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Abstract 
 

   One-chart scheme for joint monitoring of two parameters allows the practitioners to focus on a single chart and thus, it offers 

significant operational advantages. Recently, four one-chart schemes are reported in literature for joint monitoring of the two 

parameters (�, �) of a zero-inflated Poisson (ZIP) process. One of these schemes, namely - Gamma chart, is developed assuming 

samples of large size will be inspected and other three charts, namely DS-chart, Max-chart and LR chart, are developed 

assuming samples of small size will be inspected after every certain interval. The plotting statistics of these three charts are 

computed using the estimated ZIP parameters. However, unless the sample size (�) is sufficiently large, the excessive number of 

zeros in the ZIP process may offer a sample of zeros only. Therefore, these three schemes require estimation of ZIP parameters 

and subsequent computation of the plotting statistic based on the accumulated samples till the sampling stage. Because of the 

accumulation of samples, these schemes suffer from several limitations. In this paper, these one-chart schemes are modified for 

large sample size to make them free from their limitations. Subsequently, the performances of the four one-chart schemes are 

evaluated extensively using simulation studies. The results reveal that among the three modified charts likelihood ratio (LR) 

chart is the most preferable with respect to in-control and out-of-control average run length (ARL) performances. However, all 

these three modified charts give false alarms when the process parameter(s) shift towards desirable direction(s) implying process 

improvement. On the other hand, the Gamma chart is slightly inferior with respect to out-of-control ARL performances. But it 

does not give false alarm when there is a process improvement. Further, since Gamma chart directly monitors the average 

number of defects, it offers significant advantages in terms of implementation and interpretations. 
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1. Introduction 

 

In many manufacturing processes, the number of nonconformities in an item is an important quality characteristic. Traditionally 

c or u chart is used to monitor the number of nonconformities which is assumed to follow a Poisson distribution. However, the use 

of the Poisson distribution underestimates the mean and variance if the sample data contain a large number of zero observations, 

which is a reality in many high-quality processes. Consequently, conventional attribute control charts result in too many false 

alarms if used for monitoring high quality processes, and thus, are not appropriate at all for monitoring high-quality processes. 
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Lambert (1992) has considered that the count data with excess zeros (i.e. zero-inflated data) essentially arise from a mixture of 

two distributions - a Bernoulli distribution that account for the inflated zero values and the standard Poisson (λ) distribution. Thus, 

it consists of two parameters, the first one is zero inflation parameter � (� ∈ [0,1]) and the second one is the Poisson parameter λ 

(λ>0). Xie and Goh (1993) have viewed the zero inflated data from a different angle. According to them, most often the high 

quality processes are in perfect state but random shocks (e.g. equipment or process problem) with probability 
 occur 

independently that causes nonconformities in the process, and the number of nonconformities follows Poisson (λ) distribution. The 

inflation model (Lambert, 1992) and shock model (Xie and Goh, 1993) for zero-inflated data are conceptually little different but in 

their mathematical forms they are essentially the same because 
 = 1 − �. So, both the models fit well to the zero-inflated data 

and yield the same results. Both inflation model and random shock model are known as zero-inflated Poisson (ZIP) model. 

Rapid technological advancements and automation in today's world have led to many high quality manufacturing processes, 

which motivated many researchers/practitioners to investigate the issue of monitoring zero-inflated processes. Xie and Goh (1993) 

have proposed the random shock model of zero-inflated Poisson distribution for fitting zero-inflated process data. They have used 

probability limits as the control limits instead of the standard 3-sigma limits for monitoring number of nonconformities per sample 

unit. Xie et al. (1995) presented control charts based on the cumulative count of conforming (CCC) items until a defective one is 

encountered, which is generally assumed to follow a geometric distribution. They proposed to use CCC-chart for monitoring the 

parameter � and 
-chart for monitoring the parameter �. Chen et al. (2008) proposed control charts based on the generalized ZIP 

(GZIP) distribution, which is an extension of the ZIP distribution. Sim and Lim (2008) constructed �
-chart and 
-chart based on 

the Jeffreys intervals for monitoring the parameters � and � respectively. Rakitzis and Castagliola (2016) studied the effect of 

estimation errors on Shewhart-type chart for ZIP processes. Zhang et al. (2019) proposed CCC-� chart, which is an extension of 

the CCC-chart. The CCC-� chart monitors the cumulative count of items until the ��ℎnonconforming one is met. He et al. (2012) 

considered two separate CUSUM control charts, one for detecting changes in � and the other for detecting changes in � parameter. 

Leong et al. (2015) developed a EWMA charting scheme representing a combination of two individual EWMA charts for 

monitoring two ZIP parameters. Recently, many other nonShewhart-type control charts for monitoring ZIP processes have been 

proposed in literature, e.g. generally weighted moving average (GWMA) control chart (Alevizakos and Koukouvinos, 2020), 

generalized likelihood ratio based control charts (Lai et al., 2023) etc. 

Now-a-days in many manufacturing set ups inspections are sensor-based and in such cases 100% products are inspected for the 

presence of nonconformities. Most of the existing control charting procedures for ZIP processes are also developed assuming that 

all the manufactured units are inspected one by one, and most often separate control charts are proposed for monitoring the two 

parameters of a ZIP process. However, in many manufacturing set ups 100% inspection may not be feasible. In such cases, a cost-

effective strategy will be to monitor a ZIP process using group inspection of size � after every certain interval. On the other hand, 

one-chart scheme for joint monitoring of the two parameters allows the practitioners to focus on a sole chart (and, a single charting 

statistic) and thus, it offers significant operational advantages. Therefore, a plausible strategy for monitoring a ZIP process may be 

to use a one-chart scheme with group inspection of size �. It may be noted that if inspections are sensor-based and online, then 

every � number of manufactured products may be considered as the group sample of size �. 

Recently, Mukherjee and Rakitzis (2019) suggested three one-chart schemes (DS chart, Max chart and Likelihood ratio based LR 

chart) for joint monitoring of the two parameters of a ZIP(�, �) process using group samples of small size. They make use of the 

current maximum likelihood estimates (MLEs) of ZIP parameters for computation of the monitoring statistics of these charts. 

Generally, a large number of samples are needed for estimating the parameters of a ZIP(�, �) process. Therefore, Mukherjee and 

Rakitzis’s (2019) schemes require accumulation of previously collected samples till the current sampling stage and then obtaining 

MLEs of the parameters based on the accumulated samples. Since all three schemes of Mukherjee and Rakitzis (2019) require 

accumulation of samples, they are called as progressive monitoring schemes. Pal and Gauri (2024) have proposed a one-chart 

scheme, namely Gamma chart, for monitoring a ZIP process. The plotting statistic of Gamma chart is the average number of 

defects observed in a large sample. Pal and Gauri (2024) observed that average number of defects in a sample of large size 

(� ≥ 300) collected from ZIP(�, �) process approximately follows Gamma distribution with shape parameter � = �����λ��� and 

scale parameter � = ��λ���� . Accordingly, they have proposed a Shewhart-type Gamma chart for joint monitoring of the two 

parameters of a ZIP process. The gamma chart is found to be very effective in detecting out-of-control process if the shifted values 

of � and/or � are larger than equal to 1.4 times of their in-control values. 

It is observed that the progressive monitoring schemes of Mukherjee and Raktizis (2019) suffer from several limitations. For 

example, accumulation of samples can introduce correlation issues resulting in interpretation problems. Also, because of 

accumulation of samples, these charts are more likely to give higher type I as well as type II errors. For examples, number of 

defects in a sample may increase suddenly due to occurrence of an assignable cause, but it may not result in high values for the 

estimated ZIP parameters because of accumulation effect of zero or very less number of defects observed in the previously 

collected samples. Consequently, there may not be enough change in thevalue of monitoring statistic so that the chart indicates an 

out-of-control situation. Similarly, after detecting a shift in the ZIP parameters and taking necessary corrective measures, the 

monitoring statistics in the subsequent samples may continue to indicate out-of-control situation because of the accumulation 
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effects. Moreover, Mukherjee and Rakitzis (2019) have not given any closed form equations for determination of the control limits 

of the monitoring statistics. Therefore, simulation studies are needed for designing the DS chart or Max chart or LR chart, which 

may become a difficult task for many practitioners. 

