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Abstract

This paper presents a uniform convergent numerical method for solving singularly perturbed delay reaction-diffusion
equations. The stability and convergence analysis are investigated. Numerical results are tabulated and the effect of the layer on
the solution is examined. In a nutshell, the present method improves the findings of some existing numerical methods reported in
the literature.
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1. Introduction

Singularly perturbed delay differential equations are applicable in the mathematical modeling of various physical and biological
phenomena. For example, micro-scale heat transfers, hydrodynamics of liquid helium, second-sound theory, thermo-elasticity,
reaction-diffusion equations, stability, and a variety of models for physiological processes (File et al., 2017). However, the
treatment of such problems presents severe difficulties that have to be addressed to ensure accurate numerical solutions
(Kadalbajoo and Reddy, 1989). The accuracy of the numerical scheme is increased by increasing the number of grid points
(Kadalbajoo and Ramesh, (2007).

In recent years, various numerical methods for solving delay and other differential equations are presented by different authors.
For example, Ramesh and Kadalbajoo, (2011); Swamy, (2014); Swamy et al., (2015); Gadisa and File, (2019); Phaneendra and
Lalu, (2019); Vaid and Arora, (2019); Melesse et al., (2019); Sahu and Mohapatra, (2019); Chekole et al., (2019) and etc, are
presented different numerical schemes for solving singularly perturbed problems. However, to date, €-uniformly convergent
methods have not been sufficiently developed for a broad class of singularly perturbed delay differential equations (Pratima and
Sharma, 2011).

In this paper, we develop the uniform convergence numerical method to solve singularly perturbed delay reaction-diffusion
equations. The work can also help to introduce the technique of establishing and making analysis for the stability and convergence
of the present method, which is the crucial part of the numerical analysis. Moreover, the present method gives more accurate
results than some currently existing numerical methods reported in the literature. Therefore, this paper is essential for science (such
as mathematics, physics, and engineering) researchers who are working in this area.

2. Mathematical Formulation

Consider singularly perturbed delay reaction-diffusion equation (SPDRDE) of the form:
ey'(X)+a(x)y(x—d)+b(x)y(x) = f(x), 0<x<1 1)
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with the interval and boundary conditions,
y(x)=f (x), —d <x<0ad y()=b 2
where € is small parameter, 0<e <<1 and d isalso small delay parameter, 0<d <<1; a(x), b(x), f(x) and f (X) are

bounded smooth functions in (0,1) and b isagiven constant. The condition of the layer or oscillatory behavior is described in
Fileet al., (2017).

By using Taylor series expansion in the neighborhood of the point X, we have:

y(x—d) ~ y(x)—dy'(x)+o(d") (3)

Substituting Eq. (3) into Eq. (1), we obtain an asymptotically equivalent singularly perturbed two-point boundary value problem of
the form:

Ly(x) = y"(X) + p(X) y'(x) + a(x) y(X) = r (x) (4)
under the boundary conditions,
y(0)=f,and y@D=b. 5)
where, p(Xx) = M, q(x) =M and r(x) =M.
e e e

Using the uniform mesh discretization X = X, +1h, i =0(1)N and making use of Taylor’s series expansions of Y, ,
and y_, upto O(h°), we get the finite difference approximations for y' & ! :

' iv1 ~  Ji h2 m
Y, =—y'*12hy"l eVt (6)

4

where, T1 = _lhE y(S) (Xl) ,for X, € [)9—17 X ]

Y = 2% Yy P o )

d " e
nd 2 27

4
where, T, :—h— Yy (x,), for x, € [%_: %]

360
Substituting Egs. (6) and (7) into Eqg. (4), we obtain:
l h2 "
F(ym—Zyi+yi_1)+%(yi+1—yi_l)—g Py +ay =6+T (®)

h2
where, T :Ey(“) (X,)— pT,—T, isthelocal truncation error and P(X)=p., q(X) =g, r(x)=r, y(x)=y.
Differentiating both sides of Eq. (4) concerning X and evaluating at X; , we get:
yim — rir_ pi yiu_( pi! + qi ) yi/ _ qi!yi (9)
Substituting Eg. (9) into Eq. (8) for Y and using central difference approximation for y" and Y/, we obtain:

L"=Ey, ,-Fy+Gy,=H,, fori=12..,N-1 (10)
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where,

