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Abstract 
 
   In real life, often number of occurrences of some events (e.g. defects/nonconformities, errors, number of customers served 
etc.) in an inspection unit is considered as an important quality characteristic. Such characteristics are usually smaller-the-better 
(STB) or larger-the-better (LTB) type and often are modeled by Poisson distribution with parameter 𝜆𝜆 (> 0), where 𝜆𝜆 is the rate 
of occurrence of the event. The capability index ( 𝐶𝐶𝑝𝑝𝑝𝑝 or 𝐶𝐶𝑝𝑝𝑝𝑝) of a Poisson process cannot be estimated by using the standard 
formulas that are developed for normal processes. Usually some approximate approaches or generalized approaches are used for 
estimating  𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝 of a Poisson process. However, how well these estimates represent the true capability of the process is 
unknown. Consequently, an index user may inadvertently be led to erroneous decision making. This paper identifies the most 
appropriate measure of capability of a Poisson process and then assesses relative goodness of the estimates of  𝐶𝐶𝑝𝑝𝑝𝑝 (or  𝐶𝐶𝑝𝑝𝑝𝑝) 
obtained by different approaches. It is found that only the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 (or 𝐶̂𝐶𝑝𝑝𝑝𝑝) value obtained by Mapping based approach 
represents the true capability of a Poisson process. Normal approximation approach and Transformation approach are also quite 
acceptable for measuring capability of a Poisson process. 
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1. Introduction 
 
   Process capability refers to the ability of a given process to produce outputs according to specified requirements. The basic 
process capability index is 𝐶𝐶𝑝𝑝 =  (𝑈𝑈𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿𝐿𝐿) 6𝜎𝜎⁄ , where 𝑈𝑈𝑈𝑈𝑈𝑈 and 𝐿𝐿𝐿𝐿𝐿𝐿 are the upper and lower specification limits and 𝜎𝜎 is the 
population standard deviation. When there is only 𝑈𝑈𝑈𝑈𝑈𝑈 or only 𝐿𝐿𝐿𝐿𝐿𝐿 for a product characteristic, then the process capability indices 
are defined as 𝐶𝐶𝑝𝑝𝑝𝑝 =  (𝑈𝑈𝑈𝑈𝑈𝑈 − 𝜇𝜇) 3𝜎𝜎⁄  and 𝐶𝐶𝑝𝑝𝑝𝑝 =  (𝜇𝜇 − 𝐿𝐿𝐿𝐿𝐿𝐿) 3𝜎𝜎⁄  respectively, where 𝜇𝜇 is the population mean. The most commonly 
used other indices are 𝐶𝐶𝑝𝑝𝑝𝑝, 𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝. All these indices are developed for a product characteristic that can be described as a 
continuous variable and follows normal distribution. The details about these indices are available in Kane (1986), Kotz and 
Johnson (1993), English and Taylor (1993), Kotz and Johnson (2002), Vannman (2006), Chen et al. (2008), Wu et al. (2009), Yum 
and Kim (2011), Grau (2012) and Chen et al. (2017). The generalization of these indices for continuous non-normal variables are 
suggested by Clements (1989), Pearn and Kotz (1994), Pearn and Chen (1995), Shore (1998), Chen (2000), Goswami and Dutta 
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(2013), Wang et al. (2016), Shi et al, (2016), Polhemus (2018) and Chen et al. (2019). A good bibliometric analysis for process 
capability research is available in Ahmad et al. (2019). 
   However, there are many practical situations in which number of occurrences of some events (e.g. defects/nonconformities, 
errors etc.) in an inspection unit is an important consideration for judging the quality of the manufactured products. For example, 
number of defects per 100 square metre cloth, number of defects per wafer, number of defects per 5 printed circuit board etc. are 
important quality characteristics for cloth, wafer and printed circuit board respectively. It may be noted that inspection unit is 
simply an entity for which it is convenient to keep record. It can be a single unit of product or a group of 𝑛𝑛 units of products (𝑛𝑛 >
1). If the number of opportunities or potential locations for the event be infinitely large and the probability of occurrence of an 
event at any location be small and constant, then the occurrences of the event in an inspection unit is well modelled by Poisson 
distribution with parameter 𝜆𝜆 (> 0), where 𝜆𝜆 is the rate of occurrence of the event. In fact, any random phenomenon that occurs on 
a per unit (or per unit area, per unit volume, per unit time, etc.) basis is often well approximated by Poisson distribution 
(Montgomery, 2009). It may further be noted that a Poisson variable in manufacturing environment is usually smaller-the-better 
(STB) type variable and it is desired that its values do not exceed 𝑈𝑈𝑈𝑈𝑈𝑈. The capability of such a process can be judged through 
measuring 𝐶𝐶𝑝𝑝𝑝𝑝 value. On the other hand, the Poisson variables in case of service processes are usually larger-the-better (LTB) type, 
e.g. number of customers served per hour. It is desired that the values of such a variable do not be less than 𝐿𝐿𝑆𝑆𝑆𝑆, and thus, the 
capability of a service process can be assessed by measuring  𝐶𝐶𝑝𝑝𝑝𝑝 value. 
   It is well known that both the mean and variance of a Poisson random variable 𝐶𝐶 are equal to the parameter 𝜆𝜆, and the 
distribution is skewed. However, if 𝜆𝜆 > 5 then 𝑍𝑍 = (𝐶𝐶 − 𝜆𝜆 ) √𝜆𝜆 ⁄  approximately follows standard normal distribution 
(Montgomery and Runger, 2014). Therefore, the standard formula can be used for obtaining an approximate estimate of  𝐶𝐶𝑝𝑝𝑝𝑝 (or 
𝐶𝐶𝑝𝑝𝑝𝑝) from a Poisson process if its parameter 𝜆𝜆 > 5. Alternatively, percentile based approach (Clement, 1989) may also be used for 
obtaining an estimate of  𝐶𝐶𝑝𝑝𝑝𝑝 (or 𝐶𝐶𝑝𝑝𝑝𝑝) from a Poisson process. However, the estimate will be approximate only because the values 
of percentile points that are to be used in these computations have to be approximated. Thus, both the approaches can measure  𝐶𝐶𝑝𝑝𝑝𝑝 
or  𝐶𝐶𝑝𝑝𝑝𝑝 of a Poisson process approximately only. Maravelakis (2016) have developed a method for measuring process capability of 
a Poisson process. In this method, Poisson data are first converted into normally distributed data by using a two-step 
transformation technique and then, capability of the Poisson process is assessed by directly applying the standard formula for  𝐶𝐶𝑝𝑝𝑝𝑝 
or  𝐶𝐶𝑝𝑝𝑝𝑝 on the transformed data. 
   Borges and Ho (2001) suggested a different measure of process capability, called 𝐶𝐶-index, which has one-to-one correspondence 
(mapping) between the proportion of nonconforming items and Z-value of the standard normal distribution. This implies that the 
process capability will respond to changes in the nonconforming region and not to changes in the distribution of the observed 
quality characteristic. Thus, process capability index for Poisson process can be expressed in terms of 𝐶𝐶-index. In case of unilateral 
specification, the 𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝 of a Poisson process can be measured in terms of 𝐶𝐶𝑢𝑢 or 𝐶𝐶𝑙𝑙 respectively.  
   In the recent past, researchers have proposed some generalized indices for assessment of process capability, which can be used as 
alternative to  𝐶𝐶𝑝𝑝. These indices are defined as the ratio of two probabilities instead of ratio of the specification width and actual 
process width. Thus, these indices can be computed irrespective of distribution of the quality characteristics (normal or non-
normal) and data type (continuous or discrete). Yeh and Bhattacharya (1998) proposed 𝐶𝐶𝑓𝑓 index, Perakis and Xekalaki (2002, 
2005) presented 𝐶𝐶𝑝𝑝𝑝𝑝 index and Maiti et al. (2010) suggested 𝐶𝐶𝑝𝑝𝑝𝑝 index for assessment of process capability. In case of unilateral 
specification, the equivalent indices for  𝐶𝐶𝑝𝑝𝑝𝑝 can be obtained as 𝐶𝐶𝑓𝑓𝑓𝑓, 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝, and the equivalent indices for  𝐶𝐶𝑝𝑝𝑝𝑝 can be 
obtained as 𝐶𝐶𝑓𝑓𝑓𝑓, 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝. Therefore,  𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝 for a Poisson process can be measured in terms of these generalized indices. 
   Some of the major uses of the estimates of process capability indices in a manufacturing set up are i) predicting how well the 
process will hold the specifications, ii) selecting between competing vendors, and iii) assisting product developers/designers in 
selecting or modifying a process. The estimates of  𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝 can be obtained from a Poisson process by using any of the above 
mentioned approaches. However, the estimates of  𝐶𝐶𝑝𝑝𝑝𝑝 (or 𝐶𝐶𝑝𝑝𝑝𝑝) obtained from the same process using different approaches usually 
differ widely. Again, the same value of the estimates of 𝐶𝐶𝑝𝑝𝑝𝑝 (or 𝐶𝐶𝑝𝑝𝑝𝑝) obtained by different approaches signifies different 
capabilities for a Poisson  process. All these pose difficulties in interpreting the estimates of 𝐶𝐶𝑝𝑝𝑝𝑝 (or 𝐶𝐶𝑝𝑝𝑝𝑝) obtained by different 
approaches. Consequently, the index users may unknowingly be led to erroneous decision making. The aim of this study is to 
assess the relative goodness of the estimates of  𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝 obtained by different approaches, so that all the stakeholders of the 
index can choose the best method for estimating  𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝 of a Poisson process and can avoid the methods that are likely to give 
misleading assessment of process capability. 
   The article is organized as follows: Different approaches for computation of  𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝 from Poisson data are described in 
Section 2. A procedure to compare the relative goodness of the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 (or  𝐶̂𝐶𝑝𝑝𝑝𝑝) values obtained by various methods is 
discussed in Section 3. Analysis of multiple case study data sets and related results are presented in Section 4. Important findings 
and the issues related to different methods are discussed in Section 5. Section 6 concludes the paper. 
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2. Different approaches for computation of 𝑪𝑪𝒑𝒑𝒑𝒑 or  𝑪𝑪𝒑𝒑𝒑𝒑 from Poisson data 
 