It may happen that a sample of small size collected from a ZIP process may not contain any defective item. In such cases, it 

becomes difficult to estimate the ZIP parameters.So, ideally, group samples of large size should be inspected for the purpose of 

monitoring the parameters of a ZIP(�, �) process. In the modern days, there have been tremendous developments in the inspection 

and data acquisition technologies, and inspecting group samples of large size is no longer a difficult task. This motivates us to 

suitably modify the three one-chart schemes (DS chart, Max chart and LR chart) of Mukherjee and Rakitzis (2019) for the scenario 

where samples of large size are inspected for control charting purpose, and examine if (i) the limitations of existing progressive 

monitoring with small sample size can be overcome, and (ii) if one or more of these scheme can be more efficient than the Pal and 

Gauri (2024) proposed Gamma chart for joint monitoring of the two parameters of a ZIP process.  

The rest of the article is organized as follows. The ZIP distribution and properties of MLEs of its parameters are presented in 

section 2. Section 3 discusses about currently available three one-chart schemes (based on small sample size) for progressive joint 

monitoring of the two parameters of a ZIP process and the one-chart scheme (based on large sample size) for joint monitoring of 

the two parameters. Section 4 presents modified DS chart, Max chart and LR chart for large sample size. The performances of all 

the four schemes for large sample size are evaluated using simulation experiments and the related results are presented in section 

5. In section 6, some issues about these one-chart schemes for large sample size are discussed. Section 7 concludes the paper. 

 

2.  Zero-inflated Poisson (ZIP) distribution 
 

As mentioned earlier, the inflation model (Lambert, 1992) and shock model (Xie et al., 2001) for zero-inflated data are 

conceptually little different but their mathematical forms are essentially the same and therefore, both the models yield the same 

results. This work takes into consideration Lambert’s inflation model which is a mixture of two distributions - a Bernoulli 

distribution that account for the inflated zero values and the standard Poisson distribution. Let � be a ZIP��, ��variable 

representing number of defects in a product. Lambert (1992) defines the probability mass function of a ZIP distribution as 

��� = �; �, �� =  � + �1 − ��"��    for � = 0              �1 − �� �'()*+!        for � > 0.            /     (1) 

where, � ∈ [0,1]is the zero inflation parameter and � �> 0� is the rate (mean) of the standard Poisson distribution. The mean and 

variance of this ZIP distribution are given by the following two expressions: 0��� = �1 − ���                                            (2) 12���� = ��1 − ���1 + �λ�           (3)  

The ZIP parameters are generally unknown and hence those are estimated from sample data of a large size collected from a ZIP 

process. The parameters are generally estimated using the maximum likelihood method and those estimates are called as MLEs of 

ZIP parameters. 

Suppose, a random sample of size � (large, preferably � ≥ 200� is collected from a ZIP process and each item is inspected for 

number of nonconformities in it. Let the number (frequency) of sample units each having exactly ‘4’ number of nonconformities is 

denoted by �5(4 = 0, 1, 2, … , 7). Then, the log-likelihood function of � and � for an observed dataset of size � can be written as 8�9��, �� 

= 8�[:;�� = 0�<�=] + 8� [>:;�� = 4�<�?]@
5A�  

=  �B 8�C� + �1 − ��"��D + E �58� :�1 − �� "���54! <@
5A�  

= �B 8�C� + �1 − ��"��D + �� − �B�[8� :�1 − �� − �<] + F 8� � − ∑ �5 8��4!�@5A�  (4) 

 

whereF =  ∑ 4�5@5A�  is the total number of defects in the sample of size �. The partial derivatives of the log-

likelihood function with respect to � and λ result in the following two score functions: H�IJ K�H� = �=���()*��������()* − ���=���                       (5) H�IJ K�H� = ��=�����()*�������()* + L� − �� − �B�          (6) 

The MLEs of � and λ can be obtained by equating the above two score functions to zero and then solving numerically. 

The optimal values of � and λ can easily be determined by performing enumerative search using the ‘Solver’ tool of 
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Microsoft Excel (Pal and Gauri, 2021). As an alternative, the MLEs of� and λ can be obtained numerically by solving 

the following system of nonlinear equations (Mukherjee and Rakitzis, 2019): �M = 1 − +N�O                          (7) �P =  �N��1 − "��O�              (8) 

where�N is the sample mean of overall �Q (R = 1, 2, 3, … , �) values and �N� is the mean of non-zero �Qvalues. Clearly, 

there is no closed-form expression for the �Mor �P, and they must be determined iteratively. 

 

It is interesting to note that although there are no closed form expressions for estimation of standard errors of the 

MLEs of � and λ, approximate values of standard errors of those MLEs can be obtained from the Fisher Information 

matrix, derived based on sample data (Mukherjee and Rakitzis, 2019). Let �Q�R = 1, 2, 3, . . , ��represents the number of 

nonconformities in the R�ℎ item in a sample of size � collected from a ZIP��, �� process and ��M, �P� are the MLEs of 

unknown parameters ��, �� computed from the sample data. The estimate of probability of zero defects in the ZIP 

process, can then be obtained from the density function (see Eqn. 4) as ;MB = ;�� = 0� = �M + �1 − �M�"��O                      (9) 

The Fisher Information matrix for the ZIP model can then be computed as S = TU�� U�VUV� UVVW 

where,U�� =  ����()*O�X���O Y:�O �X���O Y()*O< = ����()*O�����O �ZM=                 (10) 

U�V =  UV� =  �� ()*O�O �����O �()*O = �� ()*OZM=             (11) 

UVV = �X1 − �MY [��O − �O ()*O�O �����O �()*O\ = �X1 − �MY ZM=��O�O ()*O�OZM=                (12) 

The inverse of Fisher Information matrix S, is  S�� = ]U���� U�V��UV��� UVV��^ 

where,U���� = ZM=X���O Y_ZM=��O�O ()*O`�:_��()*O`_ZM=��O�O ()*O`��O()a*O<          (13) 

U�V�� = UV��� = ZM=�O()*O�:_��()*O`_ZM=��O�O ()*O`��O()a*O<                     (14) 

UVV�� = ZM=�O���()*O��X���OY:_��()*O`_ZM=��O�O ()*O`��O()a*O<              (15) 

The diagonal elements of S�� represent the variances of �Mand �P. Therefore, the standard errors of the MLEs of � and λ 

can be obtained from the diagonal elements of  U��  as follows:  

b� = c ZM=X���O Y_ZM=��O�O ()*O`�d_��()*O`_ZM=��O�O ()*O`��O()a*Oe              (16) 

b� = c ZM=�O_��()*O`�X���O Yd_��()*O`_ZM=��O�O ()*O`��O()a*Oe                           (17) 

The correlation coefficient between the two parameters can be obtained as follows: ��� =  fga)ghi×h*                 (18) 

 

3.Different One-chart Schemes for Joint Monitoring of the Parameters of a ZIP Process 

Suppose, the observed number of nonconformities in the outputs of a manufacturing process, are well described by a ZIP��, �� 

distribution. Let the parameters � and � at the in-control state of the ZIP��, �� process are known to be �Band �B, respectively. Let �Q�R = 1,2,3, . . , �� are independently and identically distributed ZIP��, �� variable representing number of nonconformities 

(defects) in the R�ℎ item in a sample of size �.The estimates of the two parameters can be obtained from the observed defects data 

using maximum likelihood method. Let the MLEs of � and �obtained from the observed defects data in a sample of size �, 
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collected at n�ℎ time point, are �M� and �P� respectively. The purpose of process monitoring is to detect based on the estimated �M� 

and �P� values, if any one or both the parameters have shifted from their in-control values ��B, �B� to some other value(s). To 

accomplish this objective, Mukherjee and Rakitzis (2019) have proposed three different one-chart schemes and Pal and Gauri 

(2024) have proposed an one-chart scheme for joint monitoring of the two parameters using group inspection data. While 

Mukherjee and Rakitzis (2019) have considered that samples of small size will be inspected after every certain interval, Pal and 

Gauri (2024) have considered that samples of large size will be inspected after every certain interval. All these methods are briefly 

described here. 

