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Abstract 
 
    This paper deals with the qualitative analysis of the system of nonlinear ordinary differential equations describing the 
interaction between cancer and immune cells during immunotherapy. Mathematical analysis of the model equation with regard 
to boundedness of solutions, nature of equilibria and their local and global study is done. Numerical analysis is performed to 
support analytical findings. It is observed that cancer cell population decrease considerably due to proliferation of lymphocytes 
mediated by immunotherapy. It is found from our analysis that cancer population can be controlled easily if cancer is 
immunogenic that is, cancer cells possess distinctive surface markers called tumor-specific antigens. Further, time delay in 
production of immuno-agents due to the presence of antigenic cancer cells is studied and critical value of delay for which 
stability switch occurs is determined. 
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1. Introduction 
 
   The generic word “cancer” denotes an entire family of high-mortality diseases each differing from the other, but all characterized 
by a remarkable lack of symptoms (Clark et al, 1990; Kolev, 2003; Loose, 2009; Marrari, 2007; Preziosi, 2003, Pekham, 1995; de 
Vito Jr., 2005). It may also be classified as nonlinear since it reflects a considerable number of intra-cellular and inter-cellular 
phenomena that are strongly nonlinear and time varying. Consequently, the behavior of “cancer” is anti-intuitive (Alberto 
d’Onofrio, 2008). This inherent nonlinearity is the main reason of deaths due to cancer despite the enormous strides in prevention 
and cure (D’Onofrio, 2008). For these reasons, methods of modern mathematical physics, and in particular the theory of finite and 
infinite dimensional dynamical systems, may play an important role in oncology of the 21st century, both from a theoretical point 
of view and also in the clinical practice, by means of appropriate model-based decision support systems (Alberto d’Onofrio, 2008). 
   Variety of the literature on mathematical modeling of cancer is present (Dunn et al., 2004; Bellomo et al., 1994, 2004, 2006, 
2008; Bellomo and Bellouquid, 2006, 2007; Bellomo, 2008, Bianca  and Bellomo, 2010; Bellomo, Li, and Bianca 2008; Paulsonn, 
2005; Oden et al., 2010 ). In this paper, we shall focus on the interactions within the cancer cells and the cells of the immune 
system (Kolev, 2003, 2005, Banerjee, 2008, Kipp, 2007; McNeel, 2008; Nani and Freedman, 2000) with the effect of 
immunotherapy on it.  The interactions between tumor and immune cells can be modeled by a nonlinear dynamical system which 
identifies the evolution of the number of cells belonging to different interacting populations, tumor cells and immune system cells, 
at different scales: molecular, cellular and macroscopic. Several authors (Bellomo et al., 2004, 2006, 2008; Bellomo and 
Bellouquid, 2006, 2007; Bellomo, 2008, Bianca and Bellomo, 2010) have applied the methods of the classical mathematical 
kinetic theory of gases to study the immune competition with special attention to cancer phenomena. In this approach, one has to 
take account of statistical averages and stochastic parameters, typical of macromodels. Other authors (D’Onofrio, 2005, 2006, 
2007, 2008; Kuznetsov, et al., 1994, 2001; Stepanova, 1979; Tao, 2007) have proposed mathematical models based on nonlinear 
differential equations, which generalize the classical Lotka-Volterra equations. These equations, as known, follow from a 
deterministic approach on a microscale. In some recent papers (D’Onofrio, 2008; Cattani and Ciancio, 2007, (a and b), 2008; 
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Cattani, Ciancio and Lods, 2006), a hybrid model was proposed which can be considered as an alternative method between the 
above two approaches, aiming to mix the two scales into a unique set of equations, the hybrid model. In this model, a system of 
nonlinear ordinary differential equations are coupled with a stochastic parameter generated by the (kinetic) interaction between the 
tumor cells and the immune system (Cattani and Ciancio, 2008). Further, Dolfin and Criaco (2011) studied a macroscopic 
phenomenological model for the T cell mediated immune response due to a single type of antigen challenge is developed in the 
framework of the thermodynamic theory of fluid mixtures.  
   In our paper, we study a generalized mathematical model on cancer growth and its treatment as a deterministic model. The 
general framework of such types of models is proposed by Nani and Freedman (2000) and Alberto d’Onofrio, 2008 that is mainly 
a Lotka–Volterra-like prey-predator model and the assumption that there exists a cancer free equilibrium. We consider the predator 
is T-lymphocytes and cytotoxic macrophages/ natural killer cells of immune system that attacks, destroys or ingests the cancer cell. 
The preys are the cancer cells that are attacked and destroyed by the immune cells. The predator has two stages, hunting and 
resting through which it destroys the prey. The cancer cells are caught by macrophages which can be found in all tissues in the 
body and circulate round in the blood system (Sarkar and Banerjee, 2005; Dingli et al., 2006). Macrophages absorb tumor cells, eat 
them and release series of cytokines which activates the resting T-lymphocytes that coordinates the counter attack. The resting 
cells can also be directly simulated to interact with antigens. These resting cells cannot kill cancer cells, but they are converted to a 
special type of T-lymphocyte cells called natural killer or hunting cells and begin to multiply and release other cytokines that 
simulate more resting cells. This conversion between hunting and resting cells result in degradation of the resting cells and an 
activation of hunting cells. The process of natural immune attack against cancer cells is not always sustainable and therefore 
several techniques and methodologies have been developed to enhance natural immune response against cancer. This method of 
treatment of cancer is called immunotherapy.  
   We include the effect of immunotherapy in our paper as it has been approved for use in various types of cancers like breast 
cancer, melanoma, renal cell carcinoma, leukemia, and other hematologic and solid tumors (Rescigno, 2007). Freedman (2000) 
studied a general mathematical model of cancer treatment by immunotherapy. They discussed general principles of cancer 
immunotherapy and the model equations and hypotheses. Sandip Banerjee, Ram Rup Sarkar, 2008 also studied tumor immune 
interactions. They classified the immune system into two subclasses, namely, the hunting cells (cytotoxic T lymphocytes) and the 
resting cells (T Helper cells) to demonstrate underlying defense mechanism of the immune system. However, above-mentioned 
research papers did not consider the effect of presence of cancer cells in induction of primary immune response in the body. We, 
therefore, assume that proliferation of immune cells depends on the number of cancer cells in our model. Further, time delay in 
production of immuno-agents due to the presence of antigenic cancer cells is also studied as any process is not instantaneous and it 
is imperative to consider the effect of time delay on the dynamical system, which is the novel feature of our model. Keeping this in 
mind, we analyze a basic general mathematical model with three variables given by cancer cells )(tx , hunting cells )(ty  and 
resting cells )(tz  using a system of nonlinear ordinary differential equations. 
 