   For convenience, let us consider that a single unit of product represents an inspection unit. Suppose the number of opportunities 
for occurrences of an event in an inspection unit is infinitely large and the probability of occurrence of the event is small and 
constant. Then, if the random variable 𝐶𝐶 denotes the number of occurrences of the event in a unit, then 𝐶𝐶 has a Poisson distribution 
with parameter 𝜆𝜆 (> 0), i.e.  
 
                                         𝑃𝑃{𝐶𝐶 = 𝑐𝑐} = 𝑒𝑒−𝜆𝜆𝜆𝜆𝑐𝑐

𝑐𝑐!
 ; 𝑐𝑐 = 0, 1, 2, …                                                                                          (1) 

 
Suppose numbers of occurrences of the events are observed in each of the 𝑚𝑚 units collected from a stable process, and 𝑐𝑐𝑖𝑖 is the 
number of events occurred in the 𝑖𝑖𝑡𝑡ℎ unit (𝑖𝑖 = 1,2,3 … ,𝑚𝑚). Then, the unknown parameter 𝜆𝜆 can be estimated as  

 
                                          𝜆̂𝜆 = 𝑐𝑐̅ =  ∑ 𝑐𝑐𝑖𝑖𝑚𝑚

𝑖𝑖=1 𝑚𝑚⁄                                                                                                               (2) 
 
   If the concerned event is STB type, it will have only 𝑈𝑈𝑈𝑈𝑈𝑈, and one will need to estimate 𝐶𝐶𝑝𝑝𝑝𝑝. On the other hand, if the concerned 
event is LTB type, it will have only 𝐿𝐿𝐿𝐿𝐿𝐿, and  one will need to estimate 𝐶𝐶𝑝𝑝𝑝𝑝. The various approaches that can be used for estimating 
𝐶𝐶𝑝𝑝𝑝𝑝 or 𝐶𝐶𝑝𝑝𝑝𝑝 from a Poisson process are described in the following sub-sections. 
   It may be noted that value of 𝑚𝑚 should be sufficiently large and the samples should be collected from an in control process over 
long period of time. More will be the sample size, better will be the estimate of the population parameter, which in turn gives more 
accurate estimate of expected proportion of nonconforming units with respect to USL (or LSL) and thus, result in more accurate 
estimates of process capability indices. 
 
2.1 Normal approximation approach 
If the estimate of population parameter 𝜆̂𝜆(= 𝑐𝑐̅) is greater than 5, the distribution of 𝑐𝑐 may be approximated by normal distribution 
with mean 𝑐𝑐̅ and variance 𝑐𝑐̅ (Montgomery and Runger, 2014). Thus, the values of 𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 can be approximated as follows: 
 
                                     𝐶̂𝐶𝑝𝑝𝑝𝑝 = (𝑐𝑐𝑈𝑈 − 𝑐𝑐̅) �3 × √𝑐𝑐�̅⁄                                                                                                          (3) 
                                      𝐶̂𝐶𝑝𝑝𝑝𝑝 = (𝑐𝑐̅ − 𝑐𝑐𝐿𝐿) �3 × √𝑐𝑐�̅⁄                                                                                                          (4) 
 
where 𝑐𝑐𝑈𝑈 is the 𝑈𝑈𝑈𝑈𝑈𝑈 for occurrences of a STB type event and 𝑐𝑐𝐿𝐿 is the 𝐿𝐿𝐿𝐿𝐿𝐿 for occurrences of a LTB type event in an inspection  
unit. 
 
2.2 Percentile based approach 
   Clements (1989) proposed the percetile based approach which is essentially generalization of the proces capability indices for 
non-normal continuous processes. In this approach, 𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 are estimated as follows: 
 
                                   𝐶̂𝐶𝑝𝑝𝑝𝑝 = (𝑐𝑐𝑈𝑈 − 𝑀𝑀) (𝐶𝐶0.99865 − 𝑀𝑀)⁄                                                                                                (5) 
                                    𝐶̂𝐶𝑝𝑝𝑝𝑝 = (𝑀𝑀 − 𝑐𝑐𝐿𝐿) (𝑀𝑀 − 𝐶𝐶0.00135)⁄                                                                                                (6) 
 
where 𝑀𝑀 is the median (50𝑡𝑡ℎ percentile point), 𝐶𝐶0.99865 is the 99.865𝑡𝑡ℎ percentile point and 𝐶𝐶0.00135 is the 0.135𝑡𝑡ℎ percentile 
point of the non-normal continuous distribution. The same method can be applied to Poisson process for obtaining an 
approximate estimate of 𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝. In case of Poisson distribution, 𝑀𝑀, 𝐶𝐶0.99865 and 𝐶𝐶0.00135 must be integers and so it may not 
be possible to get exact 50𝑡𝑡ℎ, 99.865𝑡𝑡ℎ or 0.135𝑡𝑡ℎ percentile points.  
 
2.3 Transformation approach 
   Maravelakis (2016) proposed a transformation technique by which observed count data (𝑐𝑐𝑖𝑖) from Poisson distribution can be 
transformed into 𝑄𝑄𝑖𝑖  (𝑖𝑖 = 1,2,3, … ,𝑚𝑚) values. Using the same transformation technique, 𝑐𝑐𝑈𝑈 (or 𝑐𝑐𝐿𝐿) can also be transformed into 𝑄𝑄 
value. Suppose the transformed 𝑐𝑐𝑈𝑈 (or 𝑐𝑐𝐿𝐿) is denoted as 𝑄𝑄𝑈𝑈 (or 𝑄𝑄𝐿𝐿). Quesenberry (1991) has shown that if the Poisson parameter 𝜆𝜆 
be constant, then 𝑄𝑄𝑖𝑖  (𝑖𝑖 = 1,2,3, … ,𝑚𝑚) are approximately independently and normally distributed. Therefore, 𝐶𝐶𝑝𝑝𝑝𝑝 or 𝐶𝐶𝑝𝑝𝑝𝑝 of the 
original process can be evaluated from the 𝑄𝑄𝑖𝑖  (𝑖𝑖 = 1,2,3, … ,𝑚𝑚) values as follows: 
 
                                    𝐶̂𝐶𝑝𝑝𝑝𝑝 = (𝑄𝑄𝑈𝑈 − 𝑄𝑄�) (3 × 𝑆𝑆𝑆𝑆𝑄𝑄)�                                                                                                       (7) 
                                    𝐶̂𝐶𝑝𝑝𝑝𝑝  = (𝑄𝑄� − 𝑄𝑄𝐿𝐿) (3 × 𝑆𝑆𝑆𝑆𝑄𝑄)�                                                                                                       (8)  
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where 𝑄𝑄�  and 𝑆𝑆𝑆𝑆𝑄𝑄  are average and standard deviation of the 𝑄𝑄𝑖𝑖  (𝑖𝑖 = 1,2,3, … ,𝑚𝑚) values.  Maravelakis (2016) has proposed two 
different techniques for transformation of count data into 𝑄𝑄 values for the following two cases. 
 
