of the element, under bending moment combined with axial force was assumed. The interaction behaviour
becomes critical when one of the following conditions apply namely: i) strain in reinforcing steel in tension reaches ultimate limit;
il) strain in concrete in extreme compression fibre reaches ultimate limit; as well as iii) maximum strain in concrete in compression
reaches elastic limit under only axial compression. Axial force-bending moment limit domain consisting of six sub-domains are
described; collapse in sub-domains (1) and (2) is caused by yielding of steel whereas for sub-domains (3) to (6), the collapse is
caused by crushing of concrete. Table 3 gives the resume of expressions for various sub-domains, as reported by the researchers; in
general terms, axial force-bending moment interaction can be expressed as below:

N(pu(XC): jboc(sc(y))dy_ostAst +0gAg
A

M, (xc )= /{:boc(sc(y))(%—yjdy+(astAst +0 A {%—d]

where A, is the area of concrete in compression; if the section is in full tension, the integral vanishes as the neutral axis is negative.
For the neutral axis greater than the depth of the section, say in this case, thickness of the shell, the integral shall extend for the
total thickness of the shell. In general, as the shell remains in compression, the depth of neutral axis is always greater than the
thickness of the shell. Figure 10 shows the cross-section element of the shell; axial force normal to the section, N, and moment
about the section, M,, are now considered for studying the interaction. The stress resultants (N, M,.) are determined from the
proposed equations (case i) presented above and the values are plotted in the P-M domain. Points A to E correspond to shells with
different values of @. It can be seen that the stress resultants lie in the sub-domain (3) for all values of ¢y indicating a compression
failure initiated by crushing of concrete. For the failure point on the P-M boundary, for example, A", following equation holds
good:

(61)

Noe
c)__M(pu (Xc):0 (62)
M
pe
By iteration, Eq. (62) is solved for x. and further by substitution, (Ngu, M,,) are determined using Eq. (30). Depths of neutral axis
thus obtained for different angles of curvature and the corresponding points on the P-M boundary namely: A’ to E’ are shown in
Figure 9. Factor of safety (F.S) is obtained from the following relationship:
A/
F.S =—o (63)
AO

Using the above equation, factor of safety for shells with different ¢, are computed and shown in Figure 10. It can be seen from the
figure that factor of safety reduces with increase in angle of curvature of the shell. Also, strain in concrete, for all cases, reaches
ultimate limit prompting a compression failure while those in tension and compression steel are within the yield limits. The failure
points interpreted on the P-M domain show compression failure of shell section initiating crushing of concrete.

N . (x

pul
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Table 3. Resume of expressions for P-M interaction (Chandrasekaran et. al. 2009)
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v
Pointf f | Nig | Mg |Point| Ny M, |F.S.
(deg) | (kN/m) | (kN-m/m) (kN/m) | (kN-m/m)
A | 30 |87.162 | 0.628 A' | 862.85 6.22 19.90
B | 35 [89.881 | 1477 B' | 631.24 10.38 | 7.02
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D' |0.030/0.003500| 11023 | 0.00339 | 360870 | 0.0012]252626
E' 10.023]0.003500] 11023 | 0.00549 | 360870 | 0.0005]105996
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Figure 10. Axial force-bending moment interaction of RC shells under uniformly distributed surface loads (P-M interaction)




5. Conclusions

Design curves for stress resultants based on the classical flexural theory for single barrel open cylindrical shells are presented
with analytical expressions in closed form. The effect of variation of angle of curvature of shell geometry on the final stress
resultants is demonstrated using the proposed design curves. Plots of axial force-bending moment values on the P-M domain are
illustrated to show the compression failure in RC shells initiated by crushing of concrete. As the behavior of the plots for various
values of R/L is nonlinear, interpolations for still closer values of fraction of R/L is not recommended.

Common theories adopted for analysis of cylindrical shells interpret the design behavior in different ways. Therefore every
design procedure developed without undergoing rigorous analysis leads to simple and close form solution but of course with some
defects. Despite shell structures possess inherent advantages gained by its structural form, they are not very common due to their
analysis complexities. Current study attempts to make shell analysis easy, popular and develops confidence in design offices,
encouraging the designer to handle a complex problem through a simple graphical tool. With the use of proposed Design charts,
stress resultants can be readily determined at the valley, crown or at any desired section for various type of edge loads. In the
present context of design offices highly influenced by use of software, this study is an attempt in the direction of developing
simple graphical tools based on well established theories so that the designer is sure to know the error, if committed both
qualitatively and quantitatively.

Nomenclature

R radius (m) L length (m)

@y angle of the shell (deg) t thickness of the shell (mm)

E Young’s modulus of concrete (kN/m?) v Poisson’s ratio of concrete

10} generic angle in shell (deg)

M, Bending moment in plane x-z M, Bending moment in plane r- @

Myo Torque moment in plane x-z M o Torque moment in plane r- @

N, Axial force in x-direction N, Axial force in ¢ -direction

Nyo Shear force in x —direction

Q, Shear force in radial direction along longitudinal edges

Qq, Shear force in radial direction along transversal edges

€y normal strain in x-direction €y normal strain in @ -direction

Y xo shear strain in plane x- @ [0 curvature in plane x-z

[ curvature in plane r- ¢ dxo curvature in plane x-z

Py surface load on the shell in x-direction (kN/m?) Po surface load in ¢ -direction (kN/m?)