1 p,.p h 2 .p L
o= BB N hyig), EF=X4+P _g-lpg
E| h2 2h+ 6 12 |(p|+q|) i h2+ 3 ql 6 p|q|
2
1 p p° h B h ,
G="+"1+"04+— '+ q and H,=r+—npr’.
e RTLAGARY 6 P

3. Stability and Convergence Analysis

Case 1: Layer Behavior (a(x)+b(x) =q(x) <0, for xe (0,1)).
First, we present the stability of the discrete problemin Eq. (10) for the case of layer behavior.
Lemma 1. The finite difference operator L" in Eq. (10) has the discrete minimum principle, if W is any mesh function such that

W, >0 and L"w <0, foral x (0,1), then W >0 foral xe(0,1).

Proof. Suppose that there exists a positive integer Ksuchthat W, <0 and W, = min w, .
0<i<N

Then, from Eg. (10), we have:

L™ W, = EW, , —FwW + G W,
1 p? 1 p? h ,
= [F"‘%)(Wk-l _Wk)+[F+%J(Wk+l_Wk)+[%+E P ( Pi + )J(Wk+l_wk—l)

h2
+(Qk +€ pqu}Wk

For sufficiently small h (i.e., as h— 0) and for suitable value of p, , we obtain:

2
L"w, > 0. Since, W, < O (by the assumption) and (qk +€ pkql'(] — g, < 0. But, thisisacontradiction.

Hence, W, > 0 foral X, €(0,1).
Theorem 1. Thefinite difference operator L in Eq. (10) isstable for a(X) +b(x) < 0, if W isany mesh function, then

|Wi| sCmax{|w0|, m8>§)|LV\/i|},for some constant C>1.
% (0,

Proof. We define two functions, y ;* = C max {|WO|, m(%lx)|LV\Ii |}i W . Then, we get:
%€(0,1

y 5 =0 and

Ly * Ecqimax{|wo|,$8§)|Lw|}i Lw <0,since a +bh <0=q <0and C>1.

Therefore by Lemma 1, we get:
y >0, foral x €(0,1). =y ECmax{|Wo|, max |vai|}J_rvvi >0.

x€(0,1)

Thus, |w | < C max {|Wo|, m8>§)|vai|}.
%<(0,

This proves the stability of the scheme for the case of layer behavior.
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Case 2: Oscillatory Behavior (a(x)+b(x) = q(x) >0, for xe (0,1)).

Lemma 2. The finite difference operator L™ in Eqg. (10) has the discrete maximum principle, if W, is any mesh function such that
W, >0 and L"w >0, foral x (0,1), then W >0 foral xe(0,1).
Proof. Suppose that there exists a positive integer K such that W, <0 and W, = maxw .

0<i<N
Then, from Eg. (10), we have:

L W, = E W, —FW +Gw,
1 P 1 P h ,
= (F_i_%](wkl _Wk)+[F+%](Wk+l _Wk)+(%+ﬁ Py ( Py + Gk )j(wku_wkl)

h2
+ (Qk +E pquL]Wk

For sufficiently small h and for suitable value of P, , we obtain:

h2
LNWk < 0. Since, W, < 0 (by the assumption) and (qk +€ pkql'(] — g, > 0. But, thisisacontradiction.

Hence, W, > 0 foral X, €(0,1).

Theorem 2. The finite difference operator L in Eq. (10) is stable for a(x) +b(x) >0, (i.e q(x) > 0), if W is any mesh
function, then |W,| < K max {|W0|, m(%)i)|LWi|} , for some constant K >1.
%0,

Proof. The proof is similar to Theorem 1.
This proves the stability of the scheme for the case of oscillatory behavior.

Definition 1 (Uniform Convergence): Let Y be a solution of Egs. (1) and (2). Consider a difference scheme for solving Egs. (1)
and (2). If the scheme has a numerical solution yN that satisfies

[y-y*|=ch,
where C>0and p>0 are independent of € and of the mesh size h, then we say the scheme uniformly converges

to ¥ concerning the norm |||| , (O'Riordan and Stynes, 1991).

Theorem 3. Let Y(X) be the analytical solution of the problem in Egs. (4) and (5) and yN (X) be the numerical solution of the
discretized problem of Eq. (10). Then, Hy— yN H < C h? for sufficiently small h and C is positive constant.