Case 1: Transformation of Poisson data when 𝜆𝜆 is known 
Let defects rate 𝜆𝜆 = 𝜆𝜆0 (known), and 𝑐𝑐𝑖𝑖 denotes the number of defects observed in an inspection unit. At first, the sample 
observations ( 𝑐𝑐𝑖𝑖) are transformed into cumulative Poisson value (𝑢𝑢𝑖𝑖) using the Poisson cumulative distribution function, as shown 
in Equation (9). Then, the cumulative Poisson values are retransformed into 𝑄𝑄𝑖𝑖  values by the inverse of the standard normal 
distribution as shown in Equation (10). 
 
                                      𝑢𝑢𝑖𝑖 = 𝐹𝐹𝑃𝑃(𝑐𝑐𝑖𝑖; 𝜆𝜆0);  𝑖𝑖 = 1,2,3, … ,𝑚𝑚                                                                                              (9) 
                                      𝑄𝑄𝑖𝑖 = Φ−1(𝑢𝑢𝑖𝑖);  𝑖𝑖 = 1,2, … ,𝑚𝑚                                                                                                 (10) 
 
Case 2: Transformation of Poisson data when 𝜆𝜆 is unknown 
At first, the sample observations (𝑐𝑐𝑖𝑖) are transformed into cumulative binomial values (𝑢𝑢𝑖𝑖) using the binomial cumulative 
distribution function as follows: 
 
                                      𝑢𝑢𝑖𝑖 = 𝐹𝐹𝐵𝐵(𝑐𝑐𝑖𝑖 ;𝑛𝑛/ 𝑁𝑁𝑖𝑖 , 𝑡𝑡𝑖𝑖); 𝑖𝑖 = 2,3, … ,𝑚𝑚                                                                                      (11) 
 
where, 𝑁𝑁𝑖𝑖 be the sum of all the sample sizes up to sample 𝑖𝑖 and 𝑡𝑡𝑖𝑖 is the sum of all the defects in all the samples up to sample 𝑖𝑖, i.e. 
𝑡𝑡𝑖𝑖 = ∑ 𝑐𝑐𝑗𝑗𝑖𝑖

𝑗𝑗=1  and 𝑚𝑚 is the number of samples. It may be noted that 𝑢𝑢1 and 𝑄𝑄1 cannot be computed while applying the 
transformation when parameter 𝜆𝜆 is unknown. The cumulative binomial values are retransformed into 𝑄𝑄𝑖𝑖  (𝑖𝑖 = 2,3, … ,𝑚𝑚) values by 
using Equation (10). 
 
2.4 Mapping based approach  
For applying Borges and Ho's (2001) mapping based approach, we need to compute first expected proportion of nonconforming 
units with respect to 𝑈𝑈𝑈𝑈𝑈𝑈 (𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈) for STB type events and proportion of nonconforming units with respect to 𝐿𝐿𝑆𝑆𝑆𝑆 (𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿) for 
LTB type events. The estimates of 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈 and 𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿  can be obtained as follows: 
 
                      𝑃𝑃𝑃𝑃𝑃𝑃�𝑈𝑈 = 𝑃𝑃{𝑐𝑐 > 𝑐𝑐𝑈𝑈} = 1 − 𝑃𝑃{𝑐𝑐 ≤ 𝑐𝑐𝑈𝑈} = 1 − ∑ 𝑒𝑒−𝑐𝑐̅(𝑐𝑐̅)𝑐𝑐 𝑐𝑐!⁄𝑐𝑐𝑈𝑈

𝑐𝑐=0                                                             (12) 
                      𝑃𝑃𝑃𝑃𝑃𝑃�𝐿𝐿 = 𝑃𝑃{𝑐𝑐 < 𝑐𝑐𝐿𝐿} = ∑ 𝑒𝑒−𝑐𝑐̅(𝑐𝑐̅)𝑐𝑐 𝑐𝑐!⁄𝑐𝑐𝐿𝐿−1

𝑐𝑐=0                                                                                                (13)   
 
After obtaining the values of 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈 and 𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿 , the 𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝 of a Poisson process can be estimated in two steps: 
1)  Determine the corresponding Z-value of the standard normal distribution that `results in probability area equal to 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈 or 

𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿  on the upper tail. Let the Z-values corresponding to 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈 and 𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿  are 𝑍𝑍𝑈𝑈 and 𝑍𝑍𝐿𝐿 respectively. These values can be 
obtained by using inverse cumulative probability of the standard normal distribution function as follows: 

 
                                   𝑍𝑍𝑈𝑈 = Φ−1(1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈) and 𝑍𝑍𝐿𝐿 = Φ−1(1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿) 

 
where, Φ(∙) denotes the standard normal cumulative distribution function. 

 
2) Obtain the estimates of 𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 as follows: 
 

                              𝐶̂𝐶𝑝𝑝𝑝𝑝 = 𝐶̂𝐶𝑢𝑢 = (1 3⁄ ) × 𝑍𝑍𝑈𝑈                                                                                                           (14) 
                              𝐶̂𝐶𝑝𝑝𝑝𝑝  = 𝐶̂𝐶𝑙𝑙 = (1 3⁄ ) × 𝑍𝑍𝐿𝐿                                                                                                            (15) 

 
It must be noted that if 𝑃𝑃𝑃𝑃𝑃𝑃�𝑈𝑈 is greater than equal to 0.5, then 𝐶̂𝐶𝑢𝑢 is considered as zero. Similarly, if 𝑃𝑃𝑃𝑃𝑃𝑃�𝐿𝐿  is greater than equal to 
0.5, then 𝐶̂𝐶𝑙𝑙 is considered as zero. 
 
2.5 Process nonconforming based approach 
Yeh and Bhattacharya (1998) and Perakis and Xekalaki (2002, 2005) proposed indices 𝐶𝐶𝑓𝑓 and 𝐶𝐶𝑝𝑝𝑝𝑝 respectively, and these indices 
measure the process capability by looking directly at the proportion of nonconforming in a given process. In case of unilateral 
specification, the 𝐶𝐶𝑓𝑓 index can be expressed as 
                                        𝐶𝐶𝑓𝑓𝑓𝑓 = 𝛼𝛼0𝑈𝑈 𝛼𝛼𝑈𝑈⁄                                                                                                                        (16) 
                                         𝐶𝐶𝑓𝑓𝑓𝑓 = 𝛼𝛼0𝐿𝐿 𝛼𝛼𝐿𝐿⁄                                                                                                                         (17) 
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where, 𝛼𝛼0𝑈𝑈 (or 𝛼𝛼0𝐿𝐿) is the maximum proportion of nonconforming in the upper (lower) side that the manufacturer can tolerate. On 
the other hand, 𝛼𝛼𝑈𝑈(= 𝑃𝑃𝑃𝑃𝑃𝑃�𝑈𝑈) is the actual proportion of nonconforming in the upper side, and 𝛼𝛼𝐿𝐿(= 𝑃𝑃𝑃𝑃𝑃𝑃�𝐿𝐿) is the actual 
proportion of nonconforming in the lower side. Following the convention for normal distribution, Yeh and Bhattacharya (1998) 
recommend to consider 𝛼𝛼0𝑈𝑈 = 0.00135= 𝛼𝛼0𝐿𝐿.  
For unilateral specification, Perakis and Xekalaki (2002, 2005) proposed 𝐶𝐶𝑝𝑝𝑝𝑝 index can be expressed as 
 