2. Mathematical model 
 
   The immune system presents a very complex entwining of cells to formulate a mathematical model. We present a very basic and 
general mathematical model consisting of nonlinear ordinary differential equations to discuss the interaction among cancer and 
immune cells of the body. Our approach is developed at the super-macro-scale where heterogeneity at the cellular scale is 
neglected (Dolfin and Criaco, 2011).  Our model consist of three variables namely cancer cells )(tx , hunting cells )(ty  and resting 
cells )(tz . Each equation of the system represents the rate of change of a variable with respect to time. Thus, the final form of 
mathematical model is 

              
),()()( yxhxDxB

dt
dx

−−=  

              
),()(),( 111 yxhydzyfQ

dt
dy βα −−+=

                                                                                                     (2.1)
 

              
)(),()( 222 zdzyfxQ

dt
dz αηθ −−+=  

              ,0)( 00 ≥= xtx  ,0)( 00 ≥= yty  .0)( 00 ≥= ztz  
We assume that cancer cells are proliferating at the rate )(xB  defined as the birth rate and dying at the rate )(xD . 1Q  and 

2Q  are the proliferation rate of hunting and resting cells respectively due to external infusion of immune cells during 
immunotherapy. 1α , 2α , η  and β  are the positive constants. In addition, our model is based on following hypothesis given 
below:  

 H1: There do not exist negative solutions )(tx , )(ty  and )(tz for non-small t, since they are physically unacceptable, so that 
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0)( ≥tx 0)( ≥ty and 0)( ≥tz  t∀  
 H2:The term ),( zyf  represents the conversion of resting stage to hunting stage of lymphocytes and is characterized by   
               ,0,0  ,0),( >>> zyzyf y   ,0,0  ,0),( >>> zyzyf z     ,0),0( =zf  0)0,( =yf  
H3: ),( yxh represents the cancer cell destruction by hunting cells due to stimulation by resting cells. It may be assumed that  
               ,0,0  ,0),( >>> yxyxhx   ,0,0  ,0),( >>> yxyxhy  

0  ,0),0( >= yyhy  

               ,0  ,0),0( >≠ yyhx        ,0),0( =yh  . 0)0,( =xh  
H4: )(1 yd  and )(2 zd represent the elimination of hunting and resting cells respectively.  

