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Abstract

Many product characteristics are qualitative irunate.g. colour, brightness, surface finish etee Thanufacturing process of
such products is usually described in terms oftifmacnonconforming or conforming which is assumedfdllow binomial
distribution. Measuring capability of a binomialopess implies assessing to what extent the fraatimmconforming or
conforming in the continuous stream of lots confdaorthe specification limits. Th€, or C, of a binomial process can be
estimated using several approaches. However, tqgz®aches generally give widely varying assessmgotit the capability
of a given binomial process. Consequently, a usémeindex may inadvertently be led to erroneoasigion making based on
an inaccurate estimate of the index. In this paggsrocedure is proposed for assessing accuratiestimates ofC,, or Cy
obtained by different methods. Subsequently, the method for evaluating capability of a binomiabgess is identified based
on analysis of multiple case studies, and alsartéthods giving inaccurate estimates are highlighted
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1. Introduction

Process capability refers to the ability of aegi process to produce outputs according to speciquirements. The basic

process capability index {8, = (USL—LSL)/60 , whereUSL andLSL are the upper and lower specification limits a#idis the
population standard deviation. When there is &8} or onlyLSL for a product characteristic, then the processilsiify indices
are defined a€,, = (USL—- ()30 andC, = (14 —LSD/30 respectively, whergl is the population mean. The most widely

used other indices af&, (Kane, 1986)C,m (Hsing and Taguchi, 1985; Chenal.,2008) andC, (Choi and Owen, 1990; Pearn
et al, 2005). More detailed information on these indiaes available in Kotz and Johnson (1993), Englist Taylor (1993),
Kotz and Lovelace (1998), Kotz and Johnson (200),et al. (2009), Yum and Kim (2011), Chest al. (2017), Polhemus
(2017) and De-Felipe and Benedito (2017). Histdisicall these indices are developed for a prodii@racteristic that can be
described as a continuous variable and follows abdistribution. The generalization of these indiéer continuous non-normal
variables are suggested by Clements (1989), PeariKetz (1994), Pearn and Chen (1995), Shore (1998n (2000), Goswami
and Dutta (2013), Kovarik and Sarga (2014)et.al (2015) and Cheat al (2019).

However, in reality, it is observed that mangduct characteristics are qualitative in naturg, eolour, brightness, surface
finish etc. The manufacturing process of such petslare usually described through a discrete-vatiredacteristic e.g. fraction
defective, fraction nonconforming, fraction confangyetc. The measurement of this kind of charastieris typically obtained by
counting number of defective or nonconforming uifswithin a given number of sample unity.(It is generally assumed that
the fraction (proportion) daté= d/n, follows binomial distribution with parametpr(population proportion) and. It may further
be noted that binomial data ideally have one-sidp€dcification limit only. For example, the ideatdget value for fraction
defective/nonconforming is zero and the value attion defective/nonconforming is desired to be kxan a specifiedSL (say,
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fu). Again, the ideal target value for fraction camfiing is one and the value of fraction conformieglesired to be more than a
specifiedLSL (say,f,). The main point of concern for a binomial procissthe quality of the lots (say, number of itemnsduced
in everyT hours span) that are formed for shipment. Basetth®@imformation contained in a sample taken frolotait is possible
to estimate the expected fraction nonconformindpwitper confidence limit or fraction conforming wibwer confidence limit in
the lot. Accordingly, it can be assessed if frattinconforming or fraction conforming in a lotiséies the specified)SL or
LSL But such analysis, does say nothing about thérugus stream of lots that are produced over [mripd.

However, the design engineers, process managerdors or customers are often interested to kihtive process is capable of
producing continuous stream of lots having fractimmconforming or fraction conforming less th&nor greater tharf,
respectively. These queries can be answered satisfg by evaluating the appropriate process cdipplindex of the concerned
binomial process. When the fraction of interestsisaller-the-better (STB) type, e.g. fraction defeZhonconforming, the
capability of the binomial process can be evaluaisidg C,, index, and when the fraction of interest is larther-better (LTB)
type, e.qg. fraction conforming, the capability bétinomial process can be evaluated uginéndex.

Conventionally, the count data (or fraction Jlasaassumed to follow a binomial distribution whiis often approximated by a
standard normal distribution and therefore, proazgsability indexC,, or Cy is computed by using the standard formula for
normal data. The normal approximation works welyamhen the sample sizeis large and population proportiop) (s such that
both np and n(1-p) are greater than 5. Alternatively, Clement's @9ercentile based approach (which is developed fo
continuous non-normal process) may be appliedriorbial process (a discrete non-normal process)litaining an approximate
estimate ofC,, or C,. An estimate ofC,, or C, of a binomial process obtained by percentile baggatoach will be approximate
only because the values of percentile points usethése computations are approximated. Thus, bwthet approaches can
measureCy,, or C, approximately only. Maravelakis (2016) developesiethod for measuring process capability of a biabm
process. In this method, binomial data are firstvested into normally distributed data by usingwa-step transformation
technique and then, capability of the binomial esxis assessed by directly applying the standerduta forC,, or C, on the
transformed data.