                                    𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝  = (1 − 𝑝𝑝0𝑈𝑈) (1 − 𝑝𝑝𝑈𝑈)⁄                                                                                                      (18) 
                                     𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝  = (1 − 𝑝𝑝0𝐿𝐿) (1 − 𝑝𝑝𝐿𝐿)⁄                                                                                                       (19) 
 
where, 𝑝𝑝0𝑈𝑈 is the desired proportion of conforming units with respect USL and 𝑝𝑝0𝐿𝐿 is the desired proportion of conforming units 
with respect to LSL. On the other hand, 𝑝𝑝𝑈𝑈 (= 1 − 𝑃𝑃𝑃𝑃𝑃𝑃�𝑈𝑈) is the actual proportion of conforming units with respect to USL, and 
𝑝𝑝𝐿𝐿(= 1 − 𝑃𝑃𝑃𝑃𝑃𝑃�𝐿𝐿) is the actual proportion of conforming units with respect to LSL. It may be noted that 1 − 𝑝𝑝𝑈𝑈= 𝛼𝛼𝑈𝑈(= 𝑃𝑃𝑃𝑃𝑃𝑃�𝑈𝑈) and 
1 − 𝑝𝑝𝐿𝐿 = 𝛼𝛼𝐿𝐿(= 𝑃𝑃𝑃𝑃𝑃𝑃�𝐿𝐿). Perakis and Xekalaki (2002, 2005) recommend that 0.9973 is a good choice for the desired proportion of 
conformance for both sided specifications and thus, a good choice for the desired proportion of conformance for one sided 
specification is 0.99865. So, 1 − 𝑝𝑝0𝑈𝑈 = 0.00135 = 𝛼𝛼0𝑈𝑈 and 1 − 𝑝𝑝0𝐿𝐿 = 0.00135 = 𝛼𝛼0𝐿𝐿. Thus, the indices defined by Yeh and 
Bhattacharya (1998) and Perakis and Xekalaki (2002, 2005) are essentially the same in case of unilateral specification. 
   It can be shown that the index 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 or 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 will always be greater than or equal to 0.00135 and it can take very high value when 
the actual proportion of conformance approaches to 1. 
 
2.6 Process yield based approach 
Maity et al. (2010) proposed 𝐶𝐶𝑝𝑝𝑝𝑝 index as a measure of process capability. For a quality characteristic with both sided 
specifications, the 𝐶𝐶𝑝𝑝𝑝𝑝 index is calculated as follows: 
 
                                               𝐶𝐶𝑝𝑝𝑝𝑝 = [𝐹𝐹(𝑈𝑈)−𝐹𝐹(𝐿𝐿)]

�1−𝛼𝛼0
𝑈𝑈−𝛼𝛼0

𝐿𝐿�
                                                                                                            (20) 

 
where 𝐹𝐹(𝑈𝑈) and 𝐹𝐹(𝐿𝐿) are cumulative probability distribution function of the quality characteristic at 𝑈𝑈𝑈𝑈𝑈𝑈 and 𝐿𝐿𝐿𝐿𝐿𝐿 respectively, 
and 𝛼𝛼0𝑈𝑈 and 𝛼𝛼0𝐿𝐿 are the maximum allowable proportion of nonconforming at upper tail and lower tail of the distribution 
respectively.  Here the numerator, 𝐹𝐹(𝑈𝑈) − 𝐹𝐹(𝐿𝐿), gives the measure of the actual process yield (i.e. actual proportion of 
conforming) and the denominator, (1 − 𝛼𝛼0𝑈𝑈 − 𝛼𝛼0𝐿𝐿) gives the measure of the desired process yield (i.e. desired proportion of 
conforming). 
   Maiti et al. (2010) suggested that in case of unilateral specification, median of the distribution (𝜇𝜇𝑒𝑒) should be taken as the process 
target and the process centre should be located such that 𝐹𝐹(𝜇𝜇𝑒𝑒) = [𝐹𝐹(𝑈𝑈) + 𝐹𝐹(𝐿𝐿)] 2⁄ = 1 2 = 0.5⁄ . Therefore, for unilateral 
specification, 𝐶𝐶𝑝𝑝𝑝𝑝 index can be expressed as 
 
                                       𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐹𝐹(𝑈𝑈)−𝐹𝐹(𝜇𝜇𝑒𝑒)

1−𝛼𝛼0
𝑈𝑈−𝐹𝐹(𝜇𝜇𝑒𝑒)

= 𝐹𝐹(𝑈𝑈)−0.5
0.5−𝛼𝛼0

𝑈𝑈                                                                                                 (21) 

                                       𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝  = 𝐹𝐹(𝜇𝜇𝑒𝑒)−𝐹𝐹(𝐿𝐿)
𝐹𝐹(𝜇𝜇𝑒𝑒)−𝛼𝛼0

𝐿𝐿 = 0.5−𝐹𝐹(𝐿𝐿)
0.5−𝛼𝛼0

𝐿𝐿                                                                                                   (22) 
 
where the value of 𝛼𝛼0𝑈𝑈 or  𝛼𝛼0𝐿𝐿 is conventionally taken as 0.00135.  
   It can easily be verified that the index 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 or 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 can take a maximum value of 1.0027. Also, if 𝐹𝐹(𝑈𝑈) is less than or equal to 
0.5, then 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 is considered as zero. Similarly, if 𝐹𝐹(𝐿𝐿) is greater than or equal to 0.5, then 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 is considered as zero. 
 
3. Procedure for assessing relative goodness of the estimated 𝑪𝑪�𝒑𝒑𝒑𝒑 (or 𝑪𝑪�𝒑𝒑𝒑𝒑) values obtained by different methods 
 
The importance of process capability index lies in the fact that the analysts/users can predict the extent of product conformance to 
the specifications by examining the estimated value of the index, and accordingly he/she can take appropriate decision. For 
example, if a product characteristic 𝑋𝑋 follows normal distribution and 𝐶̂𝐶𝑝𝑝𝑝𝑝 = 1, then it implies that expected proportion of 
conforming products (EPCP) in the process outputs with respect to the 𝑈𝑈𝑈𝑈𝑈𝑈 of 𝑋𝑋 (say,𝑈𝑈𝑈𝑈𝑈𝑈𝑋𝑋) is 0.99865, i.e. the process is capable 
of producing 99.865% conforming products. This interpretation is derived from the following relationship:  
 
        𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑃𝑃(𝑋𝑋 ≤ 𝑈𝑈𝑈𝑈𝑈𝑈𝑋𝑋) = 𝑃𝑃 �𝑋𝑋−𝜇𝜇�

𝜎𝜎�
≤ 𝑈𝑈𝑈𝑈𝑈𝑈𝑋𝑋−𝜇𝜇�

𝜎𝜎�
� = 𝑃𝑃 �𝑧𝑧 ≤ 3 × 𝑈𝑈𝑈𝑈𝑈𝑈𝑋𝑋−𝜇𝜇�

3𝜎𝜎�
� = 𝑃𝑃�𝑧𝑧 ≤ 3 × 𝐶̂𝐶𝑝𝑝𝑝𝑝�= Φ�3 × 𝐶̂𝐶𝑝𝑝𝑝𝑝�          (23) 
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where 𝜇̂𝜇 and 𝜎𝜎� are the estimates of mean and standard deviation of 𝑋𝑋, respectively.  
 