Proof. Multiplying both sides of Eg. (10) by —h?and simplifying, we get:
(<1+u) Y +(2+V) Y, +(-1+W) Yy, +9 +T, =0 (12)

h4
where, T.(h) :Ey(4) (X2)+O(h6) isalocal truncation error, for i =1,2,...,N -1,

h 2 5 3 2 5 5 h4
Uu=—p-—-—p +—p(p+0g), V=—np-ha-—npdad
=5PR-%P 12p.(p. q) =g P -hd-—=ng
h R, h , h?
W=——p-—p —p(p+q), =h*|r+—npr’
(=5 P 12|O.(|0. q) o] g P
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Incorporating the boundary conditionsy, =f (X,) =f,, Yy =Y(@ =Db in Eq. (11), we get the systems of equations of the
form:

(D+P)y+M+T(h)=0 (12)
where,
(2 -1 0 - O] v, w, 0 - 0]
-1 2 -1 -0 u Vv, W, 0
D=0 - -— - P=|l0 - - — | aretri-diagonal matrices of order N —1, and
0 - - -1 2] 10 - = Uy V|

M =[(gl+(—1+ul)f ). 9, gs,---,(gN71+(—1+wal)b)]T,T(h) :O(h“) and
Y=[Yo Yo Vo) T =[T, T, Ty ]T , 6:[0, 0,---,0]T are the associated vectors of Eq. (12).

Let yN = [le RVARES ny] T= y bethe solution which satisfies the Eq. (12), we have:

(D+P)y"+M =0 (13)
Let e =y —y", fori=212,--,N -1 bethediscretization error, then,

y_ yN :[el,%,"',eN_l]T.
Subtracting Eq. (12) from Eq. (13), we get:

(D+P)(y"~y)=T(h @)
Lt |p,|SC1, |pi’|£c2’ |qi|S Ky, |q;|S K,

Let t; bethe (i, j)th element of the matrix P , then:

2
=|w|< h{&+2Cf+r—2Cl(C2+Kl)}, i=12... N—-2

I >

i+l

‘mJ=Mhﬂ{g+DCﬁJfCJQ+KJ} i=23 -, N-1.
2 6 12
Thus, for sufficiently small h, we have:

-1+ ‘t
Hence, the matrix (D + P) isirreducible (Varga, 1962).

<0,i=12,N-2 ad -1+[t;,|<0,i=23 - ,N-1,

ii+1

Let S, be the sum of the dlements of the i row of the matrix (D + P), then:

2 i
S=1+V +W =1+ h(—%)+h2(%—qi]+ h3(—%(pi'+qi)j+ h‘(—%), fori=1

S =u +v +w =h2(—qi)+h“(—%) fori=2,3:,N-2
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P, 2f P 3( B J P9 :
1+u +v =1+h +h +h*| =(p'+q) [+h']| ———= |, fori=N-1
3 (2] (6 qj (12('0' q')] ( 6 j
For sufficiently small h, (D + P)is monotone (Varga, 1962).

Hence, (D + P)flexistsand (D + P)f1 >0.

From the error Eqg. (14), we have:

-1
y-y"|<|(o+P) (15)
For sufficiently small h, we have:
2 .
S > h’K,., fori=12,---,N-1, where K, = min |qg|.
(D + P) be the (I k) element of (D + P)f1 and we define,
N-1
|(D+P)|= max > (D+P);, and [T(h)] = max T (16)
L|<N lk:l I<i<N-1
Since (D + P)I . = 0, then from the theory of matrices, we have:
N-1
(D + P) S =1 1i=12- -1.
k=1
Hence,
N-1 l
(D+P)Ik _ <hz , since 0<e<<1 (17)
k=l Jsrlglr\nlsk Q
where, Q = JerINn1|a‘ +Q|
Now, from Egs. (15) - (17), we get:
y¥ (x 2)} 2 2
y-y h®=Ch (18)
Iyl Y
Yy (x,)
where C = 12 <27 Thus, the present schemeis € -uniform convergent.

4. lllustrative Examples and Results

The presented scheme is validated by taking four numerical examples, two with twin boundary layers and two with oscillatory
behavior. Since those examples have no exact solution, so the numerical solutions are computed using a double mesh principle
(Fileet al., 2017).