Borges and Ho (2001) suggested a new measupeooéss capability, calle@-index, which has one-to-one correspondence
(mapping) between the proportion of nhonconformitegnis and Z-value of the standard normal distrilbutithis implies that the
process capability will respond to changes in tbacenforming region and not to changes in the ibistion of the observed
quality characteristic. Thus, the basic processiedity index C,) for any process can be expressed in tern@iotiex. In case of
unilateral specification, th€,, or C, of a process can be measured in ternS,@fr C, respectively.

In the recent past, researchers have proposed generalized indices for assessment of proc@sbiiy, which can be used as
alternative toC,,. These indices are defined as the ratio of twdgdities instead of ratio of the specificationdéti and actual
process width. Thus, these indices can be computespective of distribution of the quality chamgstics (normal or non-
normal) and data type (continuous or discrete). et Bhattacharya (1998) proposgdindex, Perakis and Xekalaki (2002,
2005) presente@,. index and Maitiet al. (2010) suggeste@,, index for assessment of process capability. I cisunilateral
specification, the equivalent indices oy, can be obtained &3, Cn., andC,y,, and the equivalent indices fGf, can be obtained
asCy, Cpq andC,y. ThereforeC,, or Cy, index for a binomial process can be measuredims®f these generalized indices.

It has been observed that application of thevalibscussed methods to a single set of binomit desults in widely varying
values forC,, or C,. This implies that accuracies of the estimate€gfor C, obtained by different methods vary widely. No
study is reported in literature that attempt toleat the accuracies of the estimatgg or C, values that may be obtained by
different approaches. Consequently, a user of ndex may inadvertently be led to erroneous decisiaking based on an
inaccurate estimate of the index.

In this paper, a procedure is proposed for agsgshe accuracies of the estimate€gfor Cy, obtained by different approaches.
Then the best method for evaluating capability dfreomial process is identified based on applicatib the proposed procedure
on multiple case study data. The article is orgeshias follows: Different approaches for computatd,, or C, from binomial
data are described in Section 2. A procedure feesssng accuracies of estimatég or C,, values obtained from binomial process
using different methods is discussed in SectioArglysis of multiple case study data sets and edlaesults are presented in
Section 4. Important findings and the issues rdl&edifferent methods are discussed in Sectid®estion 6 concludes the paper.

2. Different approaches for computation of Cp, or C, from binomial data

Suppose, an item has one or more quality chenistits that are examined by the inspector. Ifitam does not conform to
standard on one or more of these characteristi¢s,classified as nonconforming and if the itenmfooms to standard on all of
these characteristics, it is classified as confogmiLet the production process is operating inablst manner, such that the
probability that any unit will be nonconforming (forming) to specification ip and successive units produced are independent.
Suppose a random samplemofinits of product is selected from the procesthdfrandom variabl® denotes the number of units
of product that are nonconforming to the standdrelnD has a binomial distribution with parametarandp, i.e.
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P{D=d}= (:jpd @A-p)"*;d=012,..n 1)

Then, the probability distribution of sample fractinonconformingf=d/n is also binomial. The cumulative distribution ftina
of f can be obtained by using the binomial distribugasn

[na] / n
P{f <a}=P{dn<a}=P{d<na}= Z( p’ (L- p”'dj )

d=0 d
where pa] denotes the largest integer less than equahtdt can be shown thd&(f) = p and E( Ufz) = p(1-p)/n (Montgomery,

2009). Generally, the unknown population propor{jonis estimated by using the sample fraction of worficrming items fj.

If the sample fractionf) is STB type, then it will have onlySL (say, USL = f;U), and one will need to estima®,, as a
measure of process capability. On the other hdrdeisample fractionf)is LTB type, then it will have onliSL (say,LSL =f,)
and one will need to estima@, as a measure of process capability. For conveajdatus assume that the fraction of interest is
the fraction nonconforming which is STB type. THere, the task is to estimate the valueCgffrom m number of computed
sample fraction$; = di/n; (i = 1,2,3,...m), whered, is the observed number of nonconforming items sample of size, (i =

p— m —
1,2,3,...m). Obviously, average sample sizelis z n /m and average sample fraction nonconformirfg)( given by Equation
i=1
(3), is the best estimate of the unknown binomaabmetep.

5= T=X X0 ®

i=1

It must be noted thaff is only an overall estimate of the population fi@e nonconformingp. The values of sample fraction
nonconforming fi)(i=1,2,3,...) that may be measured from the continusieam of lots will vary following binomial
distribution, and the sample fraction nonconformfiffigin all the lots may not be less th&n The expected proportion of
nonconforming fractionsANF,) or proportion of nonconforming lot®RLy) with respect taJSL can be estimated as
_ ] Mg — — -
PNF, =PNL, =P{f > f,}=1-P{D <nf,}=1- Z( Jf @a- f)re (4)

d=o0 \ d

where [Flfu] denotes the largest integer less than equal_1fg. The percentage of nonconforming lots can be nbthiby
multiplying PNLy by 100.
If the fraction of interest is LTB type, the paraers n and f can be estimated from the sample data in the saammen.