 

3.1 Mukherjee and Rakitzis (2019) proposed three one-chart schemes 

Mukherjee and Rakitzis (2019) proposed three one-chart schemes, namely- DS chart, Max chart and LR chart for monitoring the 

ZIP parameters. The monitoring statistics of these charts are computed using the MLEs of ZIP parameters at any time point and the 

in-control values of the ZIP parameters. Generally, a large number of samples are required in order to obtain the MLEs of the two 

parameters of a ZIP process. However, Mukherjee and Rakitzis (2019) considered that samples of small sizes will be inspected 

after every certain interval for the process control purpose. Since a sample of small size collected from a ZIP process may not 

contain any defective item, it becomes difficult to estimate the ZIP parameters. Hence, Mukherjee and Rakitzis (2019) proposed 

accumulation of all samples of small size (say, 7) from the beginning till a pre-specified time nB from a stable ZIP process for 

estimation of in-control ZIP parameters. The first nB − 1 samples, each of size m, are neither used for estimating the parameters nor 

for plotting anything on the chart. At time nB, a sample of size 7 is collected from the process and it is combined into one sample 

of size 7nBwith all the previously available observations. These combined observations are used for computing the MLEs of the 

parameters of the ZIP process. The sample of size 7, collected at the next time point, again is combined into one sample with all 

the previously available observations, and similarly, MLEs are estimated using the combined observations. The total sample size 

considered at time point n is denoted by � = 7 × n. 

Mukherjee and Rakitzis (2019) defined three different plotting/monitoring statistics utilizing the in-control ZIP parameters ��B, �B� and MLEs ��M�, �P��of ZIP parameters estimatedat time point n.  Accordingly, they have proposed three one-chart control 

charting schemes for progressive monitoring of the two parameters of a ZIP process. It may be noted that in their schemes, MLEs 

of � and � are obtained based on the overall sample size (�) at n�ℎ time point and the overall sample size changes after collection 

of every new sample of small size.  To ensure a stable run-length distribution, Mukherjee and Rakitzis (2019) have used the 

multiplier √� in defining all the three monitoring statistics. Mukherjee and Rakitzis (2019) proposed three one-chart schemes, e.g. 

DS chart, Max chart and LR chart are described in short in the following sub-sections. 

 

3.1.1 DS chart  

In statistics, the Wald statistic (Engle, 1984; Gombay, 2002) assesses constraints on statistical parameters based on the 

weighted distance between the unrestricted estimate and its hypothesized value under the null hypothesis. The Wald-type statistic 

is popularly used for sequentially testing one or more parameters, based on maximum likelihood estimators. Mukherjee and 

Rakitzis (2019) have considered the Wald-type distance (DS) measure as the plotting/monitoring statistic for the DS chart.   

The basic concept of DS chart is to measure the Mahalanobis distance between the in-control values and the current MLEs of the 

two parameters, and monitoring the same for detecting any shift in one or both the parameters. Therefore, they defined the plotting 

statistic at n�ℎtime point as follows: Fp� =  √�XqO� − qBYS�q� − qB�r                                                                                                      (19) 

where the in-control (known) values and MLEs (at n�ℎ time point) of the two parameters are represented by the vectors  qB =��B, �B� and  q� = ��M� , �P�� respectively and  S is Fisher Information matrix evaluated at � =  �Band � =  �B(see Eqns. 16-17), and √� is the multiplier used due to the reason discussed earlier. It may be noted that here the implicit assumptions are that MLEs of� 

and � are normally distributed with means �B and �B respectively, and standard deviations b�=  and b�=  respectively. These in-

control values of ZIP parameters are generally unknown and hence those are estimated from a phase I sample data of large size. 

During phase II monitoring, those estimated values are assumed as known in-control values of ZIP parameters. In this case, the Fp�  statistic is a STB type variable and hence it can be monitored using a control chart with upper control limit (UCL) only. 

The successive MLEs of  � and � are estimated from successively accumulated overall samples, and thus, it is not reasonable to 

assume that the successive MLEs of � and � are independent. This makes derivation of the distribution of the plotting statistic Fp�  

quite difficult. Mukherjee and Rakitzis (2019) used Monte-Carlo simulations to estimate appropriate value of UCL for a DS chart. 

They also used simulation procedures for evaluation ofout-of-control average run length (ARL) performances of the DS chart for 

various shifts in �Band �B.  

 

3.1.2 Max chart 

The concept of max chart was introduced by Chen and Chang (1998) with the aim to jointly monitor the mean and variance of a 

normally distributed process using a single chart. Subsequently, several authors (Mukherjee and Marozzi, 2017; Zafar et al., 2019; 
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Gong and Mukherjee, 2019; Sanusi et al., 2020) took interest in investigating max chart for different situations. The basic concept 

of max chart is as follows: If the two characteristics (variables) of interest are statistically independent and if these variables can be 

transformed into standard normal variables (say, sand 1), then the two characteristics can jointly be monitored by monitoring the 

maximum of |s|and |1|, i.e. monitoring statistic u = max :|s|, |1|<.  

Mukherjee and Rakitzis (2019) extended the concept of max chart for joint monitoring of the two parameters of a ZIP process.  

They defined the plotting statistic at n�ℎ time point as follows: 

 u� = √� max [y�O z��=yhi= , y�Oz��=yh*= \          (20) 

whereb�=  and b�=  are the standard errors of the estimates of�B  and �B respectively and these can be obtained from the diagonal 

elements of the Fisher Information matrix S, evaluated at � =  �B and � =  �B (see Eqns. 16-17), and √� is the multiplier. . It may 

be noted that here the implicit assumptions are that MLEs of� and � are normally distributed with means �B and �B respectively, 

and standard deviations b�=  and b�=  respectively and they are independent. These in-control values of ZIP parameters are generally 

unknown and hence those are estimated from a phase I sample data of large size. During phase II monitoring, those estimated 

values are assumed as known in-control values of ZIP parameters. Sinceu�is a STB type variable, it can be monitored using a 

control chart with UCL only. 

Here too the successive MLEs of � and �are not expected to be truly independent, and therefore, the derivation of the 

distribution of the plotting statistic u� becomes quite difficult. Mukherjee and Rakitzis (2019) used Monte-Carlo simulations to 

estimate appropriate value of UCL for a Max chart as well as to evaluate the out-of-control ARL performancesof the Max chart for 

various shifts in �B and �B. 

 

  

3.1.3 LR chart 

The likelihood ratio test of a parameter is based on two different maximum likelihood estimates of the parameter. One estimate, 

called unrestricted estimate, is obtained from the solution of the unconstrained maximum likelihood problem, and the other 

estimate, called restricted estimate, is obtained from the solution of the constrained maximum likelihood problem. Several 

authors have considered the likelihood ratio-based statistics for joint monitoring of two parameters in normal and other populations 

(McCracken et al., 2013;Mukherjee et al., 2015). 

