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Abstract

The motive of this paper is, to develop accurate parameter uniform numerical method for solvinggsiarly perturbed
delay parabolic differential equation with non-lbb@aundary condition exhibiting parabolic boundaayers. Also, the delay
term that occurs in the space variable gives asaterior layer. Fitted operator finite differeno@thod on uniform mesh that
uses the procedures of method of line for spaimdrdtization and backward Euler method for theiltegy system of initial
value problems in temporal direction is considerkal.treat the non-local boundary condition, Simpsauie is applied. The
stability and parameter uniform convergence forpgheposed method are proved. To validate the agiplity of the scheme,
numerical examples are presented and solved féerélift values of the perturbation parameter. Théhateis shown to be

accurate ofO(h* + At) . Finally, conclusion of the work is includedtaé end.
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1. Introduction

Over the last few years, the development of nurakriethods for the solution of singularly perturliksday differential equations
with non-local boundary conditions has been an mam research topic in the mathematical modelifigepidemiology and
population dynamics (Kuang, 1993), physiologicaletics (Bakert al., 1999), production of blood cell (Mahaféf al.,1999)
etc., that take in to consideration the effect ofspnt situation as well as the past history of ghgsical system. As the
characteristics problem when perturbation paraméteare parallel to the boundary of the domain paiabalers exhibit in the
solution. Also, the delay term that occurs in thace variable gives rise to interior layers.

Most of the traditional numerical methods a suitable for solving singularly perturbed probie (SPPs) because the
presence of the perturbation paramétedeads to occurrences of divergence in the contpstdution (Kumar and Kadalbajoo,
2011). To overcome these divergence, a large nuwberesh points are required whehis very small. This is difficult and
sometimes impossible to handle such cases. Therafas necessary to develop suitable numericahaus which are uniformly
convergent to solve this type of differential edoias.
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There are many papers in the literature deality the numerical approximation of the soluticrr fsingularly perturbed
parabolic differential equations (SPPDESs) withoellag (see [Milleret al., 1996; Milleret al., 1998; Claverat al., 2000; Ansari
et al., 2003; Agaet al., 2020) and the references therein) and with delag @atida and Sharma, 2006; Ansral., 2007;
Bashier and Patidar, 2011a; Singhal., 2018; Bansal and Sharma, 2017 and 2018; Kuwenak., 2020; Mekonnen and File,
2021; Woldaregay and FileKfagujevac Article in press), Daba and File, 2020 and the references ther&im. existence and
uniqueness of the second order parabolic delagrdiftial equations with integral boundary condsiand its applications is
discussed in Bahuguna and Dabas (2008). But, entegears, uniformly convergent numerical methamtssblving singularly
perturbed delay ordinary differential equationshwittegral boundary conditions have been developéadnsively in literature
(see [Amiraliyevet al., (2017), Amiraliyevet.al., (2017), Habtamu.G. and File .G.(2020), Debela Buodessa.(2020), Sekar.E
Tamilselvan.A (2019), Habtamu.G. and File .G.(20¥iraliyev GM and Yimaz B.(2014),and Kudu, andm#aliyev, (2015)]
and the references therein). However, up to the dfesur knowledge, except the work in [Elangcal., (2021)] not much work
has been done to solve the problem under considerabHence, in this paper, motivated by the wark§Elangoet al., (2021)],
we construct and analyze a parameter uniform nealemethod. The proposed method uses fitted opefaite difference
method based on the procedures of method of lire¢chwconsists of non-standard finite difference rapm for the spatial
discretization and classical backward Euler metfondhe time discretization, which treat the prabland first being considered.
The basic idea behind the method is to replaceddr®ominator functions of the classical derivativath positive functions
derived in such a way that they capture some netpldperties of the governing differential equatard hence provide the
reliable numerical results (Patidar and Sharmag200

The structure of the paper is as follows: Ictle@ 2, the problem under study, some boundsheranalytical solution and its
partial derivatives and the continuous maximumgpiles are given. In Section 3, discretizing thatsp domain and techniques
of non-standard finite difference is discussed, #r & -uniform convergence of the semi-discrete problsnprioved. Next,
classical backward Euler method used for the systemitial value problems resulted from spatiadatietization and discuss the
convergence of the discrete scheme. In Sectioruherical results and discussion are given to vididlae theoretical analysis.
Finally, conclusion are included in Section 5, thaclusion of the work done is presented.