The expected proportion of nhonconforming fractigRbIF ) or proportion of nonconforming lot® L) with respect td_SL can
be estimated by using Equation (5) and the pergerddnonconforming lots can be obtained by mujtigl PNL_ by 100.

_ Inf 1 n —d o
PNF =PNL =P{f > f }=1-P{D <nf}=1- Z( jf @-fy) (5)
d=o\/d
The process capability analysis of a binomial psscessentially implies assessing if the processapable of producing
continuous stream of lots having fraction defectiemconforming less than specifidg or fraction conforming greater than
specifiedf,.. There are various approaches that can be useestonatingC,, or C, for binomial process are described in the
following sub-sections.

2.1 Normal approximation approach
If sample sizen is large and estimate of population paramﬁt(a:?) is such that both andn(l—?) are greater than 5, the

distribution off may be approximated by normal distribution withamef and variancef (1—?)/?1 (Montgomery 2009). Thus,
the approximate estimates @f, andC,, can be obtained from the observed sample propsras follows:
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Cou = (fu— F)IEBxy (F@L-f)/N) (6)
C= (F=f0/3xy/(F - F)/n) (7)

wheref, andf, are the specified upper and lower limit for STBRI &7 B type of fraction, respectively.

2.2 Percentile based approach

The percentile based approach (Clements 1989)vislajged for estimating,, C,, andC, of a continuous non-normal process.
However, the same concept can be used for apprtirgridne estimates di,, andCy, of a discrete non-normal process. Thus, the
approximate estimate @f,, andC, can be obtained as follows:

Cow = (Nfy— M)/(Do s065~ M) ®)
Coi = (NfL— M)/(Do 00135~ M) 9

WhereM is the median (prercentile point)Dg gesssiS the 99.86% percentile point an®g go135iS the 0.13% percentile point in

the binomial distribution with parameter and ? It may be noted thaMl, D g9g6sand Dg go135 Must be integers. So it may not
be possible to get exact'5(9.86%'or 0.138" percentile points.

2.3 Transformation approach

Maravelakis (2016) has proposed a transformatiarhrigue by which binomial data, i.e. the sample eokstions K,
d)(i=1,2,3,...m) can be transformed in@; (i =2,3,...m) values. Using the same transformation technifuér f) can also be
transformed intdQ value. Suppose the transformfgd(or f,) is denoted a®y (or Q,). Quesenberry (1991) has shown that if the
probability of succesp be constant, the®, (i =2,3,...m) are approximately independently and normallyritisted. Therefore,
C,u or C, of the original process can be evaluated fromQHe=2,3,...m) values as follows:

G = (Qu- Q)/(3 xSDy) (10)
¢,= (Q - QUI(3 xSDy) (11)

where 6 and SD, are average and standard deviation of @héi =2,3,...m) values. Maravelakis (2016) has proposed two
different techniques for transformation of sampéefions intoQ values for the following two cases.

Case 1: Transformation of sample fractions whes Rniown

Let probability of success = p, (known), andd; denotes the number of nonconforming items obseirvélaei™ sample of size,.
At first, the sample observations;,¢)(i = 1,2,3,...m) are transformed into cumulative binomial value3 ¢sing the binomial
cumulative distribution function, as shown in Eqoat(12). Then, the cumulative binomial values egransformed intdQ,
(i=1,2,3,...m) values by the inverse of the standard normatibligion, as shown in Equation (13).

u = Fg(;n;,po) fori=1,2,3,...m (12)

Q=@ fori=12,..m (13)

Case 2: Transformation of sample fractions whes pnknown

At first, the sample observationsy,(d)(i=1,2,3,...m) is transformed into cumulative hypergeometricueal()) using the
hypergeometric cumulative distribution functionfalbows:
Ui = Fu(diti,nm,N); i=1,2,3,..m (14)

i
where,N; be the sum of all the sample sizes up to sample. N, = an andyt; is the sum of all the nonconforming items in all
j=1

i

the samples up to sampiei.e. t; = Zdj and m is the number of samples. Then, the cumulativeelggometric values are
i=

retransformed int®; (i =2,3,...m) values by the inverse of the standard normatidigion as shown in Equation (13).
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2.4 Mapping based approach

Using Borges and Ho's (2001) mapping based appydaghor C, can be estimated from the observed sample fraction
(i=1,2,3,...m) as follows:

1) Calculate first the values 8NF, (or PNF) for calculation ofC,, (or C,) using Equation (4) (or Equation (5)).

2) Determine the corresponding Z-value of the stathchormal distribution that result in probabildayea equal t&®NF, on the
upper tail (or probability area equalPdNF_on lower tail). Let the Z-value correspondingPF; (or PNFR) is Zy (or Z,). The
Zy (or Z)) value can be obtained by using inverse cumulapirabability of the standard normal distributiométion as
follows:

Zy= ¢ *(1-PNRy) andz, = ¢ *(1-PNR)
where, ¢(*) denotes the standard normal cumulative distributimiction.