   Similarly, it is desired that the analysts/users will be able to predict the expected proportion of conforming units (EPCU) in a 
Poisson process by examining the estimated value of the process capability index. However, the count data (𝑐𝑐) in an inspection 
unit does not follow normal distribution, but follows Poisson distribution, and thus, Equation (23) is not applicable for predicting 
EPCU in a Poisson process. It may be recalled that among various methods discussed in Section 2.0, only in mapping based 
approach (Borges and Ho, 2001) the proportion of nonconforming units in the Poisson process is mapped to the Z-value of the 
standard normal distribution that results in the same proportion of nonconformance, and then process capability index with respect 
to USL (or LSL), denoted as 𝐶̂𝐶𝑢𝑢 (or 𝐶̂𝐶𝑙𝑙), is estimated as one-third of the mapped Z-value. Thus, it is possible to predict the EPCU 
in a Poisson process by examining the estimated 𝐶̂𝐶𝑢𝑢 (or 𝐶̂𝐶𝑙𝑙) value, which is feasible due to the following relationship:  
 
         1

3
× 𝑍𝑍𝑈𝑈 = 𝐶̂𝐶𝑢𝑢 

                             ⟹        𝑍𝑍𝑈𝑈 = 3𝐶̂𝐶𝑢𝑢 
   ⟹     Φ−1 (1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈) = 3𝐶̂𝐶𝑢𝑢 
   ⟹     (1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈) = Φ�3𝐶̂𝐶𝑢𝑢� 
   ⟹      𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  Φ�3𝐶̂𝐶𝑢𝑢�                                                                                                                                    (24) 
 
Equations (23) and (24) reveal that equal values of estimated 𝐶̂𝐶𝑢𝑢 from a Poisson process and estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 from a normal process 
bear the same interpretation. For example, 𝐶̂𝐶𝑝𝑝𝑝𝑝 = 1 will imply that the normal process is capable of producing 99.865% 
conforming products with respect to the 𝑈𝑈𝑈𝑈𝑈𝑈 of 𝑋𝑋 (say,𝑈𝑈𝑈𝑈𝑈𝑈𝑋𝑋) and 𝐶̂𝐶𝑢𝑢 = 1 will also imply that the Poisson process is capable of 
producing 99.865% conforming units, i.e. units having number of defects less than the specified 𝑈𝑈𝑈𝑈𝑈𝑈 (say, 𝑐𝑐𝑈𝑈).  
   From the above discussions, it is clear that if the process capability index of a Poisson process with respect to USL is measured 
in terms of 𝐶𝐶𝑢𝑢, i.e. if 𝐶̂𝐶𝑝𝑝𝑝𝑝 = 𝐶̂𝐶𝑢𝑢, then 𝐶̂𝐶𝑝𝑝𝑝𝑝 value gives the most appropriate measure of capability of a Poisson process with respect 
to 𝑈𝑈𝑈𝑈𝑈𝑈 in the sense that the analysts/users can easily comprehend the truly expected percentage of conforming units in the Poisson 
process by examining the 𝐶̂𝐶𝑝𝑝𝑝𝑝 = 𝐶̂𝐶𝑢𝑢 value. Similarly, if 𝐶𝐶𝑝𝑝𝑝𝑝 of a Poisson process is estimated in terms of 𝐶𝐶𝑙𝑙, i.e.  𝐶̂𝐶𝑝𝑝𝑝𝑝 = 𝐶̂𝐶𝑙𝑙, then 𝐶̂𝐶𝑝𝑝𝑝𝑝 
value gives the most appropriate measure of capability of a Poisson process with respect to 𝐿𝐿𝑆𝑆𝑆𝑆. Therefore, goodness of any other 
estimates of 𝐶𝐶𝑝𝑝𝑝𝑝 (or  𝐶𝐶𝑝𝑝𝑝𝑝) may be judged by comparing the estimated values with the 𝐶̂𝐶𝑢𝑢 (or 𝐶̂𝐶𝑙𝑙) value. 
 
Estimation of confidence interval of 𝐶̂𝐶𝑢𝑢 
Since 𝐶̂𝐶𝑢𝑢 is a point estimate obtained from sample data, it is necessary to construct confidence interval (CI) of the capability index 
𝐶𝐶𝑢𝑢 for inference purpose, especially when the sample size is relatively small. In literature, many works (Chou et al., 1990; Zhang 
et al., 1990; Kushler and Hurley, 1992; Nagata, 1991; Nagata and Nagahata, 1994; Peng, 2010; Stoma et al., 2019) are reported on 
the construction of confidence intervals of estimated capability indices. But all these works assume that quality characteristic of 
interest follows normal distribution. To the best of our knowledge, no work is reported in literature on construction of confidence 
intervals of the process capability indices estimated from a Poisson process. Hence, we use Nagata and Nagahata (1994) proposed 
approximation formula for construction of two-sided confidence interval (CI) for 𝐶̂𝐶𝑢𝑢. According to Nagata and Nagahata (1994),  
 

            (1 − 𝛼𝛼)% two-sided CI of 𝐶̂𝐶𝑢𝑢 =  �𝐶̂𝐶𝑢𝑢 − 𝑍𝑍1−𝛼𝛼2
� 1
9𝑛𝑛

+ 𝐶̂𝐶𝑢𝑢2

2(𝑛𝑛−1)
 , 𝐶̂𝐶𝑢𝑢 + 𝑍𝑍1−𝛼𝛼2

� 1
9𝑛𝑛

+ 𝐶̂𝐶𝑢𝑢2

2(𝑛𝑛−1)
�                                 (25) 

 
where, 𝛼𝛼 is the level of significance and (1- 𝛼𝛼) is the confidence coefficient. 
 
Assessing relative goodness of the estimates of  𝑪𝑪𝒑𝒑𝒑𝒑 (or  𝑪𝑪𝒑𝒑𝒑𝒑) obtained by different approaches 
It is decided to compute first 𝐶̂𝐶𝑢𝑢 value from a set of observed count data and determine its 95% confidence interval (CI), and then 
to compute 𝐶̂𝐶𝑝𝑝𝑝𝑝 values using all other approaches from the same set of observed count data. As it is mentioned earlier that 𝐶̂𝐶𝑝𝑝𝑝𝑝 =
𝐶̂𝐶𝑢𝑢 value gives the most appropriate measure of capability of a Poisson process, and therefore, the goodness of estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 
values obtained by other methods are judged based on the following two considerations: 

i)  If the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 value obtained by a method lie within the 95% CI of 𝐶𝐶𝑢𝑢 or not. 
ii) Percent deviation of an estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 value with respect to 𝐶̂𝐶𝑢𝑢 value, and it is calculated as follows: 
 
                       Percent deviation = 𝐶̂𝐶𝑝𝑝𝑝𝑝−𝐶̂𝐶𝑢𝑢

𝐶̂𝐶𝑢𝑢
× 100                                                                                                   (26) 
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4. Analysis and related results 
 
   For the purpose of analysis, the following three data sets are selected arbitrarily - (i) case study data published in Maravelakis 
(2016), (ii) process data presented in Montgomery (2009, pp. 698) and (iii) process data presented in NIST/SEMATECH e-
Handbook of Statistical Methods (2012, section 6.3.3.1). 
 
4.1. Case study data in Maravelakis (2016) 
Maravelakis (2016) considered a manufacturing process for illustrating his proposed transformation approach for process 
capability index. In this case study, 100 units of products were collected and number of occurrences of defects on each product 
was recorded. The USL for the number of defects in a unit was 𝑐𝑐𝑈𝑈 = 9.  
   In the data set, the total number of defects is found to be  ∑ 𝑐𝑐𝑖𝑖100

𝑖𝑖=1 = 506. So, unknown parameter 𝜆𝜆 is estimated as 𝜆̂𝜆 = 𝑐𝑐̅ =
506 100⁄ = 5.06. The defects data 𝑐𝑐𝑖𝑖  (𝑖𝑖 = 1,2,3, … , 100) are plotted in a 𝑐𝑐-chart, which revealed that during sample collection the 
process was in control. These data are analyzed first using mapping based approach (Borges and Ho, 2001) for obtaining the point 
estimate of 𝐶𝐶𝑢𝑢 and 95% both sided confidence interval of 𝐶𝐶𝑢𝑢.  
Here, 𝜆̂𝜆 = 𝑐𝑐̅ = 5.06 and 𝑐𝑐𝑈𝑈= 9. So 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈 and 𝑍𝑍𝑈𝑈 values are obtained as follows: 
 
                𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈 = 1 −∑ 𝑒𝑒−5.06(5.06)𝑐𝑐 𝑐𝑐!⁄9