2. Statement of the Problem

Consider the following singularly perturbed delayabolic second order differential equation witmnimcal boundary condition

2
Lu(x,t) = —eﬂ +a(x,Hu(x,t)+b(x,tu(x—1t )+@ =f&t) Okt XQ
ox° ot 1)
Subject to initial condition
u(x,t)=g(xt), &t)ar,, @)

and boundary conditions

u(xt)=g(xt), &L)ar,
KU(X,t)=U(2,t)—£.2[g(x)u(x,t)dx: @ Kt), &1)ar, 3)

onQ =Dx(0,T], in space-time plane, whel2=(0, 2), Tis some fixed positive number add =T, O, OJT",. where
M ={(xt);Ll<x<0and O<t<T Jand I, ={(2,0);0<t<T} are the left and the right sides of the rectangula
domainQ corresponding toX =0 and X = 2, respectively, and the base of the domain is giweli b={( x 0);0 < x< 2}.

WherelJ(X,t) 0 Q, Q ZBX[O,T]andé‘D (0,1)is given constant, a(X,'[) : b(X,'[) f (X,t) onQ and @(xt),
@(x1),@ (x,t), @ (x,t) onl are sufficiently smooth, bounded functions thaissat a(x,t) = a >0, b(x,t )< < 0,

J— 2
a+[£>0,on Q. Furthermored(X) is non-negative function, monotonic and satiéfy“.[g (x)dx > 0.
0

The problem (1) and (3) can be rewritten as,

Lu(x,t) =G(x,t), 4)
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azu(x H +a(x tu(x, t)+% H XD,
. 5 2 | at 5)
l;ix )+ a(x t)u(t) +bxu(x- 1t)+_ o,

Gxb) :{ f(x,t)=b(x,t)g(x-1t), Ot )D (0,1x (OT 1 .

f(xt), OxtD ,@*x0OT]

with boundary conditions

u(x,t)=g(x,t), O&t)dr,,

u@ t)=u@t), u @t ru @dt),

u(xt)=g(xt), O&t)ar,, (7)
Ku(x,t):u(2,t)—£jg(x)u(x,t)dx: @ xt), Okt )r,

where Q, =(0,1)x[0T 1, Q,= (L2x [0T 1.Q°=Q,00Q,

3. Boundson the Solution and its Derivative

The existence and uniqueness of a solution forlpnolf5)-(7) can be established by assuming thatittte are Holder continuous
and imposing appropriate compatibility conditiotghee corner points (0, 0), (2, 0), (-1, 0) and@L(see [Ladyzhenskaya O.A.,
et.al., (1968)). Then, the required compatibility conditions are

%(0,0)=¢ (0,0) andg (2,05¢ (2,C ®)
and
—eaz(‘f +a(0,01 (0,05+b (0,0 ¢ 1,0y 2200 _¢ 0
ox ©0.0) ot oo o
—eaz(‘f +a(2,00 (2,00b (2,00 L0y 2229 _¢ o)
ox (2,0) ot (2,0)

so that the data matches at the corner points.
The following theorem gives sufficient conditiors the existence of a unique solution of the prnob{8)-(7).