               
,0)0(2,1 =d   ,0,0)0(1 >=′ yd  0,0)0(2 >=′ zd  

H5: )(xθ  is the induction of primary immune response against cancer in resting cells that is assumed to be a function of cancer 
cells population in the body. It satisfies following conditions:  

              ,0)0( =θ   ,0,0)( >>′ xxθ  .0,0)( =≠′ xxθ  
H6: The birth and death rates of cancer cells are based on following assumptions: 

             ),0()0( DB = ,0)(,0)( >′>′ xDxB ,0)0(,0)0( >′>′ DB and there exist a value 0>K such that  
             )()( KDKB = and ).()( KDKB ′<′  
 
3. Boundedness 
 
Here we show that system (2.1) is bounded. 
Theorem 3.1: All solutions of system (2.1) with initial values in 3

+R
 

are bounded in the region Ω defined by          

⎭
⎬
⎫

⎩
⎨
⎧

>
+

≤≤<−≤≤≤≤∈=Ω + 0,
)(

)(0,0,)(0,)(0,),,( 2
2

2
1

1

13 η
η
θ

η
η

KQ
tz

Q
tyKtxRzyx

 
Where,  

              ( ))(
~

min),(
~

maxmax 111 ydzyf αη −=   
              0)(

~
min 222 >= zdαη  

Proof: Let 00 >x , considering first equation of model (2.1) we have  

            
),()()( yxhxDxB

dt
dx

−−=
 

            
)()( xDxB

dt
dx

−≤
 

But by hypothesis H6, there exist a value 0>K  such that )()( KDKB = . Thus, ),max()( 0xKtx ≤  
We note that 0<

dt
dx  for Kx > and hence, 

Ktx
t

≤
∞→

)(suplim  

Let us now consider second equation of system (2.1) 

            
),()(),( 111 yxhydzyfQ

dt
dy βα −−+=

 

            
)(),( 111 ydzyfQ

dt
dy α−+<

 

                  
)(

~
min),(

~
max 111 ydyzyfyQ α−+<

 where ),,(
~

),( zyfyzyf = )(
~

)( 11 ydyyd =  

Now, ( ))(
~

min),(
~

maxmax 111 ydzyfyQ
dt
dy

α−+<  

            ( ))(
~

min),(
~

maxmax 111 ydzyf αη −=  

We assume that )(
~

min),(
~

max 11 ydzyf α< or ( ))(
~

min),(
~

maxmax 111 ydzyf αη −=  
Thus, we have  



Agarwal and Bhadauria / International Journal of Engineering, Science and Technology, Vol. 5, No. 1, 2013, pp. 66-84 

 

69

 

              tey
Q

y 1
0

1

1 η

η
+−≤  

this implies that, 

             ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≤ 0

1

1 ,max y
Q

y
η

 

or        
1

1)(suplim
η
Q

ty
t

−≤
∞→

 , .0,0 01 ≥< yη  

Similarly, if 00 >z , third equation of the model gives 

             
)(),()( 222 zdzyfxQ

dt
dz αηθ −−+=

 

             
)(

~
min)( 222 zdzKQ

dt
dz αθ −+<

 
             )(

~
)( 22 zdzzd = . 

Now, if 0)(
~

min 222 >= zdαη  
we have,  

              tez
KQ

tz 2
0

2

2 )(
)( η

η
θ −+

+
≤  

this implies that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
≤ 0

2

2 ,
)(

max)( z
KQ

tz
η
θ

 

and hence, 

              
.)()(suplim

2

2

η
θ KQtz

t

+
≤

∞→
 

This proves the boundedness of the system 

 

4. Equilibrium Analysis 

   Equilibrium is a constant solution of the system of differential equations. Geometrically, equilibrium is a point in the phase plane 

that is the orbit of a constant solution. There are two possible equilibria of the system (2.1): 
),,0( zyE  and ),,( ∗∗∗∗ zyxE  

Equilibrium ),,0( zyE  is obtained by solving the following system of differential equations, 

             
)(),( 111 ydzyfQ

dt
dy α−+=

                                                                                                                      (4.1)
 

             
)(),( 222 zdzyfQ

dt
dz αη −−=

 
            ,0)( 00 ≥= yty .0)( 00 >= ztz  
 
Theorem 4.1: Consider system (4.1), let  

             0),(max1 ≥= zyfP                                                                                                                                   (4.2) 

             ( ) .0)(min),(minmin 22112 >= zdydP αα                                                                                                (4.3) 
Then, 

             
( ) .