 Mukherjee and Rakitzis (2019) have considered a similar scheme for the joint monitoring of the two parameters of a ZIP 

process. Let � numbers of products are inspected at n�ℎ time point, and the observed numbers of defects in these products are 

denoted as �Q  (R = 1,2,3, … , �). Then, the LR test statistic for the ZIP��, �� process at n�ℎ time point can be defined as follows: 9{� = 28� ]b|
�,� ∏ �~�Z��Q|�, ���QA�∏ �~�Z��Q|�B, �B��QA� ^ 

= 28� �h��*,i ∏ ���������()*�g)��×[�����*'��)*'�! \������g
∏ ���=�����=�()*=�g)��×[����=�*='��)*='�! \������g �                                                                                       (21) 

where2Q = 1 if  �Q>0 and 2Q = 0, otherwise. Suppose, the number of products having zero defects (i.e. zero observations) is �Band �N�� is the mean of non-zero observations in the collected samples and �N� is the overall average number of defects (i.e. sample 

mean) at n�ℎ time point. Then, the Eqn. (21) can be written as 

9{� = � 2 [�B 8� +NzX�=�����=�()*=Y+Nz� + �� − �B� 8� +Nz����=��Oz + ��N� 8� �Oz�= − �� − �B���P� − �B�\ , if at least one �Q  is zero
27 d��B − �N�� + �N� 8� +Nz�=e ,                                                                                                           if all �Q  are positive        /  (22) 

Since MLEs of � and � are obtained based on the accumulated number of samples till the n�ℎ time point, the MLEs are obtained 

from varying overall sample size (�). Mukherjee and Rakitzis (2019) have observed that usage of √� as a multiplier results in a 

stable run-length distribution, and so they have defined the plotting/monitoring statistic at n�ℎ time pointfor the LR chart as 9p� = √�9{�                    (23) 

Since the distribution of 9p� is unknown, Mukherjee and Rakitzis (2019) used Monte-Carlo simulations to estimate appropriate 

value of UCL for a LR chart as well as to evaluate the out-of-control ARL performancesof the LR chart for various shifts in �B 

and �B. 

 

3.1.4 The limitations of Mukherjee and Rakitzis's (2019) three one-chart schemes  

Mukherjee and Rakitzis's (2019) considered that samples of small size will be collected after every certain interval for the 

process control purpose. Generally, a large number of samples are required for obtaining the MLEs of the two parameters of a ZIP 
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process. A group sample of small size obtained from a ZIP process may not contain any defective item which makes it difficult to 

estimate the ZIP parameters. To satisfy the requirement of large number of samples, they have proposed obtaining MLEs from the 

progressively accumulated samples till the n�ℎ sampling stage. The plotting/monitoring statistics for all the three one-chart schemes 

are defined based on the MLEs obtained from the progressively accumulated samples. This introduces several issues to ponder, 

e.g. 

(i) It is quite difficult to derive the distributions of Fp� , u� and 9p�, and therefore, no close form equations are available for 

determination of UCLs of DS chart, Max chart and LR chart. Therefore, simulation studies are required for determination of 

the UCLs of these charts.  Carrying out simulation studies, call for huge computational skill of the practitioners, which may 

not be available always. 

(ii) The UCLs of these charts are expected to be changed for every new collection of subgroup of sample because the size (�) of 

the progressively accumulated overall samples changes. This may cause complexity in control charting. 

(iii) The successive values of Fp�, u� and 9p� are computed based on the MLEs of  � and � obtained from progressively 

accumulated overall samples, and thus, the plotting statistics in all these charts are expected to be auto-correlated. This may 

increase difficulty in interpretation of the plotted points. 

(iv) Because of accumulation of samples, these charts are more likely to give higher type I as well as type II errors. For examples, 

number of defects in a sample may increase suddenly due to occurrence of an assignable cause, but the values of the 

estimated ZIP parameters may not be high enough because of the accumulation effect of many good products collected 

previously. Consequently, there may not be enough change in the value of monitoring statistic so that the chart indicates an 

out-of-control situation. This gives rise to type I error. Similarly, after detecting a shift in the ZIP parameters and taking 

necessary corrective measures, the monitoring statistics in the subsequent samples may continue to indicate out-of-control 

situation because of the accumulation effects. This gives rise to type II error (β-risk) of control charts. 

(v) Simulation studies are required for determination of β-risks of DS chart, Max chart and LR chart if there are any shift in zero-

inflation parameter and/or in the rate parameter of ZIP distribution. 

 

3.2 Pal and Gauri (2024) proposed one-chart scheme: Gamma chart 

Pal and Gauri (2024) attempted to develop a one-chart scheme keeping in mind that any control charting scheme developed 

directly on the observed quality characteristic will be intuitively appealing to the practitioners and can offer significant advantages 

in terms of implementation and interpretations. If �Q�R = 1,2,3, . . , �� are identically and independently distributed ZIP��, �� 

variable representing number of nonconformities (defects) in the R�ℎ item in a sample of size �, then the average number of 

nonconformities in a sample (i.e. sample mean) is �N = �� ∑ �Q�QA� . The expectation and variance of �N can be derived as  0��N� = �� ∑ 0��Q��QA� = �� ∑ �1 − ����QA� = �1 − ���                 (24) 12���N� = ��a ∑ 12���Q��QA� = ��a ∑ ��1 − ���1 + ����QA� = �������������        (25) 

The sample mean �N can take fractional values and so, �Ncan be treated as a continuous random variable. Through extensive 

simulated experiments, Pal and Gauri (2024) have observed that sample mean (�N) in a ZIP��, �� process follows approximately a 

Gamma(�,�) distribution, where � = ��1 − ��� �1 + ���⁄  and � = �1 + ��� �⁄ . Based on this proposition, Pal and Gauri (2024) 

have proposed Gamma chart for joint monitoring of the two parameters of a ZIP(�,λ) process. Since 0��N� = �1 − ���, the two 

parameters � and λ of a ZIP process can be monitored simultaneously by plotting only the observed sample mean (�N) in a chart. 

The random variable �Nis a STB type variable, and therefore, the out of control condition of a ZIP process can be detected by 

comparing it with the UCL and plotting  �Nvalues on the chart. When the parameters � and � are known to be �B and �B 

respectively, then the CL of the Gamma chart will be 

 CL = 0��N� = �1 − �B��B                             (26) 

and the UCL of the Gamma chart can be computed using the inverse properties of the cumulative Gamma distribution, as  

 UCL =  Γ���1 − ��                     (27) 

whereΓ���1 − �� is the inverse of cumulative Gamma distribution having scale parameter, � = ��1 − �B��B �1 + �B�B�⁄  and 

shape parameter, � = �1 + �B�B� �⁄  with probability 1 − � (where, � is the type I error of the control chart).  Knowing the values 

of scale and shape parameters, the value of Γ���1 − �� can easily be obtained by using “gamma.inv” function of Microsoft Excel. 

The syntax of the �2772. R�� function will be �2772. R�� _1 − �, �����=��=���=�= , ���=�=� `.  

If the in-control parameters �B and �B of the ZIP process shift to �� and �� respectively, then the �-risk of the Gamma control 

chart can be computed as follows: � = ;��N ≤ UCL|� = �B, � = ��� + ;��N ≤ UCL|� = ��, � = �B� + ;��N ≤ UCL|� = ��, � = ��� ≅ ;�¢ ≤ UCL�, where ¢~Gamma _�����=��g���=�g , ���=�g� ` + ;�¢ ≤ UCL�, where ¢~Gamma _�����g��=���g�= , ���g�=� ` 
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+ ;�¢ ≤ UCL�, where ¢~Gamma _�����g��g���g�g , ���g�g� ` 

= ¥ ¦ �i=*gg�*g)i=*g��"� �§g�*g)i=*g
Γ _ ��=�g���g��=�g` _���g��=�g� ` �i=*gg�*g)i=*g 4¦¨©ª

B + ¥ ¦ �ig*=g�*=)ig*=��"� �§g�*=)ig*=
Γ _ ��g�=���=��g�=` _���=��g�=� ` �ig*=g�*=)ig*= 4¦¨©ª

B  

+ « ¬ �ig*gg�*g)ig*g)g() �§g�*g)ig*g
Γ_ �ig*gg�*g)ig*g`_g�*g)ig*g� ` �ig*gg�*g)ig*g 4¦¨©ªB                          (28)  

It is worth to mention here that Pal and Gauri (2024)have considered the shock model (Xie et al., 2001) for describing zero-

inflated data, and developed the Gamma chart. Here the same Gamma chart is presented using inflation model (Lambert, 1992) for 

describing zero-inflated data. 