Theorem 3.1 Let a,b, f 0CAA2(Q), @, OC*4/2([0,T 1), OC®A*A2([ ) B,0 (0,1). Then, the problem (5)-

(7) has a unique solutionu(X,t)DC(Z%'BMZ)(EZ). In particular, when the compatibility conditio8) and (9) are not

satisfied, a unique standard solution still exisisis not differentiable on all ofQ .
Proof: One may refer (see (Ladyzhenskayal., 1968)).
The reduced problem corresponding to singularlyysbed delay parabolic PDE (5)-(7) is given as:

{(uo)t +alx U001 = F () =bOtp (= 1t), O & 1)0Q,

U(xt) =g (x,t), OKt)Ir,. (10)
(W), +a(x,t)uy (X, ) +b(x,tu,(x—1t)=f xt), O &t DQ,
U (x,t)=g(xt), Ot)dr,. (1)

As Uy(X,t) need not satisfyU,(0,t)=u(0,t )andu,(2,t)=u(2;t), the solution u(x,t) exhibits boundary layers at
X=0 andx = 2 Further, asu, (1" ,t) need not be equal tg, (1" ,t), the solutionu(X,t) exhibits interior layers atx =1.
Lemma 3.1 The solutionU(X,t) of (5)-(7) satisfies the estimate
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lu(xt) - g (x,0f<Ct, Ox1)IQ. (12)

Where C is a constant independent&f
Proof. The result follows from the compatibility conditioThe detailed proof in [Roos.Mt.al, 2008]

Let Lbe a differential operator that denotes the difida¢ equation in (1)-(3) satisfies the followingrdinuous maximum
principle.

Lemma 3.2 (Continuous maximum Principle) LeY(X,t) DU* =C(0'0) (E)) N C(l’o)(Q) N C(Z’ID*
such that Y(0,t)= 0, Y/(,0)= 0 AY(2,t)=0, LY })= 00 &t 0Q,
LY(xt)20,0(x,t)0Q, and[ Y;] W)=Y, @ £)-Y, (L 1) Cthen, Y(x,t)2 0,0 (x,t)0 Q.

Proof: For the proof one can refer [Elaneial, 2021]
Lemma 3.3 (Stability Result) The solutiol(X,t) of the problem (5)-(7), satisfies the bound

Juls < cmax{juil, ful,, i, JLuly} & 100
Proof: For the proof one can refer [Elangial, 2021]

Theorem 3.2 Let a(x,t),b(x,t), f (x,t)DCEAH*A2 Q) @ OC®A2([0T ]),p OC @A 2(0T )
@ OCWAZA(T ) B [1(0,1).Assume that the compatibility conditions (8) an)i 4ge fulfilled. Then, the problem (5)-(7)

has a unique solutiod(X,t) andu DC(MA'HA/Z)(EZ) . Furthermore, the derivatives of the solutidnsatisfy:

" Du(x,t)
ox'ot’

wherethe constant C isindependent of &£ .

Proof: For the proof, refer to [Elanga.al, 2021]
The following theorem provides the bound for theidsives of the regular and the singular composieaspectively.

Theorem 3.3 Let the data, b, f 0C**A2A2(Q), ¢,¢9 OC*42([0,T]), g OC®A*AI( ),
B,10(0,1). Assume that the compatibility conditions (8) 8}iare satisfied. Then, we have

<Ce™?, [0i,jO0 = 0Suchthat 0< i+ 2j < 4,

o Dw (x,1) . Ce™? (eXp(_X/\/E )) Kt PQ, (14)
ox ot - Cel? (exp(— (x— 1)/\/2 )) xr)yxaQ,.

00w, (x, )] _ Cé’_i/z(eXp(‘ @-x)ye )) k1o, , as)
ox ot} - Ce /2 (exp(— (2—X)/\/E )) x1)JQ, .

where C is constant independent of &, (X,t)Df_l, 1,20, i+ 3< 4
Proof: One may refer [Elanget.al, 2021] for the details.