𝑐𝑐=0 = 1 − 0.96594 = 0.03406 
                      𝑍𝑍𝑈𝑈 = Φ−1(1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈) =  Φ−1�1 − 0.03406) = Φ−1(0.96594� = 1.824 
 
Thus, 𝐶𝐶𝑢𝑢 is estimated as 
                      𝐶̂𝐶𝑢𝑢 = (1 3⁄ ) × 𝑍𝑍𝑈𝑈 = (1 3⁄ ) × 1.824 = 0.608 
 
Using Nagata and Nagahata's (1994) approximate formula, 95% confidence interval (CI) of 𝐶𝐶𝑢𝑢 is obtained as follows: 
 

�𝐶̂𝐶𝑢𝑢 − 𝑍𝑍1−𝛼𝛼2
� 1

9𝑛𝑛
+

𝐶̂𝐶𝑢𝑢2

2(𝑛𝑛 − 1) , 𝐶̂𝐶𝑢𝑢 + 𝑍𝑍1−𝛼𝛼2
� 1

9𝑛𝑛
+

𝐶̂𝐶𝑢𝑢2

2(𝑛𝑛 − 1)� 

                      ⟹ �0.608 − 1.96 × � 1
9×100

+ 0.6082

2(100−1)
 , 0.608 + 1.96 × � 1

9×100
+ 0.6082

2(100−1)
� 

                      ⟹ [0.5011, 0.7151] 
 
   From the above analysis it is found that the most appropriate measure of process capability with respect to USL in the 
Maravelakis (2016) considered Poisson process is 0.608 and 95% CI of the process capability of this process is [0.5011, 0.7151]. 
All other five approaches, described in section 2, are now applied to the same data of Maravelakis (2016) for estimating 𝐶𝐶𝑝𝑝𝑝𝑝 
values. 
 
Estimation of 𝐶𝐶𝑝𝑝𝑝𝑝 using normal approximation approach 
Here 𝜆̂𝜆 = 𝑐𝑐̅ = 5.06, which is greater than 5. Therefore, using normal approximation approach  𝐶𝐶𝑝𝑝𝑝𝑝 is estimated as 
 

𝐶̂𝐶𝑝𝑝𝑝𝑝 = (𝑐𝑐𝑈𝑈 − 𝑐𝑐̅) �3 × √𝑐𝑐�̅⁄ = (9 − 5.06) �3 × √5.06� =⁄ 0.5838 
 
Estimation of 𝐶𝐶𝑝𝑝𝑝𝑝 using percentile based approach 
The 50th percentile point (i.e. median 𝑀𝑀) and the 99.865th percentile point (𝐶𝐶0.99865) for the Poisson distribution with 𝜆̂𝜆 = 𝑐𝑐̅ = 5.06 
are found to be 5 and 13 respectively. Thus, 𝐶𝐶𝑝𝑝𝑝𝑝 is estimated as 
 

𝐶̂𝐶𝑝𝑝𝑝𝑝 = (𝑐𝑐𝑈𝑈 − 𝑀𝑀) (𝐶𝐶0.99865 − 𝑀𝑀) =⁄ (9 − 5) (13 − 5) = 0.5⁄  
 
Estimation of 𝐶𝐶𝑝𝑝𝑝𝑝 using transformation approach 
Here, 𝜆̂𝜆 = 𝑐𝑐̅ = 5.06 and 𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑐𝑐U = 9. The observed defects data 𝑐𝑐𝑖𝑖 (𝑖𝑖 = 1,2,3, … , 100) are transformed into cumulative Poisson 
values 𝑢𝑢𝑖𝑖 assuming that 𝜆𝜆 = 5.06 using Equation (9). The 𝑐𝑐U = 9 was also transformed into 𝑄𝑄𝑈𝑈 value as follows:  
 
                                          𝑄𝑄𝑈𝑈 = Φ−1{𝐹𝐹𝑃𝑃(9|𝜆𝜆 = 5.06)} = Φ−1{0.96817} = 1.82426 
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The average value 𝑄𝑄�  and 𝑆𝑆𝑆𝑆𝑄𝑄  are found to be 0.2456 and 0.8263 respectively. Thus, the process capability index  𝐶𝐶𝑝𝑝𝑝𝑝 is estimated 
as 
 

𝐶̂𝐶𝑝𝑝𝑝𝑝 =
𝑄𝑄𝑈𝑈 − 𝑄𝑄�
3 × 𝑆𝑆𝑆𝑆𝑄𝑄

=
1.82426 − 0.2456

3 × 0.8263
= 0.6368 

 
Estimation of 𝐶𝐶𝑝𝑝𝑝𝑝 using process nonconforming based approach 
The desired proportion of conforming units with respect 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑝𝑝0𝑈𝑈 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈 is not specified and so as per convention it is taken as 
0.99865. This implies that (1 − 𝑝𝑝0𝑈𝑈) = (1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈) = 0.00135. Here, 𝜆̂𝜆 = 𝑐𝑐̅ = 5.06, and the actual proportion of nonconforming 
units, (1 − 𝑝𝑝𝑈𝑈) = (1 − 𝑃𝑃𝑃𝑃𝑃𝑃�𝑈𝑈)  is computed to be 0.03406. Therefore, the process capability index 𝐶𝐶𝑝𝑝𝑝𝑝 is estimated as 
 
                               𝐶̂𝐶𝑝𝑝𝑝𝑝 = 𝐶̂𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 0.00135 0.03406⁄  = 0.0396 
 
Estimation of 𝐶𝐶𝑝𝑝𝑝𝑝 using process yield based approach 
Here, 𝜆̂𝜆 = 𝑐𝑐̅ = 5.06 and 𝑐𝑐U= 9. As per convention, the maximum allowable proportion of nonconforming units at upper tail, 𝛼𝛼0𝑈𝑈 is 
considered to be 0.00135. The cumulative probability up to the 𝑈𝑈𝑈𝑈𝑈𝑈, 𝐹𝐹(𝑈𝑈) is computed as 0.96594. Therefore, 𝐶𝐶𝑝𝑝𝑝𝑝 is estimated as 
 
               𝐶̂𝐶𝑝𝑝𝑝𝑝 =  𝐶̂𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = (0.96594 − 0.5) (0.5 − 0.00135)⁄ = 0.46594 0.49865⁄  = 0.9344 
 
It may be noted that estimated  𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by the five approaches varies widely. Now, for the purpose of easy comparison 
of goodness of these estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values, Table 1 is prepared. 

 
Table 1: 𝐶̂𝐶𝑢𝑢,  95% CI of 𝐶𝐶𝑢𝑢 and the 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by other approaches 

Sl. 
No. 

𝐶̂𝐶𝑢𝑢  
(95% CI of 𝐶𝐶𝑢𝑢) 

Approaches for 𝐶𝐶𝑝𝑝𝑝𝑝 
calculation 

Estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 
value 

𝐶̂𝐶𝑝𝑝𝑝𝑝 value in reference 
to the CI of 𝐶𝐶𝑢𝑢 

Percent 
deviation 

1 

0.6081 
(0.5011 - 0.7151) 

Normal approx. 
approach 0.5838 Within CI -3.98 

2 Percentile based 
approach 0.5000 Below lower 

confidence limit -17.76 

3 Transformation 
approach 0.6368 Within CI +4.73 

4 Nonconforming  
based approach 0.0396 Below lower 

confidence limit -93.49 

5 Yield-based 
approach 0.9344 Above upper 

confidence limit +53.68 

 
Table 1 reveals that only the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Normal approximation approach and Transformation approach lie 
within the 95% CI of 𝐶̂𝐶𝑢𝑢. On the other hand, estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Percentile based approach and Nonconforming 
based approach lie below the lower confidence limit of the CI whereas estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Yield based approach lies 
above the upper confidence limit of the CI. This implies that Percentile based approach and Nonconforming based approach 
underestimate the process capability (deviations are -17.76% and -93.49% respectively) whereas Yield based approach 
overestimate the process capability (deviation is +53.68%) for the Poisson process. 
 