Example 1. Consider the SPDRDE with layer behavior,
ey’ (x)+0.25y(x-d)-y(x) =1

under the interval and boundary conditions

y(X)=1, —d <x<0and y(1)=0.
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Table 1. The maximum absolute errors of Example 1, for different valuesof d with € =0.1.
d{ N =100 N =200 N =300 N =400 N =500
Present Method
0.03 2.4645e-05 6.1616e-06 2.7385e-06 1.5404e-06 9.8587e-07
0.05 2.4393e-05 6.0986e-06 2.7105e-06 1.5247e-06 9.7581e-07
0.09 2.3947e-05 5.9872e-06 2.6611e-06 1.4969e-06 9.5799e-07
Resultsin Swamy et al., (2015)
0.03 2.1999e-03 1.1041e-03 7.3705e-04 5.5315e-04 4.4269e-04
0.05 2.2012e-03 1.1049e-03 7.3749e-04 5.5345e-04 4.4293e-04
0.09 2.1999e-03 1.1038e-03 7.3676e-04 5.5289%e-04 4.4247e-04
Table 2. The maximum absol ute errors of Example 1, for different valuesof € with d =0.5e.
el N =2 N=2° N=2° N=2 N=2°
Present Method
-4 1.5070e-03 3.7828e-04 9.4715e-05 2.3685e-05 5.9215e-06
2-5 2.6509e-03 6.6781e-04 1.6749e-04 4.1894e-05 1.0475e-05
26 4.8151e-03 1.2413e-03 3.1158e-04 7.8047e-05 1.9517e-05
277 9.2994e-03 2.4334e-03 6.1499e-04 1.5434e-04 3.8604e-05
-8 1.8030e-02 4.8019e-03 1.2303e-03 3.0956e-04 7.7486e-05
2-9 3.3607e-02 9.3674e-03 2.4542e-03 6.1966e-04 1.5557e-04
210 5.2477e-02 1.8177e-02 4.8372e-03 1.2385e-03 3.1168e-04
Resultsin Swamy et al., (2015)
-4 1.8632e-02 9.6189e-03 4.8865e-03 2.4643e-03 1.2376e-03
25 2.8161e-02 1.4818e-02 7.6255e-03 3.8713e-03 1.9509e-03
26 3.7958e-02 2.0967e-02 1.0977e-02 5.6273e-03 2.8498e-03
27 5.0640e-02 2.8316e-02 1.5267e-02 7.9105e-03 4.0287e-03
-8 6.3580e-02 3.7706e-02 2.0984e-02 1.1012e-02 5.6555e-03
2-9 8.3843e-02 5.0477e-02 2.8297e-02 1.5261e-02 7.9111e-03
210 9.9137e-02 6.3529e-02 3.7660e-02 2.0974e-02 1.1011e-02
Example 2. Consider the SPDRDE with layer behavior,
ey"(x)-2y(x—d)-y(x) =1
under the interval and boundary conditions
y(X)=1, -d <x<0and y(1)=0.
Table 3. The maximum absolute errors of Example 2, for different valuesof d with € =0.1.
dl N =100 N =200 N =300 N =400 N =500
Present Method
0.03 5.5262e-05 1.3819e-05 6.1422e-06 3.4551e-06 2.2112e-06
0.05 6.1292e-05 1.5325e-05 6.8113e-06 3.8314e-06 2.4521e-06
0.09 7.5050e-05 1.8764e-05 8.3405e-06 4.6916e-06 3.0026e-06
Resultsin Swamy et al., (2015)
0.03 3.1674e-03 1.6058e-03 1.0754e-03 8.0837e-04 6.4760e-04
0.05 3.1437e-03 1.5949e-03 1.0685e-03 8.0338e-04 6.4367e-04
0.09 3.0784e-03 1.5660e-03 1.0502e-03 7.9000e-04 6.3310e-04
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Table 4. The maximum absol ute errors of Example 2, for different valuesof € with d =0.5e.