 

4. Modified DS chart, Max chart and LR chart for large sample size 

If group sampling with large sample size is considered for process control purpose, MLEs of the two ZIP parameters can be 

obtained independently from the observed defects data at each time point. There will be no need for accumulation of samples, and 

consequently, the problem of auto-correlation in the existing DS chart, Max chart and LR chart (Mukherjee and Rakitzis, 

2019)will be resolved. Further, when the parameters are estimated from samples of large size the estimates of these parameters are 

expected to follow independently asymptotic normal distribution (Nanjundan and Naika, 2012). These may facilitate derivations of 

the statistical distributions of the plotting statistics Fp� , u� and 9p�. This in turn can enable determining the close form equations 

for the UCL of these charts. Again, since there will be no need for accumulation of samples, the sample size will remain fixed at 

each time point. Consequently, control charting and interpretation of the plotted points will become simpler. 

On the other hand, if Mukherjee and Rakitzis (2019) proposed three one-chart schemes are considered for large sample size, then 

performances of these charts will become comparable with the Pal and Gauri (2024) proposed Gamma chart. Therefore, it is 

decided to modify these three one-chart schemes for the process control scenario where samples of large size will be inspected 

after every certain interval.   

It may be noted that if sample of large size is considered for the process control purpose, MLEs of the two parameters can be 

obtained independently from the observed defects data at each time point. Therefore, one obvious modification should be to 

remove the multiplier √� from the definitions of the monitoring statistics of these schemes. 

 

4.1 Modified DS chart for large sample size 

The monitoring statistic of DS chart for large sample size can be defined as follows: Fp� =  XqO� − qBYS�q� − qB�r 

 =   [U��X�M� − �BYV + 2U�VX�M� − �BYX�P� − �BY +  UVV��P� − �B�V]      (29) 

where U��, U�V and UVV[defined in Eqns. (10-12)] are the elements of Fisher Information matrix S evaluated at � =  �Band � =  �B. 

Suppose, the in-control (known) values and MLEs (at n�ℎ time point) of the two parameters are represented by the vectors  qB = ��B, �B� and  qO� = ��M� , �P�� respectively, and ­ (=S��) is the variance-covariance matrix (S�� is the inverse of the Fisher 

Information matrix S when the process is in in-control state). Nanjundan and Naika (2012) have observed that when the parameters 

(�and �) are estimated based on samples of large size, those are expected to follow independently asymptotic normal distribution. 

This implies that  qO�~®¯�qB, ­� ⟹ XqO� − qBY~®¯�0, ­� ⟹ XqO� − qBY­��/V~®¯�0,1� ⟹ CXqO� − qBY­��/VDrCXqO� − qBYΣ��/VD~²VV ⟹ XqO� − qBYr­��XqO� − qBY~²VV ⟹ XqO� − qBYrSXqO� − qBY~²VV 

Therefore, the monitoring statistic of DS chart for large sample size follows Chi-square distribution with degrees of freedom = 2. 

Thus, for a given type I error (�), the UCL of the monitoring/plotting statistic can be determined as follows: ;�Fp� ≤ UCL� = 1 − � ⟹ UCL = X²��³,VV Y��
 

So, for type I error (�) = 0.005, the UCL of the DS chart can be determined as  UCL = X²��³,VV Y�� = X²B.´´µ,VV Y�� = 10.5966 

On the other hand, 50
th

 percentile point can be considered as the centre line (CL) of the DS chart, i.e. the CL of the DS chart can be 

determined as  
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CL = X²B.µ,VV Y�� = 1.3863 

It is important to note that the UCL and CL of the DS chart for large sample size do not depend on values of the sample size as 

well as the parameters ϕ and λ of the concerned ZIP process. 

Let us now assume that the ZIP process parameters have shifted from in-control state (�B, �B) to (��, ��). The probability that 

the DS chart will fail to detect this shift on the first subsequent sample is known as type II error or �-risk. It is observed that 

derivation of the formula for computation of �-risk is quite complicated and not easily tractable. So it is recommended to resort to 

simulation procedure for assessing the �-risk and out-of-control ARL performances. 

 

4.2 Modified Max chart for large sample size 

Nanjundan and Naika (2012) have observed that when the parameters (�and �) are estimated based on samples of large size, they 

are expected to follow asymptotic normal distribution.Also, MLEs of � and � can be assumed to be independent if the Poisson rate 

parameter λ is not too small. Suppose that b�=  and b�=  are the standard errors of the estimates of �B  and �B respectivelywhen the 

process is at in-control state. The values of b�=  and b�=  can be obtained from the diagonal elements of the Fisher Information 

matrix S, evaluated at � = �B and � = �B.Then, the transformed variables s = �O z��=hi=  and 1 = �O z��=h*=  are asymptotic standard 

normal variables and statistically independent. The monitoring statistic of Max chart for large sample size can be defined as 

follows:  u� = max [y�O z��=yhi= , y�Oz��=yh*= \ = max:|s|, |1|<         (30) 

For any value º > 0in standard normal distribution, we know ;�|»| ≤ º� = ;�−º ≤ » ≤ º� = Φ�º� − Φ�−º� = 2Φ�º� − 1        (31) 

whereΦ�∙� is the cumulative distribution function of the standard normal distribution. Here, both the transformed variables s and 1 are asymptotic standard normal variables, and they are statistically independent. Thus, the cumulative distribution function of u�can be obtained as ;�u� ≤ º� = ;�max:|s|, |1|< ≤ º� = ;�|s| ≤ º� × ;�|1| ≤ º� = �2Φ�º� − 1�V                                             (32) 

Thus, for a given type I error (�), the UCL of the plotting statistic u�can be determined as follows: ;�u� ≤ s½9� = 1 − � ⇒ :2Φ�s½9� − 1<V = 1 − � ⇒ 2Φ�s½9� − 1 = √1 − � ⇒ s½9 = Φ�� _��√��³V `           (33) 

For type I error (�) = 0.005, the UCL of Max chart is computed as  UCL = Φ�� ]1 + √0.9952 ^ = 3.0230 

On the other hand, 50
th

 percentile point can be considered as the CL of the Max chart, i.e. the CL of the Max chart can be 

determined as CL = Φ�� ]1 + √0.52 ^ = 1.0518 

It is important to note that the UCL and CL of the Max chart for large sample size do not depend on the sample size as well as the 

parameters � and λ of the ZIP process. 