4.2 Process data in Montgomery (2009) 
Montgomery (2009) presents a set of process data on number of defects observed on 20 inspection units of printed circuit boards 
(PCBs) for illustration of attribute process control charts. Each inspection unit consists of successive samples of five PCBs and 
each inspection unit is collected after every one hour. The total number of defects is found to be 160 and therefore, the estimate of 
the unknown parameter is obtained as 𝜆̂𝜆 = 𝑐𝑐̅ = 160 20⁄ = 8. The 𝑐𝑐-chart of the defects data indicates that the process was in 
statistical control during sample collection.  
   Montgomery (2009) did not specify 𝑈𝑈𝑈𝑈𝑈𝑈 for the number of defects in an inspection unit of PCBs. For the purpose of estimation 
of 𝐶𝐶𝑝𝑝𝑝𝑝, we assume that 𝑐𝑐 + 2 × √𝑐𝑐 = 8 + 5.66 ≈ 14 is the 𝑈𝑈𝑈𝑈𝑈𝑈 for the number of defects in an inspection unit, i.e. 𝑐𝑐U = 14. These 
data are analyzed first using mapping based approach for obtaining the point estimate and 95% both sided CI of 𝐶𝐶𝑢𝑢. 
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   It is found that 𝐶̂𝐶𝑢𝑢 = 0.7047 and 95% CI of 𝐶𝐶𝑢𝑢 = [0.4373, 0.9721]. This implies that the most appropriate estimate of process 
capability with respect to USL of the considered Poisson process is 0.7047, and  its 95% CI is [0.4373, 0.9721]. The 𝐶̂𝐶𝑝𝑝𝑝𝑝 values 
are now obtained by applying all other five approaches to the same data of Montgomery (2009). The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained 
by other five approaches along with 𝐶̂𝐶𝑢𝑢 value and 95% CI of 𝐶𝐶𝑢𝑢 are presented in Table 2. 

 
Table 2: 𝐶̂𝐶𝑢𝑢,  95% CI of 𝐶𝐶𝑢𝑢 and the 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by other approaches 

Sl. 
No. 

𝐶̂𝐶𝑢𝑢  
(95% CI of 𝐶𝐶𝑢𝑢) 

Approaches for 𝐶𝐶𝑝𝑝𝑝𝑝 
calculation 

Computed 
𝐶̂𝐶𝑝𝑝𝑝𝑝 value 

𝐶̂𝐶𝑝𝑝𝑝𝑝 value in reference 
to the CI of 𝐶𝐶𝑢𝑢 

Percent 
deviation 

1 

0.7047 
(0.4372 - 0.9621) 

Normal approx. 
approach 

0.7071 Within CI +0.34 

2 Percentile based 
approach  

0.6000 Within CI -14.86 

3 Transformation 
approach  

0.4416 Within CI -37.33 

4 Nonconforming 
based approach  

0.0782 Below lower 
confidence limit 

-88.90 

5 Yield-based 
approach 

0.9681 Above upper 
confidence limit 

+37.38 

 
Table 2 shows that the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Normal approximation approach, Percentile based approach and 
Transformation approach lie within the 95% CI of 𝐶𝐶𝑢𝑢. On the other hand, estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 value obtained by Nonconforming based 
approach lies below the lower confidence limit of the CI whereas estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 value obtained by Yield based approach lies above 
the upper confidence limit of the CI. This implies that Nonconforming based approach underestimate the capability (deviations is -
88.90%) whereas Yield based approach overestimate the capability (deviation is +37.38%) of the Poisson process. 
 
4.3 Process data in NIST/SEMATECH e-Handbook of Statistical Methods (2012) 
The NIST/SEMATECH e-Handbook of Statistical Methods (2012) presents inspection results on 25 wafers each containing 100 
chips for illustrating construction of 𝑐𝑐-chart. The total number of defects is found to be 400 and therefore, the estimate of the 
unknown parameter is obtained as 𝜆̂𝜆 = 𝑐𝑐̅ = 400 25⁄ = 16. The 𝑐𝑐-chart of the defects data indicates that the process was in 
statistical control during sample collection. Here, 𝑈𝑈𝑈𝑈𝑈𝑈 for the number of defects in a wafer is not specified. So, we assume that 𝑐𝑐 + 
2 × √𝑐𝑐 = 16 + 2√16 = 24 is the 𝑈𝑈𝑈𝑈𝑈𝑈 for the number of defects in a wafer, i.e. 𝑐𝑐U = 24. These data are analyzed first using 
mapping based approach for obtaining the point estimate of 𝐶𝐶𝑢𝑢 and 95% both sided CI of 𝐶𝐶𝑢𝑢. 
   It is found that 𝐶̂𝐶𝑢𝑢 = 0.6694 and 95% CI of 𝐶𝐶𝑢𝑢 = [0.4393, 0.8994]. The  𝐶̂𝐶𝑝𝑝𝑝𝑝  values are now estimated by applying all other five 
approaches to the same data. The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by other five approaches along with 𝐶̂𝐶𝑢𝑢 value and 95% CI of 𝐶𝐶𝑢𝑢 
are presented in Table 3. 
 

Table 3: 𝐶̂𝐶𝑢𝑢,  95% CI of 𝐶𝐶𝑢𝑢 and the 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by other approaches 
 Sl. 
No. 

𝐶̂𝐶𝑢𝑢  
(95% CI of 𝐶𝐶𝑢𝑢) 

Approaches for 𝐶𝐶𝑝𝑝𝑝𝑝 
calculation 

Computed 
𝐶̂𝐶𝑝𝑝𝑝𝑝 value 

𝐶̂𝐶𝑝𝑝𝑝𝑝 value in reference to 
the CI of 𝐶𝐶𝑢𝑢 

Percent 
deviation 

1 

0.6694 
(0.4393 - 0.8994) 

Normal approx. 
approach 

0.6667 Within CI -0.40 

2 Percentile based 
approach  

0.6154 Within CI -8.07 

3 Transformation 
approach  

0.6616 Within CI -1.16 

4 Nonconforming 
based approach  

0.0601 Below lower 
confidence limit 

-91.03 

5 Yield-based 
approach 

0.9580 Above upper 
confidence limit 

+43.11 

 
   Table 3 reveals that the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Normal approximation approach, Percentile based approach and 
Transformation approach lie within the 95% CI of 𝐶𝐶𝑢𝑢. However, estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 value obtained by Nonconforming based approach 
lies below the lower confidence limit of the CI and estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 value obtained by Yield based approach lies above the upper 
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confidence limit of the CI. This implies that Nonconforming based approach underestimate the capability (deviations is -91.03%) 
whereas Yield based approach overestimate the capability (deviation is +43.11%) of the Poisson process. 
   The overall results of the three case study data analysis can be summarized as follows: 
a) The Nonconforming based approach always underestimates the capability of a Poisson process. The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values 

obtained by this approach in the three case studies deviate from the most appropriate measures of process capability by -
88.90%  to -93.49%. 

b) The Yield based approach always overestimates the capability of a Poisson process. The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by this 
approach in the three case studies deviate from the most appropriate measures of process capability by +37.38%  to +53.68%. 

c) The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Percentile based approach may or may not lie within the 95% CI of 𝐶𝐶𝑢𝑢. The estimated 
𝐶̂𝐶𝑝𝑝𝑝𝑝 value in the first case study lies below the lower confidence limit of the CI, but the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values in the second and 
third case studies lie within the CI. The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by this approach in the three case studies deviate from 
the most appropriate measures of process capability by -17.76%  to -8.07%. This is indicative that Percentile based approach 
tends to underestimate the capability of a Poisson process. 

d) The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Normal approximation approach and Transformation approach always lie within the 95% 
CI of 𝐶𝐶𝑢𝑢, and therefore, these two approaches can be considered as acceptable for measuring capability of  a Poisson process.  
However, among these two approaches, Normal approximation approach is preferable because the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 value 
obtained by this approach in the three case studies deviates marginally (-3.98% to +0.34%) from the most appropriate measures 
of process capability.  