P, surface load on the shell in radial direction (kN/m?®) p, surface load on the shell in z-direction (kN/m?)
U, displacement component in x-direction Uy displacement component in ¢ -direction
U, displacement component in radial direction u, displacement component in z- direction
Ve differential operator of eight order v* differential operator of fourth order

d effective cover of the section (m)

X¢ depth of neutral axis measure from extreme compression fibre (mm)

Xg , X; ,Xl ,XIC" limit position neutral axis (mm) q depth of plastic kernel of concrete (mm)
y depth of generic fibre of concrete measured from extreme compression fibre (mm)

€ strain in generic fibre of concrete €max  IMaximum strain in concrete

€00 elastic limit strain in concrete €cu ultimate limit strain in concrete

£t strain in tensile reinforcement €ec strain in compression reinforcement

€40 elastic limit strain in reinforcement Eau ultimate limit strain in reinforcement

E, modulus of elasticity in steel (kN/m?) Rex compressive cube strength of concrete (kN/m?)
C. stress in generic fibre of concrete (kN/mz) Oemax ~ Maximum stress in concrete (kN/mz)

G0 design ultimate stress in concrete in compression (kN/m?)
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oy yield strength of steel (kN/m?) G0 design ultimate stress in steel (kN/m?)

Oy stress in tensile reinforcement (kN/mz) O stress in compression reinforcement (kN/mz)
ol percentage of tensile reinforcement Pe percentage of compression reinforcement
Ay area of tension reinforcement (m®) A area of compression reinforcement (m?)

A, area of concrete in compression F.S. safety of safety in P-M interaction

Noe Axial force in ¢ -direction in elastic range (kN) Nou Axial force in ¢ -direction at collapse (kIN)
Moe Bending moment in plane R- ¢ in elastic range (kN-m) M, Moment in plane R- ¢ at collapse (kN-m)
References

Billington David P. 1965. Thin shell concrete structures. Mc-Graw Hill Inc.

Chandrasekaran, S., Ashutosh Srivastava, Parijat Naha. 2005. Computational tools for shell structures. Proc. of Intl. conf. on
structures and road transport (START-2005), IIT-Kharagpur, India, pp. 167-175.

Chandrasekaran, S., Srivastava, A. 2006. Design aids for multi-barrel RC cylindrical shells. J. Struct. Engrg. SERC, Vol. 33, No.
4, pp. 287-296.

Chandrasekaran S., Luciano Nunziante, Giorgio Serino, Federico Carannante 2009. Seismic design aids for nonlinear analysis of
reinforced concrete structures. CRC Press, Taylor and Francis, Florida, USA, 246pp.

Flugge Wilhelm. 1967. Stress in shells. Springer Verlag, New York.

Ha-Wong Song, Sang-Hyo Shim, Keun-Joo Byun, Koichi Maekawa. 2002. Failure analysis of reinforced concrete shell structures
using layered shell element with pressure node. J. Struct. Engrg, ASCE, Vol. 128, No. 5, pp. 655-664.

Jacques H., 1977. Equilibrium of shell structures. Clarendon press, Oxford.

Prabhakar G. 2003. Analysis of aircraft impact on containment structures. Proc. of 5" Asia-Pacific conf. on Shocks and Impact
loads on structures, Hunan, China, pp. 315-322.

Ramaswamy G.S. 1968. Design and construction of concrete shell roof. First Edition, Mc-Graw Hill.

Rericha P. 1996. Local impact on RC shells and beams. Proc. of International conf. on Structures under Shock and Impact loads
(SUSI 96), Udine, Italy, No. 4, Computational Mechanics Publications, Southampton, pp. 341-349.

Stanley G.M., Huges T.T.R. 1984. Finite element procedures applicable to nonlinear analysis of RC shell structures. Report ADA
146796, Defence Technology Information Center, p. 68.

Timoshenko, S.P., Woinowsky-Krieger, S. 1959. Theory of Plates and Shells. 2d ed., McGraw-Hill Book Company, New York.

Wheen R.J, Anathraman. 1998. Concrete origami in Geodesic Domes, Conical tent and other Spatial Applications. Proc. of 1ASS
International Symposium on innovative applications of shells and spatial forms. Bangalore, India, Nov. 21-25, Vol. 1.

Wheen R.J., Wheen P.R. 2003. A unique conical tent roof design and construction. Proc. of 2nd Specialty conference on the
conceptual approach to structural design, Milan, Italy, pp.855-861.

Biographical notes

Prof. Srinivasan Chandrasekaran is Associate Professor in Department of Ocean Engineering, Indian Institute of Technology Madras, India.
He has engaged in teaching and research activities since the last 20 years. His field of specialization is Structural dynamics and offshore
structures. He has published several papers in various national, international conferences and journals and also recently published a book on
seismic design aids, addressing latest concepts in seismic resistant design of RC structures. He is member of ASCE and several other national and
international societies and reviewer of several international journals.

Prof. S.K.Gupta is working as Assistant Professor in Civil Engineering Department, Institute of Technology, Banaras Hindu University, India.
He has done his research in the field of fluidized motion conveying of particulate solids. He has been in teaching and research for last 13 years
and published over 15 papers in refereed international/ national journals and conferences. His research interest relates to the experimentation and
modeling in the areas of multiphase flow, hydraulics, solar energy systems, and use of optimization techniques as well. He is a reviewer for an
international journal published by Taylor and Francis and few other national journals.

Dr. Federico Carannante is a Lecturer on contract with Dept. of Structural Engineering, University of Naples Federico II, Naples, Italy. His
research interest vests in functionally graded materials and their applications in structural health monitoring. He has about fifteen publications in
refereed international journals and many conference publications to his credit.

Received October 2009
Accepted November 2009
Final acceptance in revised form December 2009