Let us now assume that the ZIP process parameters have shifted from in-control state (�B, �B) to (��, ��). The probability that 

the Max chart will fail to detect this shift on the first subsequent sample is known as type II error or �-risk. Then, type II error (�) 

of the max chart can be computed as follows: � = ;�u� ≤ UCL|��, ��� (if there is shift in one parameter, then �� = �B or �� = �B) = ;[max�|s�|, |1�|� ≤ UCL|��, ��], where s� = �O g��=hi=  and 1� = �Og��=h*=  = ;[|s�| ≤ UCL] × ;[|1�| ≤ UCL],  [since s� and 1� are independent]                                                             (34) 

Let �M� and �P� are the estimates of parameters � and � obtained based on the samples collected during out-of-control state of the 

process. The estimates of � and� obtained in the out-of-control state of the process, i.e. �M�and �P� will be distributed 

asymptotically normally (AN) as follows: �M�~ ®¯[��, b�gV  ]and�P�~ ®¯[��, b�gV ] 
whereb�gand b�g  can be obtained from the diagonal elements of the inverse of corresponding Fisher Information matrix evaluated 

at � =  ��and � =  ��. 
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Now,�M�~ ®¯[��, b�gV ] ⇒ �O g��=hi=  ~ ®¯ Á�g��=hi= , �hig�a�hi=�aÂ ⇒ s� ~ ®¯ Á�g��=hi= , �hig�a�hi=�aÂ 

Therefore, ;[|s�| ≤ UCL]  = ;[−UCL ≤ s� ≤ UCL]  = ;�s� ≤ UCL� − ;�s� ≤ −UCL�  
= Φ Ãs½9 − �g��=hi=b�g/b�= Ä − Φ Ã−s½9 − �g��=hi=b�g/b�= Ä 

= Φ �b�= × s½9 − ��� − �B�b�g � − Φ �−b�= × s½9 − ��� − �B�b�g � 

Similarly, ;[|1�| ≤ UCL] = Φ Áh*=×ÅÆK���g��=�h*g Â − Φ Á�h*=×ÅÆK���g��=�h*g Â 

Therefore, the formula for estimating �-risk of the max chart can be obtained from Eqn. (34) as � =  [Φ Áhi=×ÅÆK���g��=�hig Â − Φ Á�hi=×ÅÆK���g��=�hig Â\ × [Φ Áh*=×ÅÆK���g��=�h*g Â − Φ Á�h*=×ÅÆK���g��=�h*g Â\   (35) 

 

4.3 Modified LR chart  

Since MLEs of � and � are obtained based on the same number of samples at each time point, there is no need to use the multiplier √�, and therefore, the plotting statistic of LR chart for large sample size can be defined as  

9{� = �2 [�B 8� +NzX�=�����=�()*=Y+Nz� + �� − �B� 8� +Nz����=��Oz + ��N� 8� �Oz�= − �� − �B���P� − �B�\ , if at least one �Q  is zero
2� d��B − �N�� + �N� 8� +Nz�=e ,                                                                                                           if all �Q  are positive        /     (36) 

It may be may be noted that Eqn. (22) and Eqn. (36) are the same.When MLEs of the parameters � and � are estimated from 

group samples of large size, the estimate of each parameter is expected to follow independently asymptotic normal distribution 

(Nanjundan and Naika, 2012). Then, it can be shown that the monitoring statistic of LR chart is expected to follow a Chi-square 

distribution with 2 degrees of freedom, i.e. 9{�  ~²VV 

Therefore, for Type I error, � = 0.005, the UCL of the LR chart can be determined as  UCL = X²��³,VV Y�� = X²B.´´µ,VV Y�� = 10.5966 

On the other hand, 50
th

 percentile point can be considered as the centre line (CL) of the LR chart, i.e. the CL of the LR chart can be 

determined as  CL = X²B.µ,VV Y�� = 1.3863 

It can be observed that the CL and UCL values of the LR chart are constant and those are independent of group sample size as well 

as ZIP process parameters � and λ. The plotting statistic Fp�  also follows ²VV distribution, and therefore, CL and UCL of the LR 

chart and DS chart are the same. 

 

5. Evaluation of Performances of Different One-chart Schemes with Large Sample 

Arbitrarily two ZIP processes, e.g.ZIP (� = 0.90, λ = 6) and ZIP (� = 0.95, λ = 3) are chosen for application of the four one-chart 

schemes. In order to ensure that performances of all the four charts are comparable, sample size (�) and type I error (�) for all the 

four types of charts are chosen as 300 and 0.005 respectively. The CLs and UCLs of the four types of charts for the two ZIP 

processes are determined using the appropriate formulas discussed earlier and these values are shown in Table 1. 

 

Table 1. The CLs and UCLs of the four types of charts for the two ZIP processes 

ZIP process Chart type 
Ç = 300 

CL UCL 

(� = 0.90, � = 6) DS chart 1.3863 10.5966 

Max chart 1.0518 3.0230 

LR chart 1.3863 10.5966 

Gamma chart 0.6000 0.9312 

(� = 0.95, � = 3) DS chart 1.3863 10.5966 

Max chart 1.0518 3.0230 

LR chart 1.3863 10.5966 

Gamma chart 0.1500 0.2868 
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It can be observed from Table 1 that the CLs and UCLs of DS chart, Max chart and LR chart remain constant, irrespective of the 

ZIP process parameters � and λ, which are due to the reasons explained in section 4. The UCL of the Gamma chart only changes 

depending on the values of the ZIP process parameters. 

Our main point of interest here is to assess the performances of these charts in real life situation. A control chart has two 

important measure of performances: (1) Average number of points that will be plotted on or inside the UCL before a point falls 

outside the UCL, when there is no shift in the two process parameters. This measure is commonly known as in-control ARL 

(denoted as ARLB). Less the value of ARLB for a chart, more will be the number of false alarms given by the chart; (2) Average 

number of points that will be plotted on or inside the UCL before a point falls outside the UCL, when there is a shift in one or 

more  process parameters. This measure is commonly called as out-of-control ARL (denoted as ARL�).  

For a nominal-the-best type quality characteristic, both upward shift and downward shift are undesirable, and so, both in the 

cases the process is considered to be out-of-control. But for a STB type quality characteristic, a shift in the parameter(s) in any 

direction does not imply that the process has become out-of-control. A shift in a parameter in the desirable direction is indicative 

of process improvement, and a shift in the parameter in the undesirable direction only is indicative of out-of-control state of the 

process. A control chart for STB type quality characteristic should detect efficiently whenever one or more process parameters 

shift to undesirable direction. The detection of a shift of a parameter when it occurs in the desirable direction implies raising a false 

alarm. Therefore, for judging usefulness of a control chart for a STB type quality characteristic, this aspect needs to be taken into 

consideration besides the usual in-control and out-of-control ARL measures.    

Since real life data are not available, it is decided to carry out simulation experiments for assessing relative usefulness of all the 

four types of control charts (mentioned in Table 1) for monitoring ZIP processes. To facilitate understanding about the in-control 

and out-of-control state of a ZIP(�, �) process, we use the following notations: values of � and � in in-control state are denoted as �B and �B respectively and shifted values of � and � are denoted as �� and �� respectively. For the purpose of carrying out the 

simulation experiments for ZIP(�B, �B) process, we consider the following: A shift of a fixed size may occur in each of the 

parameters (�B and �B), and the shift may occur in undesirable direction or desirable direction. For ZIP(�B=0.90, �B=6) process, it 

is assumed that the shift size in �B is 0.035 (which is equal to 2× b�=) and the shift size in �B is 0.90 (which is equal to 2× b�=). 

This implies that �� values can be 0.935 (desirable) or 0.865 (undesirable) and �� values can be 6.9 (undesirable) or 5.1 (desirable) 

in ZIP (0.90, 6) process. The �B and�B values, and possible different ��and ��values for the simulation experiments are 

represented in Figure 1. 

 

 
 

Figure 1. In-control and possible different shifted values of the parameters in ZIP(0.90,6) process 

It may be determined easily from Figure 1 that there can be one combination of values of the two parameters when there is no 

shift in any of the parameters (i.e. in-control state), and there can be eight combinations of values of the parameters if shifts in one 

or more parameters are taken into consideration. These combinations of values of the two parameters and the corresponding 

process status are shown in Table 2. 