4. Formulation of the Numerical Scheme

The theoretical basis of non-standard discrete magenethod is based on the development of exadefdifference method. In
[28], Micken’s presented techniques and rules fretbping non-standard FDMs for different problemets. In Mickens'’s rules,
to develop a discrete scheme, denominator fundtiothe discrete derivatives must be expresseérma of more complicated
functions of step sizes than those used in thedatanprocedures. This complicated function consti@ general property of the
schemes, which is useful while designing reliallbesnes for such problems. On the spatial domair2]jOwe introduce the

equidistant meshes with uniform mesh lenfthsuch that
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Ql:l :{0:)(0!)9 =ih,i = 1IN - 1x, = 1x, = 2,1:%}

whereh is the step size antl is the number of mesh points in the spatial dinec Let we consider, the domaj,1] which is

discretized into N/2 equal number of subintervals, each of ledythFor problem (1)-(4), in order to construct exfinite
difference scheme we follow the procedures us¢ilickens.R.E 2005].

Consider the constant coefficient sub equationsrgix (16) by ignoring the time variable for as

e d u(x)

+au(x) =0, (16)

wherea(x,t) = a > 0. Thus the problem (16) has two independent solstimmelyeXp(,X) and expl{,x with
A,=%ale. (17)

we denote the approximate solutionuffx) at )QIS by Ui. Now our objective is to calculate a difference &épn which has the
same general solution as the problem (16) haseagrid point X; given bin = Aexp(/]lxi ) +B exp()lzx ) . Using the
procedures used in [Mickens.R.E 2005] we have
U, exp(Ax.,) exdAx_,)
def U, exgAx) explx) |= C (18)
U exp(Ax.) exdax..)
Simplifying the determinant in (18), we obtain that

U._ —2cosr(\/; hJU tU,=20 (19)

is an exact difference scheme for (16). After dothg arithmetic manipulation and rearrangement 1) for the variable
coefficient problem, we obtain

U,-2U +U,,
—-£— ' *+a(t)u. =0. 20
FEnn a (Hy, (20)
where
wl——smh[”' ) (21)
17; 2
with 73, = —a‘(t).
£

Consider (5)-(7) on the domaif = (0,2)x[0,T], fai=1,.,N-1
Let U, (t) denoted for the approximation @X ,t). By using the non-standard finite difference appration (NSFD), at this
stage the problem in (5)-(7) reduces to semi- discform as

LU, (t) =G (1), for i=1,2,..N -1 (22)

U, -2, (t)+Ui—1(t) +a (OU, (1) +—— dy, (t) 0% ,t)DQl\I x(0,T],
aherel "V () = of(,ht) 23)
Ui+1(t)_aji (t)+Ui_1(t)+q(t)U (t)+h(t)U()ﬂ N/Z,t)+du ® D()ﬂ ,t)DQg‘ x(0T].

af (g,ht)
G(t) :{ i () = OR(X_y2, 1), 0% 1O < (0T ],

(24)

fi (©), 0 x(t.0Q; x (0.
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For i =N, the composite Simpson’s integration rule approx@sahe non-local boundary condition in (3) asoiab:

2 N
U2t~ gt =U, ¢)-£h> cgU; 0)=¢, O<tsT 25)
0 i=0
1 4 N 2 N
where C; = Cy :5, CZk_1=§, fork = 1,2,..3 and,, :—3 , fok = 1,2,3—

Now, using (25) and left boundary condition, we céitain the following formula folJ | (t)

U, ()—( sth N)[shch (t)+¢r]

i=0

(26)

1 N-1
=—— | ¢hc,g9,¢ (Of Y+ &h CigiUi()+¢r:|
(1_£hCNgN)|: = 'Zzll

At this stage the time domain is continuous andstrgtem of IVPs in (23), (24) and (26) can be wmitin compact form as
dUd ® 4 Hmu, ) =6 ), (27)

where H(t) is a matrix of sizeNXN andU, (t) and G { ) are vectors of sizd\ . The entries of the coefficient matrid (t)
are respectively given by

,,_1()—@2( eht)’ fori= 2,3,.N- 1,
___ % - _
H”(t)—af(ght)+a1.(t), fori=12,..N—- 1,
”+1()_Cq2( ht) fori = 112:-1;\]_ 1;
Hi_n2(H) =0 (0), foi=N/ 2 1,.N-

and the corresponding right-hand side vector iretiigation system has the entries

e £
G(t) = f,() -b (D@ (X, 2 1) J{—af eh t)JW O.1),

G (1) = f.(t) B ()@ (X_y 1), fori=23,.N/ 2,
| fi (t), for=N/ 2,1,N-1.