ed N =2 N=2° N=2° N=2 N=2°
Present Method
-4 3.5264e-03 8.9037e-04 2.2369e-04 5.5986e-05 1.4001e-05
2-5 6.2964e-03 1.6598e-03 4.1737e-04 1.0450e-04 2.6149e-05
26 1.1914e-02 3.1276e-03 7.9216e-04 1.9981e-04 4.9993e-05
277 2.1388e-02 5.8351e-03 1.5338e-03 3.8613e-04 9.6851e-05
28 3.2782e-02 1.1174e-02 2.9520e-03 7.5112e-04 1.8935e-04
2-9 4.1139e-02 2.0396e-02 5.6170e-03 1.4743e-03 3.7135e-04
2-10 4.1585e-02 3.1521e-02 1.0818e-02 2.8673e-03 7.3159e-04
Resultsin Swamy et al., (2015)
-4 2.1118e-02 1.1692e-02 6.1941e-03 3.1887e-03 1.6178e-03
25 2.7872e-02 1.6023e-02 8.6367e-03 4.4957e-03 2.2948e-03
276 3.5711e-02 2.1293e-02 1.1869e-02 6.2731e-03 3.2240e-03
27 4.6679e-02 2.8350e-02 1.6107e-02 8.6728e-03 4.5120e-03
278 5.4895e-02 3.6018e-02 2.1373e-02 1.1929e-02 6.2847e-03
29 5.7371e-02 4.7254e-02 2.8581e-02 1.6140e-02 8.6961e-03
2-10 5.7878e-02 5.5695e-02 3.6153e-02 2.1406e-02 1.1956e-02

Example 3. Consider the SPDRDE with oscill atory behavior,

ey"(xX)+0.25y(x—-d)+ y(x) =1
under the interval and boundary conditions

y(X)=1, —d <x<0and y(1) =0.

Table 5. The maximum absolute errors of Example 3, for different valuesof d with € =0.1.

dd N =100 N =200 N =300 N =400 N =500
Present Method

0.03 5.2227e-04 1.3061e-04 5.8052e-05 3.2655e-05 2.0899e-05
0.05 5.1649e-04 1.2916e-04 5.7409e-05 3.2293e-05 2.0668e-05
0.09 5.0518e-04 1.2634e-04 5.6156e-05 3.1588e-05 2.0217e-05
Resultsin Swamy et al., (2015)

0.03 2.5991e-03 1.2872e-03 8.5528e-04 6.4039e-04 5.1179e-04
0.05 2.6270e-03 1.3013e-03 8.6474e-04 6.4750e-04 5.1749e-04
0.09 2.6813e-03 1.3289e-03 8.8320e-04 6.6139e-04 5.2863e-04

Example 4. Consider the SPDRDE with oscillatory behavior,

ey () +y(x-d)+2y(x) =1

under the interval and boundary conditions

y(X)=1, —d <x<0and y(1) =0.

Table 6. The maximum absolute errors of Example 4, for different values of d with € = 0.1.

dd N =100 N =200 N =300 N =400 N =500
Present Method

0.03 8.3415e-04 2.0833e-04 9.2578e-05 5.2071e-05 3.3324e-05
0.05 8.8299%e-04 2.2050e-04 9.7980e-05 5.5110e-05 3.5269e-05
0.09 9.7538e-04 2.4370e-04 1.0828e-04 6.0909e-05 3.8980e-05
Resultsin Swamy et al., (2015)

0.03 1.5929e-02 7.4850e-03 4.8816e-03 3.6202e-03 2.8764e-03
0.05 1.5470e-02 7.2782e-03 4.7473e-03 3.5209e-03 2.7975e-03
0.09 2.1396e-02 1.0097e-02 6.5922e-03 4.8916e-03 3.8879e-03
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Fig. 1. The numerical solution of Example 1

y-numerical solution

— d=0.03
- - -'d=005
d=0.09

Fig. 2. The numerical solution of Example 2

with e = 0.01. with e = 0.01.
18 3 T T T T T T T T o
1.6 d=0 n II||
A ol | --- d=0.003 n oy
1.4 L |
d=o0 Ly
1.2 - - - d=0003 N
I N\
! 1
[/ [

y-numerical solution
o
e}
y-numerical solution

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3. The numerical solution of Example 3 Fig. 4. The numerical solution of Example 4
with @ = 0.001. with @ = 0.001.

5. Conclusion

The parameter uniform numerical method for solving singularly perturbed delay reaction-diffusion equations with twin layers

and oscillatory behavior has been presented. The stability and £-uniform convergence of the scheme are investigated and
established well. The numerical solutions are tabulated in terms of maximum absolute errors and observed that the present method
improves the findings of Swamy et al., (2015). Furthermore, the effect of layer behavior on the solution is investigated. Concisely,
the present method gives more accurate solution and is uniformly convergent for solving singularly perturbed delay reaction-
diffusion equations with twin layers and oscillatory behavior.
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