)1(
)()(suplim

2

121

P
PQQ

tzty
t

η−++
≤+

∞→
 

Proof: Let us choose a function  
              .zyM +=                                                                                                                                                 (4.4) 
Differentiating (4.4) with respect to t, we have                                                                
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)()(),(),()(

221121 zdydzyfzyfQQ
dt

zyd
dt

dM ααη −−−++=
+

=
 

 

                            
)(

~
min)(

~
min),(max)1( 221121 zdzydyzyfQQ ααη −−−++≤

 

              
( ))(

~
min),(

~
min)()1( 2211121 zdydzyPQQ ααη +−−++≤

 
              

.)1( 2121 MPPQQ −−++≤ η
 This implies that 

             2

121 )1(
)(suplim

P
PQQ

tM
t

η−++
≤

∞→  
or  

            
( ) .

)1(
)()(suplim

2

121

P
PQQ

tzty
t

η−++
≤+

∞→
. 

Thus we have shown that system (4.1) is dissipative under conditions (4.2) and (4.3) in Theorem 4.1. 

 
Lemma 4.1: Equilibrium ),,0( zyE exists if  

            ( ) ( ) 0)(1)( 222111 =−+− zdQydQ α
η

α as ∞→t . 

Proof: ),,0( zyE is the solution of the system (2.1) if it satisfies the right hand side of (4.1) that is, 
            0)(),( 111 =−+ ydzyfQ α                                                                                                                           (4.5)    
            0)(),( 222 =−− zdzyfQ αη                                                                                                                        (4.6)     

We have shown that system (4.1) is dissipative under conditions (4.2) and (4.3) in theorem (4.1). 
Now from (4.5) and (4.6) we have, 

( ))(),( 111 ydQzyf α−−=  

             ( ).)(1
222 zdQ α

η
−=                                                                                                                       (4.7) 

Equation (4.7) gives ( ) ( ) 0)(1)( 222111 =−+− zdQydQ α
η

α  

This proves the lemma. 
 
Existence of Interior Equilibrium ),,( ∗∗∗∗ zyxE : 

Interior equilibrium ),,( ∗∗∗∗ zyxE  of system (2.1) exists if it satisfies the right hand side of  its equations, that is  

              0),()()( =−− ∗∗∗∗ yxhxDxB                                                                                                                   (4.8) 

              0),()(),( 111 =−−+ ∗∗∗∗∗ yxhydzyfQ βα                                                                                                                     (4.9)        

              )(),()( 222
∗∗∗∗ −−+ zdzyfxQ αηθ                                                                                                                               (4.10) 

within the region Ω . 

We will prove the existence of ),,( ∗∗∗∗ zyxE  by persistence analysis in a subsequent section. 
 

5. Stability Analysis of Equilibria 
 
   We now discuss local or linearized stability of system (2.1) about its equilibria. For this, we compute eigenvalues of the Jacobian 
matrix of linearized system of (2.1). Negative eigenvalues of the variational matrix about equilibrium implies local asymptotic 
stability of that equilibrium. The general variational matrix of the system about an arbitrary equilibrium is given by 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′−−−′
−′−−

−−′−′

=
)(),(),()(

),(),()(),(),(
0),(),()()(

)(

22

11

zdzyfzyfx
zyfyxhydzyfyxh

yxhyxhxDxB
EV

zy

zyyx

yx

αηηθ
βαβ  

5.1 Local Stability of Cancer Free Equilibrium ),,0( zyE : 

 Using hypothesis H1-H6, the variational matrix of the system due to linearization of system (2.1) about ),,0( zyE  is 
expressed as  

              .
)(),(),()0(

),()(),(),0(
00),0()0()0(

)(

22

11

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′−−−′
′−−

−′−′

=
zdzyfzyf

zyfydzyfyh
yhDB

EV

zy

zyx

x

αηηθ
αβ                                     (5.1) 

The eigenvalues of the variational matrix )(EV  are given by  
              ),,0()0()0(1 yhDB x−′−′=λ                                                                                                                    (5.2) 
and by the roots of the quadratic equation 
  { } ( )( ) 0),(),(),()()(),(),()()(),( 11222211

2 =+−′′++−′+′++ zyfzyfzyfydzdzyfzyfzdydzyf zyyzyz ηααηααηλλ                                      

By the Routh Hurwitz criteria (Gradshteyn and Ryzhik, 2000), the eigenvalues of variational matrix )(EV have negative 
real parts if  
              0),()()(),( 2211 >−′+′+ zyfzdydzyf yz ααη                                                                                             (5.3) 
              ( )( ) .0),(),(),()()(),( 1122 >+−′′+ zyfzyfzyfydzdzyf zyyz ηααη                                                            (5.4)  

Thus, if conditions (5.2), (5.3) and (5.4) are satisfied then the equilibrium ),,0( zyE is locally asymptotically stable 
equilibrium. 