3) Then the estimates d,, or C, can be obtained as follows:
Cou=Cy = (113) xZy (15)
ép| = é| = (1/3) XZ, (16)

2.5 Process nonconforming based approach

Yeh and Bhattacharya (1998) and Perakis and Xeké@k2, 2005) proposed indic€ andC,. respectively, and these indices
measure the process capability by looking direetlythe proportion of nonconforming in a process.chse of unilateral
specification, the&C; index can be expressed as

Cu=agla, (17)
Ci=agla, (18)
where, in case of binomial procesﬁi!;)J and a'(')‘ are the proportion of nonconforming lots havingcfians beyond the specified

limits fy andf_ respectively that the manufacturer can toleratel, &, (=PNF,) and @ (=PNF.) are the actual proportion of
nonconforming lots having fraction beyofdandf, respectively that can be measured using Equat®nand (5) respectively.

Following the convention for normal distributionelf and Bhattacharya (1998) recommend to cons@(fep 0.0013520'(')‘ .
For unilateral specification, Perakis and Xekaf@ki02, 2005) proposed,. index can be expressed as
Coeu= (1= Py )/(1—pu) (19)
Coar = (1-Pg )/(1-p1) (20)

where, in case of binomial procesp;J and p('; are the desired proportion of lots having fractiecosforming to the specified
limits f, and f_ respectively, angy, and p_ are actual proportion of lots having sample f@uwi conforming tofy, and f_
respectively. It may be noted thatfl, = @, (FPNFR) and ¥p_= 4 (=PNF), and these can be measured using Equations (4)

and (5) respectively. On the other hand, Peraldsxakalaki (2002, 2005) recommend that 0.9973ge@d choice for the desired
proportion of conforming for both sided specificeits and thus, a good choice for the desired prigpodf conforming for one

sided specification is 0.99865. Sor by =0.00135=0; and * py= 0.00135 =a; . Thus, the indices defined by Yeh and
Bhattacharya (1998) and Perakis and Xekalaki (22025) are essentially the same in case of undbsgrecification. Therefore,
C,uindex of a binomial process can easily be estichateerms ofCy, or Cy, index asépu =Cy = Cpcu andCy, index of a binomial

process can easily be estimated in ternSyadr C, index ast| =Gy = Cpc.. Here only theC,., andC, indices are considered for
further analysis.

2.6 Process yield based approach

Maity et al. (2010) proposedC,, index as a measure of process capability. For @itgucharacteristic with both sided
specifications, th€,, index is defined as follows:
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_FU)-F(L)

C
1-ay —ay

py (21)

where,F(U) andF(L) are cumulative probability distribution functiarfi the quality characteristic &tSL andLSL respectively,
and aé’ and a('; are the maximum allowable proportion of nonconfargnat upper tail and lower tail of the distributiohthe
quality characteristic. Here the numeratef)) - F(L), gives the measure of the actual process yiedd gictual proportion of
conforming) and the denominator, (afgu —a’OL) gives the measure of the desired process yiedd ¢fesired proportion of
conforming).

Maiti et al. (2010) suggested that in case of unilateral sjgatibn, the process target should be takert/asand the process

centre should be located such tRajs, ) = [F(U) + F(L)l/2 = % = 0.5. Therefore, for unilateral specifioa, C,, index can be
expressed as
_ FU)-F(w) _ FU)-05
MU 1-ag -F(u) 05-ag

(22)

_F(u,)—-F(L) 05-F(L)
c =\K - 23
MR -al 05-a; @3)

where the value otré,J or a’oL is conventionally taken as 0.00135, and in casa binomial process, the cumulative probability

F(U) or F(L) can be computed by using Equation (5). TherefGggor C, index of a binomial process can easily be estithate
terms ofCpy, Or Cpyi @andCp = Cpy.

3. Proposed procedure for assessing accuracies of the estimated Cp, (or Cp) values

The most important aspects of process capabhilitiges are that the analysts/users can assesstab@roducts' conformance to
the specifications, process centering etc. by emigngithe values of these indices, and accordinglghe can take appropriate
decision. For example, if a product characteriXtiof a product follows normal distribution and thetimated process capability
index C, = 1, it implies that the process is capable todpoe 99.730% conforming products with respect to-swled
specifications; ifC, = Cy, it implies that the process must have been cedtat the midpoint of the two-sided specificatians!
thus, production of 99.730% conforming producterisured. SimilarlyC,, = 1 implies that the process is capable to produce
99.865% conforming products with respect to th8L of X (say, USLy). This interpretation is derived from the followin
relationship:

X — USLy — ¢ USL, — -
PO < USLy) = P gﬁs 2 'q)zP(JEEx%)zP(EEBXCﬂ)

=¢(3xCw)

where £ and@ are the estimates of mean and standard deviafiof tespectively. Therefore, percentage of nonconifogm
products NP%) is predicted as

NP% = 100 xP(X = USL)=100 x [1P(X< USLJ)] =100 x [1-¢ (3 x Cy)] (24)