Before we proceed with the convergence analysishigklight some properties of the discrete probtenthe original (1)-(3) in
the form of lemma which play a major role in tha&sanalysis.

Fori=1,2,..N/ 2

LU, (1) = (1) —B (O)@(X_y2:t)-
Fori=N/2+1,..N-1

LU © =,

Subject to the boundary conditions:

U.(t) =¢@(x,t), i=—N/2-N/2+1,..,0ant] [T,
DU (X2, ) = DU (X 2:),
U@ =qg(x,t), 1=12,.N-1

N
Fori=N , xkNU (Xy,t) =U (X ’t)‘fz g.-Ui,() +49il;i t)+ giﬂUiﬂ(t)h '
=
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where, LU, (t) =U/(t) - £0°U, (t) +a, (), (t).
LyU; (1) =U/(t) - £0°U; (1) + & (1)U, () + B (U - (1)

5. Convergence Analysis

—N
The problem (23), (24) and (26), satisfies tifving well-known semi-discrete maximum princiga Q; X[0,T].
Lemma 5.1 (Semi-discrete maximum principl&ssume that

N
z gi—l+4gi + gi+lh :,0<1
= 3

and mesh functior®, (t) satisfiedd, (t) =0, ©, ()= 0 andk™ O, t( & C(Then LV'O (t)=0,

O(x,t)0QY x[0,T], LYo, (t) 2 0,0(x )0 QY x [0,T ], and D, | ©(Xy/,.t) = DO (X 5,t) — DO (X ,,t)< 0

imply that . (t) 2 0,0(x ,t)0Q x[0,T].

Proof: Define a test functiorS(X, ,t) as
1

2 (X000 x[0T]
S(x,t) = 2 . (29)
§+Z’ (x,t)d0Q; x[0,T]
Note that
S(%,t)>0,0(x 1)0Q" x[0T], L"S(x £)> 00 & £ )0 Q' 0QY K [0T 1S t)> 0.5kt ¢
kNS(x,,t) >0, and[DX] S(Xyj2st) <0. Let
y=max{ S(()q )) x t)DQ X [OT]}
Then, there exist§X ,t) nQ" x[0,T] such tha®(X ,t)+ yS(X ,t) =0 and O(x,t)+ yS(x,t)= 0,
O(x,t) 0Q" x [0,T ]. Therefore, the functioattains its minimum a{X,t) = (X ,t). suppose the theorem does not hold true,
then y >0,
Case (i): (X,1)=(%,,t), 0< (X+ yS)(X,,t) = O(X,.t )+ y'S(X,.t )= 0, It is a contradiction.
Case (ii): (X ,t) 0Q} x[0,T],0< L) (X+ yS)(X ,t)= (-€J: D, +a)(x+ yS)(X ,t)< 0, Itis a contradiction.
Case (iii): (X ,t)= (Xy/2:t). OS[DX (x+yS)] (Xy/2,t) < O, Itis a contradiction.
Case(iv): (X,t)0Q) x[0,T] 0< Ly (x+yS)(X ,t) = (-&5% + D, +a)(x+yS)(X ,t)+b(x+ yS)X —X, t)< O
It is a contradiction.
Case (v): (X,t) =(X,1)

0< kN (X+VS)(XN ,t) - (X+VS)(XN ’t)_gi gi—l(X+ ys)i—l(t) +4gi (X+3ys)i (t)+ gi+1(X+yS)i+1(t)l[.| < 0

It is a contradiction.
Hence, the proof of the theorem

Lemma5.2 Let O, (t) be any mesh function then,

rN<o,T] ‘”ei U

|0 Olgqo.r, < CMaxq]©, ¢)