   The case numbers 8 and 9 need special attention. In these two cases, one parameter is shifted in desirable direction and another 

parameter is shifted in undesirable direction. The overall effect of these shifts may be nil, process deterioration or process 

improvement, which cannot be identified examining the shifted values of the parameters.  However, the chances of occurrences of 

these cases are practically very rare in a manufacturing set up. It can be explained as follows: An increase in �implies production 

of more number of zero-defect products and less number of defective products. On the other hand, an increase in � implies an 

increase in the probability of occurrence of a defect in a product. Thus, simultaneously an increase in � and an increase in � is 

possible only when number of defective products is reduced and number of defects in the reduced number of defective products is 

increased, which is a unrealistic scenario in a manufacturing set up. Similarly, simultaneously a decrease in � and a decrease in �are possible when number of defective products increases and number of defects in the increased number of defective products 
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decreases, which is again a unrealistic scenario in a manufacturing set up. Therefore, case numbers 8 and 9 are not taken into 

consideration for the purpose of simulation experiments. 

 

Table 2. Different possible combinations of values of the two parameters for ZIP(0.90, 6) process 

Case no. Possible values of Ê Possible values of Ë Process status 

1 �B=0.900 λB=6.0 In-control 

2 �B=0.900 ��=6.9 Process deterioration 

3 ��=0.865 λB=6.0 Process deterioration 

4 ϕ�=0.865 λ�=6.9 Process deterioration 

5 �B=0.900 ��=5.1 Process improvement 

6 ��=0.935 λB=6.0 Process improvement 

7 ϕ�=0.935 λ�=5.1 Process improvement 

8 ϕ�=0.935 λ�=6.9 Low probability of occurrence 

9 ϕ�=0.865 λ�=5.1 Low probability of occurrence 

 

 

Similarly, for ZIP(0.95, 3) process, it is assumed that the shift size in�B is 0.026(=2b�=) and the shift size in �B is 0.974(=2b�=), 

and then different combination of values of the two parameters are determined. These combinations of values of the two 

parameters are shown in Table 3. Due to the same reasons as explained above, case numbers 8 and 9 are not taken into 

consideration for the purpose of simulation experiments. 

 

Table 3. Different possible combinations of values of the two parameters for ZIP(0.95, 3) process 

Case no. Possible values of Ê Possible values of Ë Process status 

1 �B = 0.950 λB =3.0 In-control 

2 �B = 0.950 λ� = 3.974 Process deterioration 

3 �� = 0.924 λB = 3.0 Process deterioration 

4 �� = 0.924 λ� = 3.974 Process deterioration 

5 �B = 0.950 λ� = 2.026 Process improvement 

6 �� = 0.976 λB = 3.0 Process improvement 

7 �� = 0.976 λ� = 2.026 Process improvement 

8 �� = 0.976 λ� = 3.974 Low probability of occurrence 

9 �� = 0.924 λ� = 2.026 Low probability of occurrence 

 

 

5.1 Simulation experiments 

As mentioned earlier, the common measures of usefulness of a control chart are in-control ARL and out-of-control ARL. For STB 

type quality characteristic, an additional measure may be to consider the number of false alarms corresponding to a process 

improvement. If there is a shift implying a process improvement, the control chart should not give a false alarm indicating an out-

of-control situation. The false alarm is directly related to the ARL corresponding to a process improvement. Higher is the ARL, 

less will be the numbers of false alarms. Therefore, it is decided to assess the ARL values for all the four types of charts for all the 

combination of parameter values shown in Tables 2 and 3 for ZIP(0.90,6) and ZIP(0.95,3) processes respectively. 

From the ZIP process with a particular combination of values of the two parameters, 300 observations (��, �V, �Ì,..., �ÌBB) are 

simulated as a sample. Then, ZIP parameters ��M, �P� are estimated and using them, the plotting statistics of DSchart, Maxchart and 

LRchart are computed and compared with their respective UCLs. On the other hand, for Gamma chart, the plotting statistic �Nis 

computed directly from simulated observations and compared with the UCL. If the plotting statistic lies below the UCL of a 

control chart, then again a set of 300 observations is simulated from the same ZIP process; plotting statistics is computed and 

compared with the UCL of the chart. In this process, samples of 300 observations are simulated until a computed plotting statistic 

falls above the UCL of the corresponding chart. The number of times samples of 300 observations are generated for getting an out-

of-control point is taken as an estimate of run length of the control chart. In this process, run lengths are estimated 10,000 times, 

and then, average run lengths (ARL), standard deviation of run length (SDRL) and 95% confidence interval (CI) of run lengths are 

computed. The range of 97.5% percentile point and 2.5% percentile point of run length distribution is considered as the 95% CI of 

in-control run lengths. In the same way, ARL, SDRL, 95% CI of run lengths are obtained for all the charts. The ARL 
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performances of all the four types of charts for the seven combinations of parameter values with respect to ZIP(0.90,6) process are 

shown in Table 4, and the ARL performances of all the four types of charts for the seven combinations of parameter values with 

respect to ZIP(0.95,3) process are shown in Table 5. Here,� = 0.005 for all the four types of charts and so, the expected in-control 

ARL (denoted as ARL0) for all the four types of charts is 1 �⁄ = 1 0.005⁄ = 200. If the ARL value for a combination of 

parameter values (with shift in one or more parameters) is more than 300, it is considered very high and not mentioned in these 

tables.  

The results in Tables 4 and 5 reveal that the in-control ARL is consistently very close to the expected value (200) for the LR 

chart, and consistently higher for the Gamma chart.  

 

Table 4. ARLs for seven combinations of parameter values with respect to ZIP (0.90, 6) process 

Sl. No. 

(process 

status) 

ZIP process 

parameters 

DS chart Max chart LR chart Gamma chart 

ARL 
SDRL 

(CI) 
ARL 

SDRL 

(CI) 
ARL 

SDRL 

(CI) 
ARL 

SDRL 

(CI) 

1 

(IC) 
�B=0.90 �B=6.00 175.3 27.3 

(132, 238) 

190.0 28.0 

(142, 260) 

210.0 33.0 

(164, 286) 

284.0 48.6 

(215, 393) 

2 

(PD) 
�B=0.90 ��=6.90 6.28 0.12 

(6.06, 6.50) 

5.88 0.12 

(5.67, 6.09) 

7.01 0.14 

(6.75, 7.26) 

27.1 1.33 

(25.0, 30.0) 

3 

(PD) 
��=0.865 �B=6.00 6.3 0.13 

(6.0, 6.5) 

5.9 0.12 

(5.6, 6.1) 

7.2 0.17 

(6.9, 7.6) 

5.4 0.10 

(5.2, 5.6) 

4 

(PD) 
��=0.865 ��=6.90 2.43 0.03 

(2.39, 2.49) 

3.47 0.05 

(3.38, 3.57) 

2.27 0.02 

(2.23, 2.32) 

2.0 0.02 

(1.98, 2.05) 

5 

(PI) 
ϕB=0.90 λ�=5.10 7.35 0.19 

(6.36, 6.94) 

6.86 0.18 

(6.59, 7.21) 

6.65 0.17 

(6.36, 6.94) 

- - 

6 

(PI) 
ϕ�=0.935 λB=6.00 6.8 0.19 

(6.5, 7.2) 

8.1 0.25 

(7.7, 8.6) 

6.2 0.17 

(5.9, 6.6) 

- - 

7 

(PI) 
ϕ�=0.935 λ�=5.10 2.53 0.03 

(2.46, 2.58) 

3.60 0.06 

(3.48, 3.71) 

2.75 0.03 

(2.68, 2.81) 

- - 

Note: IC = In-control, PD = Process deterioration, PI = Process improvement, CI=Confidence interval 

 

Table 5. ARLs for seven combinations of parameter values with respect to ZIP (0.95, 3) process  

Sl. No. 