It may be noted that the concept of predictiorN&¥% is not applicable for a binomial process. Thibétause a binomial
process is described through a discrete-valuedacteaistic and its measurement is typically obtaibg counting number of
nonconforming unitsd) within a given number of sample units).(For a binomial process, the main point of conderthe
quality of the stream of lots produced, and thedoasrpose of process capability analysis for abiral process is to assess if the
process is capable of producing stream of lotsrgafriaction nonconforming less th&nor fraction conforming greater thdn
When the fraction of interest is fraction nonconfiorg, a lot may be called as conforming lot if frection nonconforming in the
lot is less tharfiy, otherwise it may be called as nonconforming $ilar to an assessment about the expeldfeé based on the
estimatedCy, or Cp, value in case of normal process, the analystsusiethe index should be able to guess about theatad
percentage of nonconforming lotsL(%) that may be produced in a given binomial prodxessed on the estimaté, or Cy value
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from the concerned binomial process. Otherwiseginbig the estimate di,, or C, from a binomial process would have little or
no use.

However to the best of our knowledge no such meikogtported in literature which aims to predicpestedNL% in a
binomial process based on the estimatggor Cy value. Equation (24) is also not ideally applieafur prediction oNL% based
on the estimated,, value from a binomial process because fractiorcanforming ) does not follow normal distribution but
follows binomial distribution. But we believed that can get at least an approximate idea aboutcéeghsL% in the continuous
stream of lots produced in a binomial process hyguthe same concept for predictionNP% based on the estimat€g, value,
and so we use Equation (25) for predictioiNa6 (Approx) based on the estimaté, value. On the other hand, tfieue NL%
in the binomial process can be obtained by usingakign (26). ThereforeRrediction error(Approx) for an estimated,, value
can be obtained by Equation (27). TPeediction error(Approx), obtained by Equation (27), may be congdeas a metric for
comparison of the accuracies of the estimdigdzalues obtained by different methods.

Predicted NLY%Approx) = 100 x [1 -¢ (3 x Cpy)] (25)
] Mg — — -
Trudl% = 1- Z( f @-f)" (26)
d=0 \ d
Prediction error(Approx) = Expected NL%Approx) —True NL % (27)

Less is thePrediction error(Approx) for an estimated, value, the accuracy of the estimate may be coreid@ore and better is
the method of estimation of t@,. The advantage of the proposed procedure for singeaccuracy of an estimatéy, value is
that it is simple and the disadvantage is thaptieeedure is based on an approximate measure pfékigtion error.

4. Analysisand related results

Three data sets, published in literature, asdyaed here as three case studies for the purgasesessing the accuracies of the
estimatedC,, values obtained by different methods. In the thcase studies, the sample data are collected friowriial
distributions with population proportions about®.0.06 and 0.10. Sample sizes also varied widetheé three case studies, e.qg.
500, 100, 30.

4.1. Case study 1

Hsieh and Tong (2006) carried out process capglaifiblysis of a lead frame manufacturing process.efhancing yield of the

packaging product, the package fabrication departrfeaistomer) requires that the number of defed@ad frames in their on-

line quality control must be less than ten strips $00 inspection strips, i.g.= 10/500 = 0.02. They carried out the study to ssse
if the lead frame manufacturing process is captbleatisfy the package fabrication department'sirement. For this purpose,
they collected count data on number of defectivipsid) per 500 strips for 30 lots produced in 30 days,ni= 500 andn = 30.

m J—
It is observed that the total number of defectivips Zdi =295. Thus, the average sample fractidn)(is estimated as
i=1

_ " d
f= Z'=1 295 =0.01967

nxm 50Cx30

All the sample fraction§ (i = 1,2,3, ...,m) are plotted in g-chart and the chart indicates that the manufargupirocess is in
control. So this data set is used for estima@pgusing all the six approaches described in Se@ion

Estimation of G, using normal approximation approach

Since the sample size is large enoughk 600) anch f (= 9.833) is greater than 5, the binomial prockda can be approximated

by normal distribution with mearf = 0.01967 and standard deviatio E(l—?)/n )= 0.00621. Thus, using Equation (6),

the estimate o€, is obtained as

Cou= (fu— T )(3x+/ (f (L= F)/N)=(0.02-0.01967)/(3 x 0.00621)=0.0179
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Estimation of G, using percentile based approach

The 50" percentile point (i.e. mediavl) and the 99.865percentile point@, ¢9s6d for the fitted binomial distribution with = 500
andp = 0.01967 are found as 10 and 20 respectivelysTising Equation (8), the estimateGyf is obtained as

Cpu = (nfu— M)/(DO.QQSGS_M) = (10—10)/(20‘10) =0
Estimation of G, using transformation approach

Here it is assumed that binomial probabiptis known to be equal tf = 0.01967. Therefore, transformation techniquectme 1

described in section 2.3 is applied on the sampkevations (5004)(i=1,2,3,...,30) and;(i=1,2,3,...,30) values are obtained.
The USL for fraction defectivef, = 0.02 is also transformed int@ value, which is considered as the equivaldBi for the
transformed values and it is denoted @g. TheQy value is obtained as follows:

Qu = @ {Fe(nfulinp)}
@ { Fa([0.02x500]h=500p=0.01967)}= ¢ *{ F5([10]|n=500p=0.01967)}= ¢ *{0.604}= 0.264
The 6 andSD, are found to be 0.1841 and 0.75 respectively. Timesestimate of,, is obtained as
G Q —-Q _ 0.264- 0.1841= 0.0355
3x SDQ 3x 0.75

Estimation of G, using mapping based approach

Here,n = 500,?= 0.01967f, = 0.02 and iify] = 10. Therefore, using the procedure describeskition 2.4PNR, andZ, are
computed first and then, the estimateCgfis obtained as follows:

10 /500
PNF, =1- z( j(0.0lQGDd (0.98033°? = 0.3959
d=0

d
Zu= ¢ (1L -PNR) = ¢ (1 — 0.3959) =¢ *(0.6041) = 0.264
Cou=C, = (1/3) xZy = (1/3) x 0.264 = 0.088

Estimation of G, using process nonconforming based approach
The value of pg is not specified here and so, as per conventigntaken as 0.99865. This implies that allowablecéptable)
proportion of nonconforming lots is{]p(L)J ) = 0.00135. Here, the sample size 500 and the estimate of binomial parampter

f =0.01967. So, using Equation (4), the actual priiguo of nonconforming lots, Hpy) = @, is found to be 0.3959. Therefore,

C,u is estimated as
Cou = Cpey = 0.00135/0.3959 = 0.0034

Estimation of G, using process yield based approach

Here, the sample size= 500 and the estimate of binomial parampt'fsr? = 0.01967, th&JSL for fraction defective if, = 0.02

and allowable proportion of lots having fractiorfettive more thary is 0.00135. Using Equation (5), the cumulativebadaility
for conforming fractions or lot$;(U) is computed as 0.6041. Therefa@g, is estimated as
Cou = Cpyu= (0.604+0.5)/(0.5-0.00135) = 0.1041/0.49865 = 0.2085
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It may be noted that estimatet), values obtained by the six approaches varies widedr the purpose of assessing relative
accuracies of these estimatBsedicted NL%are obtained separately based on each estind3tedilue using Equation (25). On
the other hand, th@rue NL%in the current process is computed using Equaii®) and it is found to be 39.59%. Then
Prediction errors(Approx) are obtained for all the estimat€p, values using Equation (27). Table 1 shows themesédC,,
values obtained by different method&edicted NL%(Approx) by these estimates and #eediction error (Approx) for these
estimates.

Table 1. Cp, values obtained by different methods andRhediction errors(Approx) for these estimates

Sl. | Approaches foCC,, calculation Estimated| Predicted NL% | True Prediction

No. Cpu value (Approx) NL% | error (Approx)
1 | Normal approximation approach 0.0179 47.86 8.27
2 | Percentile based approach 0.0000 50.00 10.41
3 | Transformation approach 0.0355 45.76 3959 6.17
4 | Mapping based approach 0.0880Q 39.59 0

5 | Nonconforming based approach 0.0034 49.59 10.00
6 | Yield-based approach 0.2085 26.56 13.03

Table 1 shows that thBrediction error (Approx) is minimum (zero) for the estimatég, value obtained by Mapping based
approach, and maximum (13.03) for the estimaigdvalue obtained by yield-based approach. Thisiesphat Mapping based
approach give the best estimate@yf, and Yield based approach results in the worsmesti of C,,. The Prediction errors
(Approx) for the estimated’,, values obtained by all other approaches are albstantially high, which is indicative that
accuracies for these estimates also are quitequuopared to the estimat€l, value obtained by Mapping based approach.

4.2 Case study 2

Montgomery (2009) presented in exercise 7.3 (pp),33 set of process data on total number of paismmputers inspected and
total number of nonconforming personal computereoled in each day over last ten consecutive daysn hie wanted to know if

the process was in control. The plotted fractiomaomforming control chart exhibited that the pracegs in control, and

therefore, it is decided to use the same datarfrgss capability analysis purpose.

In this data set, sample size)(was variable and the average sample sﬁe i6 found to 100, and the average fraction

nonconforming (?) is found to be 0.06. Montgomery (2009) did notafy the USL for the fraction nonconforming. For the

purpose of process capability analysis, here wenassthat f + 2 x fd- f% =0.10 is theUSL for the fraction

nonconforming, i.ef, = 0.10.

Now the C,, values are computed from the same data set udinteasix approaches. Theredicted NL%(Approx) are
predicted based on these estimatgglvalues using Equation (25) and theue NL% in the current process is computed using
Equation (26). Thdrue NL% in the current process is found to be 3.76%. TPrediction errors(Approx) for all the estimated
Cou values are computed using Equation (27). Tableds the estimated),, values obtained by different metho@sedicted
NL% (Approx) and thérediction errors(Approx) for these estimates.