N N
K O j HL S »
My 0,T] ” ! ( rN0T] T o DQE‘)XIOT (

Proof: Consider the barrier functions
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9% (%,1) = CMS(x,1) £ O(x 1), (x.)IQ" x[0T], (29)
where

M = max ||9|| |e”rb“‘x[o 7] ‘LN GH}

e, |
X0,T] 'I ” rNx[0,T] ()g t)D(Ql DQz)X[OT

and S(x ,t) is the test function as in Lemma 5.1.
From (31) it is clear that &*(%,t)=0,9" (x ,t)> Oandk"F* (x,,t) = 0. 4'F (x,t)=0,0(x ,t)0Q,
L& (x,1)=0, 0K t)JQ) D Ky2 £ - DI Ky, £ )< Ousing lemmas.29*(x,t) 2 0,

O(x,t)0Q" x[0,T].

Now, let us analyze the error estimate of the apdiscretization. We proved above the discretdlern satisfy the maximum
principle and the uniform stability estimate. Netat U, (t) is denoted for the spatial discretization appr@tarsolution to the

exact solutionu(x,t) at Xx=x, i =0,1,...N
Lemma 5.3 For a fixed mesh anfl — O, it holds:

lim max p(—C)g/\/_) =0, m=12,.
£-0 Kki<N/2 gm/Z (30)

and

i max xp(ca—xw )_

£-0 Kki<N/2 g
where x =ih h=2/N for all i=1,2,..IN/ 2
Proof: One may refer [Woldaregay.M and File & agujevac Article in press] for the details
Now, the truncation error of the scheme (23), @4d (26) for(x,t) O] QF x[0,T] is given by

L (Ui t)-u (t)) =f (M) -bMO@X_n2t) - L'y (),

=0, m=1,2,.

=(L-w)u tOi= ) 31)
- L N
- gu((x (n))"wz( ht)(”ltﬁ uiZt(")ui—lt()) il 1(1)3-
Using the truncated Taylor series expansions ofaimasU,,, (t) andui _, € )yields
N _ —_ &
(00 40) =10+ o W (00) 150 0). 6 T8, @

Next we use a truncated Taylor series expansitheoflenominator functiori,/(ul2 of order five gives

1 _1 pf Lph” *h?
el oI 33
o h? 12 240 ¢

Now, substituting (33) in to (32), we obtain

(0,04 0) = 5 ((Uant0), € =27 (0 0) |1 %[p—g(um(t))i —%(uw(t))ia)h“
[E 2,380( oo t())‘(i]i "

Using the bounds on the derivatives and Lemma ivgsg
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48\ 3 5 288

where we have used the relatioh? > h* > h®... with lemma (5.2) gives

2 (U ®-uo)|=on
Hence, by discrete maximum principle, we obtain:

||U| (t) —U (t)” < Ch?. (34)

Remark: Similar analysis may be carried out for the findttference scheme fdix ,t) [] Q'; x[0,T], and for the right boundary
condition.

Ll”(Ui(t)—ui(t))sl—‘;(l—ﬁz)hz—ﬂ(l—p—'Jh ( i Jhﬁ <ch?.

6. Discretization in Temporal Direction

We discretized the IVPs (23), (24) and (25) witle @lassical Backward Euler method on a uniform mé&hw denote the
approximation ofl (tj) = Uil bini . We perform the time discretization as follows:

Let M be a positive integer aifig =0, t, =t + JAt, At =t, -t,_,, j=11M - 1,t, =T, where M denotes the
number of mesh points in time direction, then

u'-y~ i
————+H(t)U' =G(t), forj=12,..M (35)
with initial conditionU @ = qq(tj ). and rearranging equation (35) gives
. -1 -
Ul =(1+atH () (atG(@,)+u'). (36)
Lemma 6.1 The local truncation error associated with the timegration satisfies
;]| < c(any?
where C is a constant independent of the perturbation pat@me and M .
Proof: The local truncation error is defined as
e =u(t;,)-U’
=u(t;) -1 +AtH ) (AG() +ut, ).
a Taylor series expansions u(t]._l) takes the form
At At
utt) =ut) -t 6)+ 0 1) - B, 1)+ ooy @)
and
u,(t;) =G(t;) —H (t)u(t,), (38)
At At
utt ) =ut) - @0 (60t - H e ut)) + 0w ) - B0, 1) +otay )