(process 

status) 

ZIP process 

parameters 

DS chart Max chart LR chart Gamma chart 

ARL 
SDRL 

(CI) 
ARL 

SDRL 

(CI) 
ARL 

SDRL 

(CI) 
ARL 

SDRL 

(CI) 

1 

(IC) 
��=0.950 �B=3.000 136.0 16 

(108, 168) 

140.0 17 

(112, 179) 

192.0 28 

(156, 260) 

276.0 56 

(202, 382) 

2 

(PD) 
�B=0.950 ��= 3.974 6.1 0.14 

(5.9, 6.4) 

5.8 0.13 

(5.5, 6.1) 

6.7 0.16 

(6.4, 7.0) 

14.4 0.50 

(13.5, 15.5) 

3 

(PD) 
��=0.924 �B=3.000 6.0 0.14 

(5.7, 6.3) 

5.2 0.11 

(5.0, 5.4) 

7.7 0.21 

(7.3, 8.1) 

6.6 0.16 

(6.3, 6.9) 

4 

(PD) 
��=0.924 ��= 3.974 2.29 0.03 

(2.24, 2.34) 

3.39 0.05 

(3.28, 3.48) 

2.01 0.02 

(1.97, 2.05) 

1.7 0.01 

(1.69, 1.74) 

5 

(PI) 
�B=0.950 ��= 2.026 6.9 0.15 

(6.6, 7.2) 

6.7 0.15 

(6.4, 7.0) 

7.1 0.16 

(6.7, 7.4) 

- - 

6 

(PI) 
��=0.976 �B=3.00 7.0 0.18 

(6.6, 7.4) 

9.4 0.33 

(8.7, 10.0) 

5.4 0.13 

(5.2, 5.6) 

- - 

7 

(PI) 
��=0.976 ��= 2.026 2.41 0.03 

(2.36, 2.48) 

3.45 0.05 

(3.36, 3.54) 

2.44 0.03 

(2.38, 2.51) 

- - 

Note: IC = In-control, PD = Process deterioration, PI = Process improvement, CI=Confidence interval 

 

On the other hand, in-control ARL for the DS chart and Max chart are found to be inconsistent for the two ZIP processes. The 

out-of-control ARL performances of DS chart, Max chart and LR chart are noted to be consistently good and among these three 
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charts, out-of-control performance of Max chart and DS-chart is better than LR-chart. On the other hand, the ARL1 performances 

of the Gamma chart are observed to be poor when there is a shift in λ-value in the undesirable direction and ARL1 is on par with 

other three charts when the shift is in � value in the undesirable direction. But the performances of the Gamma chart are noted to 

be excellent when the shift in one or more parameters leads to process improvement. When the shift in one or more parameters 

leads to process improvement, the Gamma chart rarely detects the shift implying that the Gamma chart does not raise any false 

alarm. But, the other three types of charts treat the shift(s) in the parameter(s) leading to process improvement same as the out-of-

control state, and so raise false alarm, which is unacceptable and a matter of serious concern. 

 

6. Discussions 

The monitoring statistics of DS chart, Max chart and LR chart charts, e.g.FpÍ �, uO� and  9{Í � are computed based on the MLEs of 

the two parameters ��M� , �P�� at time point n and their respective in-control ��B, �B� values. Therefore, it is necessary to obtain the 

MLEs of the two parameters ��M� , �P�� using the sample data of size � collected at time point n for application of these three types of 

control charts. Obtaining MLEs of the two parameters after collection of new sample data of size � every time is quite 

cumbersome and thus, implementation of these three types of charts may not be easy for many practitioners. On the other hand, 

there is no need for obtaining MLEs of the two parameters for application of the Gamma chart. The monitoring statistic of the 

Gamma chart is average number of defects (�N) and it can be computed directly from the observed sample data. Hence, application 

of the Gamma chart is much simpler and easier compared to other three charts for monitoring a ZIP process. Again, since the 

quality characteristic of interest is monitored directly in the Gamma chart, it is intuitively appealing to the practitioners and can 

offer significant advantages with respect to interpretations. 

The results of simulation experiments reveal that LR chart is the most preferable one among the three types of charts that require 

obtaining MLEs of the two parameters for computing the monitoring statistics. The in-control ARL of the LR chart is very close to 

the expected values and it is consistent for different ZIP processes. The out-of-control ARLs of LR chart for different shifts in one 

or more parameters in undesirable direction are also found to be reasonably good. However, it also gives false alarms when there 

are shifts in one or more parameters in desirable direction (implying process improvement). In fact, all the three types of charts 

(e.g. DS chart, Max chart and LR chart) that utilize the MLEs of the two parameters for process monitoring purposes, give false 

alarms when actually there is a process improvement. This is because the monitoring statistics of these three schemes are defined 

utilizing the deviations between the MLEs of the parameters and their respective in-control values but ignoring the directions of 

the deviations.  

On the other hand, the results of simulation experiments reveal that the in-control ARL of Gamma chart is quite higher than the 

expected value. A higher in-control ARL value implies lesser number of false alarms, which is desirable. However, the out-of-

control ARL is also found to be quite high when there is a shift in λ-value in the undesirable direction, although the out-of-control 

ARL is on par with other three charts when the shift in � value is in the undesirable direction. The Gamma chart is developed 

based on the findings that average number of defects in a ZIP(�,�) process approximately follows Gamma distribution with  scale 

parameter, � = ��1 − ��� �1 + ���⁄  and shape parameter, � = �1 + ��� �⁄ , where � is the sample size. The error of 

approximation may be the cause behind the relatively poor out-of-control ARL performance of the Gamma chart. But the most 

important aspect of Gamma chart is that it does not give any false alarm when one or more parameters shift in desirable direction 

(implying process improvement). This is because the observed quality characteristic is directly monitored in Gamma chart. 

 

7. Conclusions 

 

Rapid technological advancement and automation of manufacturing processes, have resulted in many high quality processes. 

These high quality processes are characterized by more count of zero-defects products. A sample data on the number of defects in 

each item from such a high quality process will mostly consist of a large number of zero values and a few non-zero integer values. 

This type ofzero-inflated process data is generallymodeled by a two-parameter ZIP(�, �) distribution. In order to ensure stability 

of these zero-inflated processes, both the parameters (�, �) need to monitored using appropriate control charts. One-chart schemes 

for joint monitoring of the two parameters offer significant advantages because the practitioners need to focus on a sole chart (and, 

a single charting statistic) only. Recently, four one-chart schemes (Gamma chart, DS chart, Max chart and LR chart) are reported 

in literature for joint monitoring of the two parameters of a ZIP process. Gamma chart monitors average number of defects 

computed from sample of large size. The DS chart, Max chart and LR chart essentially monitor the deviations between the current 

MLEs of the parameters and their in-control values and these three schemes are developed assuming that sample of small size will 

be inspected.  However, a sample of small size from a high quality ZIP process may offer a sample of zeros only, and then MLEs 

cannot be estimated. Therefore, under these schemes MLEs of the two parameters are estimated using the accumulated samples till 

the sampling stage. Because of the accumulation of samples, these schemes suffer from some limitations. In this paper, these one-

chart schemes are modified for large sample size to make them free from their earlier limitations. Subsequently, the performances 

of the four one-chart schemes are evaluated extensively using simulation experiments. The results reveal that among the three 

modified charts likelihood ratio (LR) chart is slightly superior with respect to in-control and out-of-control ARL performances. 
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However, all these three modified charts give false alarms when one or more parameters shift towards desirable directions 

(implying process improvement). On the other hand, the Gamma chart is very good with respect to in-control ARL performance as 

well as out-of-control ARL performance with respect to shift in the inflation parameter � towards lower side (i.e. undesirable 

direction). But the out-of-control ARL performances of the Gamma chart is relatively poor with respect to shift in the rate 

parameter (�) towards higher side (i.e. undesirable direction). However, the most important aspect of the Gamma chart is that it 

does not give false alarm when there is a process improvement. Further, since Gamma chart directly monitors the average number 

of defects, it offers significant advantages in terms of implementation and interpretations. 
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