 
5. Discussions 
    
   It is observed that equal values of estimated 𝐶̂𝐶𝑢𝑢 (or 𝐶̂𝐶𝑙𝑙) from a Poisson process and estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 ( or 𝐶̂𝐶𝑝𝑝𝑝𝑝) from a normal process 
bear the same interpretation. For example, 𝐶̂𝐶𝑢𝑢 = 1 implies that the Poisson process is capable of producing 99.865% conforming 
units with respect to the 𝑈𝑈𝑈𝑈𝑈𝑈, and 𝐶̂𝐶𝑝𝑝𝑝𝑝 = 1 implies that the normal process is capable to producing 99.865% conforming products 
with respect to the 𝑈𝑈𝑈𝑈𝑈𝑈.  Thus, it is considered that the most appropriate measure of capability of a Poisson process with respect to 
𝑈𝑈𝑈𝑈𝑈𝑈 (or 𝐿𝐿𝐿𝐿𝐿𝐿) is 𝐶̂𝐶𝑢𝑢 (or 𝐶̂𝐶𝑙𝑙). Therefore, the relative goodness of 𝐶̂𝐶𝑝𝑝𝑝𝑝 values that can be obtained from a Poisson process by other 
methods are judged with reference to 𝐶̂𝐶𝑢𝑢 value and 95% CI of 𝐶𝐶𝑢𝑢 estimated from the observed count data in the Poisson process.  
   It is observed that the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Nonconforming based approach in the three case studies deviate from the 
estimated 𝐶̂𝐶𝑢𝑢 values by -88.90% to -93.49%. On the other hand, the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Yield-based approach in the 
three case studies deviate from the estimated 𝐶̂𝐶𝑢𝑢 values by +37.38% to +53.68%. The problem with the Nonconforming based 
approach is that in this approach, 𝐶𝐶𝑝𝑝𝑝𝑝 (or 𝐶𝐶𝑝𝑝𝑝𝑝) is estimated as the ratio of the two very small numbers, where numerator is 0.00135 
(acceptable proportion of nonconforming units) and denominator is actual proportion of nonconforming units with respect to 
specified 𝑈𝑈𝑈𝑈𝑈𝑈 (or 𝐿𝐿𝐿𝐿𝐿𝐿). Thus, the estimate is highly impacted due to a minor deviation in the value of actual proportion from the 
acceptable proportion. For example, if actual percentage of nonconforming units is 0.135% then the value of 𝐶̂𝐶𝑝𝑝𝑝𝑝 is equal to one 
but if the actual percentage becomes 0.01% then the value of 𝐶̂𝐶𝑝𝑝𝑝𝑝 would become as high as 13.5, which would give a misleading 
impression that the process is highly capable. On the other hand, if the actual percentage becomes 0.5% then the value of 
𝐶̂𝐶𝑝𝑝𝑝𝑝 would become as low as 0.27, which again gives a misleading impression that the process capability is very poor.  
   The Yield-based approach suffers from another problem. In Yield-based approach, the values of the ratios 
[𝐹𝐹(𝑈𝑈) − 0.5] (0.5 − 𝛼𝛼0𝑈𝑈)⁄  and [0.5 − 𝐹𝐹(𝐿𝐿)] (0.5 − 𝛼𝛼0𝐿𝐿)⁄  are considered as the estimate of 𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 respectively. Since the 
values 𝛼𝛼0𝑈𝑈 and 𝛼𝛼0𝐿𝐿 are usually taken as 0.00135, the denominator is always equal to 0.49865 in both the ratios. On the other hand, 
the values of the numerators in both the ratios can be at most 0.5. Therefore, the maximum value of  𝐶̂𝐶𝑝𝑝𝑝𝑝  or 𝐶̂𝐶𝑝𝑝𝑝𝑝  in a process can be 
0.5 0.49865⁄ = 1.0027. This implies that the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝  or 𝐶̂𝐶𝑝𝑝𝑝𝑝  obtained by Yield-based approach would fail to make 
distinction among almost capable process, just capable process and highly capable process. 
   The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 value obtained by Percentile based approach is found to lie below the lower confidence limit of the CI of 𝐶𝐶𝑢𝑢 
in the first case study, but the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Percentile based approach in the other two case studies are found 
to lie within the CIs. The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by this approach in the three case studies deviate from the estimated 𝐶̂𝐶𝑢𝑢 
values by -17.76%  to -8.07%. These results are indicative that an estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 value obtained by Percentile based approach may 
or may not reflect the capability of a Poisson process appropriately. This happens because the Poisson data is discrete due to which 
it is not possible to find out the exact 50𝑡𝑡ℎ, 99.865𝑡𝑡ℎ or 0.135𝑡𝑡ℎ percentile points. The actual percentile values corresponding to 
the nearest integers may often differ substantially and as a result, the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝  or 𝐶̂𝐶𝑝𝑝𝑝𝑝 value may become considerably 
different from the true process capability. Therefore, use of Percentile based approach should be avoided for estimating 𝐶𝐶𝑝𝑝𝑝𝑝 or 𝐶𝐶𝑝𝑝𝑝𝑝 
of a Poisson process. 
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   The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by Normal approximation approach and Transformation approach consistently lie within the 
95% CI of 𝐶𝐶𝑢𝑢 in the three case studies, and therefore, these two approaches may be considered as acceptable for measuring 
capability of a Poisson process besides the Mapping based approach of Borges and Ho (2001). However, among these two 
approaches, Normal approximation approach is preferable because the estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained by this approach in the three 
case studies deviates marginally (-3.98%  to +0.34%) from the most appropriate measure, i.e. 𝐶̂𝐶𝑢𝑢. It must be noted that above 
conclusion is valid only when average number of defects per inspection unit is more than 5 because in all the three case study data 
analyzed here 𝑐𝑐̅ > 5. 
   It is worth to mention here some limitations of the current study. In this study, the relative goodness of the process capability 
indices obtained by different approaches is assessed primarily based on the results of analysis of multiple case study data published 
in literature. It is well known that accuracy of the estimate of population parameter 𝜆𝜆 and thus, estimates of process capability 
indices depends on the sample size. Here Poisson data with three different sample sizes only are analysed and so, ideally, the 
findings of this study should not be generalized. Simulation of Poisson data of different sizes and then application of the similar 
studies will be useful for generalization of the findings. 
 
6. Conclusions  
 
   In real life, often number of occurrences of some events in an inspection unit is considered as an important quality characteristic. 
Such quality characteristics are usually STB or LTB type and often are modeled by Poisson distribution with parameter 𝜆𝜆 (> 0). In 
such cases, computation of process capability index ( 𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝) using standard formula is inappropriate. Usually,  𝐶𝐶𝑝𝑝𝑝𝑝 or  𝐶𝐶𝑝𝑝𝑝𝑝 of 
a Poisson process is estimated using some approximate approaches or generalized approaches. It is observed that the most 
appropriate measure of capability of a Poisson process with respect to 𝑈𝑈𝑈𝑈𝑈𝑈 (or 𝐿𝐿𝐿𝐿𝐿𝐿) is 𝐶̂𝐶𝑢𝑢 (or 𝐶̂𝐶𝑙𝑙) (obtained by Mapping based 
approach). Therefore, the relative goodness of estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 values obtained from a Poisson process by other methods are judged 
with reference to estimated 𝐶̂𝐶𝑢𝑢 value and 95%  confidence interval of 𝐶𝐶𝑢𝑢. Analyses of multiple case study data reveal that besides 
Mapping based approach only Normal approximation approach and Transformation approach are acceptable for estimating 𝐶𝐶𝑝𝑝𝑝𝑝 or 
𝐶𝐶𝑝𝑝𝑝𝑝 of a Poisson process. On the other hand, Nonconforming based approach usually underestimate the capability whereas Yield-
based approach usually overestimate the capability of a Poisson process. The estimated 𝐶̂𝐶𝑝𝑝𝑝𝑝 (or 𝐶̂𝐶𝑝𝑝𝑝𝑝) value obtained by Percentile 
based approach may or may not reflect the true capability of a Poisson process. 
   In this study, only the Poisson processes where a single type of defect occurs with rate λ are considered. In future study, Poisson 
processes where multiple types of defects occur with different rates may be considered. Zero inflated Poisson process may also be 
considered in the future study. 
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