The local truncation error Subtractirg yields

(At) (At)

u,(t) =

e =u(t,) -l +(At)H(tj)]'1[(I HAYH(L) u(t) + (t) +O(A) j

2
Since the matrixH (t) is invertible, using the relatioft)” > (At)*® for small (At) and u(t ;) < C,we obtain

—[I+(At)H(t)]‘1[(At) () - (At) (t)+O(At)j
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e, =1(1 +@vH (tj))_lH(At)z < C(At)>?

which completes the proof
Lemma 6.2 The global error estimates in this temporal diatis given by

e | =maxu, ¢)-U/],,..,, <C @),

QR xAM

_ _ gt
WhereHTE‘-H is the global error in the temporal dlrectlor( ji) time level.

Proof: One may refer [Woldaregay. M and FilekBagujevac Article in press] for the details.

Since Cand (At) are independent of the perturbation paramg@tetaking the suprimum for al [1(0,1]we obtain.

sup mapy; U], ., <Cot)

O<e<1 ) QXN (40)

This shows that the discretization in time directis consistent and global error is bounded, with érror bound\t . Now, we
use (34) and (40) to prove the parameter-unifornvengence of the fully discrete scheme as

sup m_a>ﬂu &t )—UHH: Oiglpir,wjja%u X t, JU, t( U, t{ ﬁUin :

O<e<1 b
< s‘manHu (Xi 7tj )_Ui ([j i"" sup maﬂUi tc )'Uin

O<eg1 bl O<e<1 Bl

Hence, we obtain the required bound as follows
supfu & £; )-U/| LR ) (41)

O<e<1
Thus, the inequality in (41) shows the parametdéfioum convergence of the proposed scheme with oofleonvergence: second
order in spatial direction and first order in temgdalirection.

7. Numerical Examples and Results

To validate the established theoretical results,pedorm numerical experiments using the proposemarical scheme on the
problem given in (1)-(3). We consider two numerieabmples to verify the parameter uniform convecgeaf the proposed
scheme. Exact solution is not available for theseproblems, therefore maximum nodal errors areutaed by using the double
mesh technique as

E‘;\l At _ maX‘UiNj,At _UiZJN ,Atlz‘
i,j ’ ’

For any values of mesh pointsaddAt , the parameter uniform error estimate are calculayed
ENA = max EN,At‘
|-
£

The rate of convergence of the scheme is calcutatete formula

(N = Jog (EN,At/EZN a2y = log(EM*) - log(E”" #'?)
£ 2 £ &

log,

and the parameter-uniform rate of convergencel@ilzaed by:

I’N'At = |0g (EN,At/EZN ,At/2) - |og(EN~At)_ |Og(E2N,At/2)
2

log,
The numerical results are presented for the valdleeoperturbation parameter
e0{10°,107,...,20%

Example 1. Consider the following singularly perturbed prl [Elangcet.al, 2021]
2

—Ea—l:+5u(x,t)—u(x—1,t)+a—u:e‘x, & 1) (0,2x (0,2]
0X ot

Subject to initial and boundary condition
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u(x,t)=0, O&)Ir,,
Ku(2,t):u(2,t)—£f§u(x,t Xx= 0, Okt I,
u(x,t) 0: 0, O&t)Xr,,
Example2: Consider the following singularly perturbed pieril

—sa—zl:+5u(x,t)—xu(x—1,t)+@:1, &t )1 (0,2x (0,2
ox ot

Subject to initial and boundary condition
u(x,t)=0, Ok)Ir,,

Ku(z,t>=u(z,t)—ef%u(x,t)dx= 0, Dkt )T,

u(x,t)=sin@zx), Okt )XIr, .