Table2. Cp, values obtained by different methods andRhediction errors(Approx) for these estimates

Sl. | Approaches fo€C,, calculation Estimated Predicted NL% | True Prediction
No. Cpu value (Approx) NL% | error (Approx)
1 | Normal approximation approach 0.5614 4.61 0.85
2 | Percentile based approach 0.7143 1.61 2.15
3 | Transformation approach 0.6716 2.20 376 1.56
4 | Mapping based approach 0.5931 3.76 0
5 | Nonconforming based approach 0.0360 745. 41.95
6 | Yield based approach 0.9273 0.27 3.49
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Table 2 shows that thBrediction error (Approx) is minimum (zero) for the estimaté&g, value obtained by Mapping based
approach, and maximum (41.95) for the estimafgg value obtained by Nonconforming based approaclis Fhplies that
Mapping based approach give the best estima@aind Nonconforming based approach results in thetvestimate o€,,. The
Prediction errors(Approx) for the estimated, values obtained by all other approaches are foote reasonably low and thus
may be considered as acceptable.

4.3 Case study 3

Maravelakis (2016) considered a manufacturing m®eder illustrating his proposed transformationhtgque for binomial data
and subsequent computation of process capabilityxinMaravelakis (2016) collected a totahof 100 samples each of size=
30, and observed the number of nonconforming itét)sn each sample. The fraction nonconforming instheamples are
calculated and plotted ip-chart. The plottedp-chart revealed that the process is in control. TU&®L for the fraction

m
nonconforming isfy = 0.2. The total number of nonconforming items hiede samples is found to tE:di =286 and so, the
i=1
average fraction nonconforming is computed?as 286/(30 x 100) = 0.09533.
Now the C,, values are calculated from the same data set wdirtipe six approaches. Theredicted N6 (Approx) are
computed based on these calculatgglvalues using Equation (25) and fliie NL% in the current process is computed using
Equation (26). Thdrue NL% in the current process is found to be 2.04%. TPredliction errors(Approx) for estimate o€, is

computed using Equation (27). Table 3 shows thienattd C,,, values obtained by different metho@sedictedNL% (Approx)
based on these estimates andRhediction errors(Approx) for these estimates.

Table3. Cp, values obtained by different methods andRhediction errors(Approx) for these estimates

Sl. Approaches foC,, calculation Estimated Predicted NL% | True Prediction

No. Cpu value (Approx) NL% | error (Approx)
1 | Normal approximation approach 0.651 2.546 0.51
2 | Percentile based approach 0.511 6.250 4.21
3 | Mapping based approach 0.682 2.040 204 0

4 | Transformation approach 0.611 3.348 1.13
5 | Nonconforming based approach 0.066 42.130 40.09
6 | Yield-based approach 0.962 0.195 1.85

Table 3 shows that therediction error (Approx) is minimum (zero) for the estimaté, value obtained by Mapping based
approach, and maximum (40.09) for the estimafgg value obtained by Nonconforming based approaclis Fhplies that
Mapping based approach give the best estima@aind Nonconforming based approach results in thetvestimate o€,,. The
Prediction errors(Approx) for the estimated),, value obtained by Percentile based approach acenatted to be quite high. The
Prediction errors(Approx) for the estimated, values obtained by all other approaches are foam reasonably low and thus
may be acceptable.

The Prediction errors (Approx) for the estimated’,, values obtained by different methods in the thtaese studies are
summarized in Table 4. It can be noted from Tabtbat thePrediction errors(Approx) is consistently zero for th&,, values
obtained by the Mapping based approach. On the b, it is found tha®rediction errors(Approx) is consistently high for the
Cpu values obtained by the Nonconforming based apprcEeerefore, it may be concluded that Mappingeteagpproach is the
most appropriate one and Nonconforming based apprisahe most unsuitable one for assessing cafyadila binomial process.
For theC,, values obtained by the other methods,Rhediction errors(Approx) are observed to be inconsistent. It meybted
from Table 4 that th@rediction errors(Approx) for theC,, values obtained by Normal approximation appro&ehcentile based
approach, Transformation approach and Yield bappdoach are quite low in case studies 2 and 3 dthdtantially high in case
study 1. Therefore, it may be concluded that tHese approaches are also not reliable for estimatbC,, for a binomial
process.
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Table4.  C,,values obtained by different methods andRhediction errors(Approx) for these estimates

Sl Approaches foC,, calculation | Prediction errors(Approx) for different estimates @,
No. Case study 1 Case study 2 Case study 3

1 Normal approximation approach 8.27 0.85 0.51

2 Percentile based approach 10.41 2.15 4.21

3 | Transformation approach 6.17 1.56 1.13

4 Mapping based approach 0 0 0

5 Nonconforming based approach 10.00 41.95 40.09

6 Yield-based approach 13.03 3.49 1.85

5. Discussions

The C,, or C, index for a binomial process can be estimatedguséveral approaches. However, results of analysesultiple
data sets in section 4 show that accuracies oétessmates vary widely. It is observed thatPhnedicted NL%Approx) based on
Cpu values obtained by Mapping based approach exawlghes with th@rue NL%in the binomial process in all the three case
studies, and thusrediction errors(Approx) are zero for all the three case studidsis happens because of the following facts. In
mapping based approach, g value is computed by directly mapping the probapitif nonconforming lots to th&-value of
standard normal distribution that results in thexegrobability of nonconforming products and therfala used for prediction of
NL% (Approx) is also truly applicable for the normaltiistributed quality characteristic. If a more appiate formula for
prediction ofNL% in a binomial process can be developed,Riegliction errors(Approx) may not be zero. However, there is no
doubt that Mapping based approach gives the maesiraie estimate d,, or C, for a binomial process.