Table 1. Maximum absolute errors and rate of convergenc&fample 1 at number of mesh poiktaind At

£l N =16 N =32 N =64 N =128 N =256
At=0.%2 At=04Y2 At=01Y2 At=0.12" At=0Y2
10° 3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e
107 3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e
1078 3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e
10° 3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e
1070 3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e

Table 2: Comparisons of maximum absolute errors and rat®wvergence for Example 1 at number of mesh
points N andAt with T=2, for £ 0{107*°,107°,...,10° }.

N =16 N =32 N =64 N =128 N =256
At=0.Y2 At=0.1/2 At=0Y2  At=0.12 At=0.12
resent Method
ENT 3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8041e
N7 0.80733 0.90117 0.95002 0.97483 0.98734
Results in Elanget al., (2021)
A 2.0615e-02 1.2534e-02 6.9738e-03 3.6873e-03 1.8932e
N,AL 0.71783 0.84584 0.91937 0.95873 0.97912

r
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Table 3: Maximum absolute errors and rate of convergenc&fample 2 at number of mesh poihNtand At

£l N =16 N =32 N =64 N =128 N =256
At=042 At=0.1/2 At=0Y2 At=012" At=01Y2
10°® 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1681e
107 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1681e
10°8 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1681e
10°° 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1681e
1.5980e-02 8.3421e-03 4.2681e-03 2.1681e

10 2.9520e-02

Table 4: Comparison of Maximum absolute errors and rateoaf/ergence for Example 2 at number of mesh
pointsN andAt with T=2, fore 0{107*°,107°,...,10° }.

N =16 N =32 N =64 N =128 N =256
At=04Yz At=0.1Y2 At=0Y2 At=01Y2" At=0.12
Present method
ENT 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1681e
N7 0.88543 0.93778 0.96682 0.98383 0.99180
Result in Elangat al., (2021)
ENA 1.8765e-01 1.4776e-01 9.7571e-02 5.7092e-02 3.1087e
p A 0.34479 0.59873 0.77316 0.87837 0.93697

From Tables 1 and 3, it can be observed that thgpated maximum point wise errOIESN’At after a certain value of =107

(for both problems) are stable, and uniformly cogeat. From Tables 2 and 4, the performance ofptioposed scheme is
investigated by comparing with recently publisheghgr in Elangaet al. (2021). As one sees, the proposed method givee mor
accurate result§.o observe the changes in the boundary layer widlth respect t& , and to show the physical behavior of the
solution, the surface plots of the numerical soltfFigs. 1 and 2) have been plotted. From therdig, for smal€ close to zero

twin boundary layers aX =0 andX = Z further an interior layer aiX =1 can be seen from the solution. The numerical
solutions obtained by the present method have bkegnlog plotted for singular perturbation parameteanging

frome =107 to 10" in Figure (3) to indicate the maximum absolute exdecrease as the number of the mesh points gesea
and maximum absolute errors increases as the patiom parameters decreases. This is one of the msults to be shown in
this paper.

4. Conclusions

In this work, parameter uniform numerical methods Heeen developed for solving singularly perturbedayl parabolic
differential equation with non-local boundary cdiah exhibiting parabolic boundary layers and aeiiior layer. The developed
method is based on the method of a line that domssi the non-standard finite-difference (NSFDM) tlee spatial discretization
and a classical backward Euler method is usedearigmporal direction for the system of initial v@lproblem resulting from the
spatial discretization. To treat the non-local maary condition, Simpson’s rule is applied. Thebsity and convergence of the
proposed scheme are analyzed. Two model examplesheen considered to validate the applicabilityhaf scheme by taking
different values for the perturbation parame&tend mesh points. The computational results arespted in terms of tables and

figures. The proposed numerical scheme is showbetaccurate of ord@(h2 +At). And the performance of the proposed
scheme is investigated by comparing with prior gtuidalso improves the results of the methodstagsn the literature.
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