The results in Table 4 reveal tifaediction errors(Approx) are always very high for the estimate€£gf obtained by Nonconforming

based approach. This implies thedicted NL%based on these estimates differ highly from Thee NL%in the respective
binomial processThe problem with the Nonconforming based approacthat in this approacl@,, (or C,) is estimated as the
ratio of the two very small numbers, where numera®.00135 (acceptable proportion of nonconfogrsts) and denominator
is actual proportion of nonconforming lots havimgction beyondy (or f)). Thus, the estimate is highly impacted due toirrom
deviation in the value of actual proportion frone ticceptable proportion. For example, if actuat@etage of nonconforming lots
is 0.135% then the value @}, is equal to one but if the actual percentage besodr01% then the value 6§, would become as
high as 13.5, which would give a misleading impi@sghat the process is highly capable although mom@conforming lot per
1000 lots are expected in the process. On the dthed, if the actual percentage becomes 0.5% thervalue ofC,, would
become as low as 0.27, which would give again deaing impression that the process capabilityeiy ypoor. Due to the same
reason the estimateth, values in case studies 2 and 3 give an impresbatrtite capability of those processes are very.poor
The results in Table 4 reveal thatediction errors(Approx) are inconsistent for the estimatesQyf obtained by Normal
approximation approach, Percentile based apprdaemsformation based approach and Yield based apprdhe problem with
the Normal approximation approach is that the amupiof the estimate obtained by this method higldgends on the value of

sample sizen) and the average sample fractioEI that is used as an estimate of the populatiopgtmn. Higher is the sample

size @) and greater is the value Df?, more accurate will be the estimate @f, or C, obtained by Normal approximation

approach. The Percentile based approach is a wedpted method for estimation Gf, C,,, or C,, for a process when the quality
characteristic can be described as a continuoushaomal variable. But application of this method @itaining an approximate
estimate ofC,, or C,, of a binomial process (a discrete non-normal mskdoes not work well always. This is becausevétees
of percentile points used in the computation arpr@xmated to the nearest integers only and theahqtercentile values
corresponding to the nearest integers often mdgrdiibstantially from the prescribed percentiluga. As a result, the estimate
of C,, obtained by Percentile based approach sometimgdbawme quite inaccurate. Among the various amtres considered,
the transformation approach is the most complexhatetfor computation of process capability index &binomial process.
However, the results in Table 4 show that accu@icgstimates ofC,, obtained by this method are not good always. This
perhaps the technique for transformation of binbméa into normal data does not work well alwdpsYield-based approach,

the values of the ratio§(U)—-0.5]/(0.5- ag )and [0.5 F(L)]/(O.S—O'OL) are considered as the estimat&€gfandCy, respectively.

Since the vaIuez{)’éJ and a('; are usually taken as 0.00135, the denominatdwiays equal to 0.49865 in both the ratios. On the
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other hand, the values of the numerators in boghratios can be at most 0.5. Therefore, the maximalue ofCy, or Cy in a
process can be 0.5/0.49865 = 1.0027. This implias the estimated,, or C, obtained by Yield-based approach would fail to
make distinction among almost capable processcastble process and highly capable process.

6. Conclusion

Process capability analysis (PCA) is an impdrgaralytic tool frequently employed by the desigigieeers, process managers,
vendors as well as customers. The basic purpoBE€#Afis to assess if a process is capable of met#tangpecified requirements.
In reality, many product characteristics are qaélie in nature and quality of such products isallgudescribed in terms of
fraction nonconforming or fraction conforming inl@. The fraction nonconforming or fraction confang is known to follow
binomial distribution with parameters(sample size) and (population proportion). Measuring capability ob&omial process
implies assessing to what extent the fraction nofaroing (or fraction conforming) in the continuosseam of lots produced
comply withUSL for fraction nonconforming (dcSL for fraction conforming). In this paper, a proceglfor assessing accuracies
of the estimates d,, or C;, obtained by various methods is discussed. Anabyfsisultiple case study data reveals that Mapping
based approach gives the most accurate estim&ig, of C, for a binomial process and Nonconforming basedaguh gives the
most inaccurate estimate Gf, or C, obtained by other methods like Normal approximatpproach, Percentile based approach,
Transformation based approach and Yield based apprare inconsistent and therefore, these estirastasnreliable. Thus, only
the Mapping based approach is appropriate for astigC,, or C, for a binomial process.
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