Remark 1: We note that the equilibrium ),,0( zyE is a hyperbolic saddle point (Freedman and Mathsen, 1993) if 
0),0()0()0(1 >−′−′= yhDB xλ and 2λ , 03 <λ . In other words, we can say that ),,0( zyE is repelling in the −x direction in this 

case. And ),,0( zyE is a hyperbolic source if 0),0()0()0(1 >−′−′= yhDB xλ  and 2λ , 03 >λ . 

Remark 2: Equilibrium ),,0( zyE  demonstrate the scenario in which all the cancer cells are killed. In this case, the immune 
system expels the cancer cells thoroughly out of the body. 

Let us now determine the existence of an interior equilibrium, suppose equilibrium ),,0( zyE exists and is a unique hyperbolic 

point repelling in the −x direction. Further assume that neither periodic nor homoclinic orbits exist in the planes of 3
+R  that is, 

[ ]∫ >−′−′
T

x dtyhDB
0

0),0()0()0(  

and system (2.1) is bounded then by the definition of uniform persistence given by Butler et al, 1986; Freedman and Rai , 1987, 
1995, 

0)(inflim >
∞→

tx
t  

0)(inflim >
∞→

ty
t  

.0)(inflim >
∞→

tz
t

 

In particular, the system (2.1) exhibit uniform persistence and a positive interior equilibrium of the form ),,( ∗∗∗∗ zyxE exists. 
We now study the linearized stability of this equilibrium. 
5.2 Local Stability of Interior Equilibrium ),,( ∗∗∗∗ zyxE : 

Using assumptions H1-H6, the variational matrix of the system due to the linearization of the system (2.1) about 
),,( ∗∗∗∗ zyxE  is expressed as  
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              .
)(),(),()(

),()(),(),(
0),(),()()(

)(

22

11

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′−−−′
′−−

−−′−′

=
∗∗∗∗∗∗

∗∗∗∗∗∗∗

∗∗∗∗∗∗

∗

zdzyfzyfx
zyfydzyfyxh

yxhyxhxDxB
EV

zy

zyx

yx

αηηθ
αβ                 (5.5) 

The eigenvalues of the variational matrix )( ∗EV  are given by the cubic equation 

                ,032
2

1
3 =+++ AAA λλλ                                                                                                                       (5.6) 

where, 
              )()(),(),(),(),()()( 22111

∗∗∗∗∗∗∗∗∗∗∗∗ ′+′++−++′+′−= zdydyxhzyfzyfyxhxDxBA yyzx ααβη                    

             ( ) ( )),()(),()(),()(),( 1122112
∗∗∗∗∗∗∗∗∗∗∗ +′+−′++′= yxhydzyfzdyxhydzyfA yyyz βααβαη  

        ( )( )),()()(),(),()()( 2211
∗∗∗∗∗∗∗∗∗∗ +′+′+−′+′−+ yxhzdydzyfzyfxDxB yyz βααη  

         ( ))()(),(),(),( 2211
∗∗∗∗∗∗∗∗ ′+′+−+ zdydzyfzyfyxh yzx ααη  

             ( )
( )( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

′+−′+
+′+′−=

∗∗∗∗

∗∗∗∗∗∗∗∗

∗∗∗∗

),(),(

)(),(),()(),(
),()()(

1122

3
zyfzyf

ydzyfyxhzdzyf
yxhxDxBA

yz

yyz

x
η

αβαη
 

        ( ) ).,(),()()(),(),(),( 22
∗∗∗∗∗∗∗∗∗∗∗∗ ′+′+− yxhzyfxzdzyfyxhyxh yzzyx θαηβ  

By the Routh Hurwitz criteria (Gradshteyn and Ryzhik, 2000), the eigenvalues of variational matrix )( ∗EV have negative 
real parts if  
               0,0 31 >> AA     and   .0321 >− AAA                                                                                                      (5.7) 

Thus, if condition (5.7) is satisfied then the interior equilibrium ),,( ∗∗∗∗ zyxE  is locally asymptotically stable.  

Remark: Equilibrium ),,( ∗∗∗∗ zyxE  represents the scenario in which the immune system is unable to eliminate cancer cells but 
is able to control the lethal proliferation of cancer cells. 
  
6. Global Stability Analysis 
  
   In this section, we derive global stability of the equilibria by choosing a Liapunov function and finding conditions for its 
derivative with respect to time to be negative definite. We use following two lemmas to prove global stability of the system used in 
by Nani and Freedman (2000). 
Lemma 6.1: Let Liapunov function V be expressed as AXXV T=  where, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nx

x
x

X
.
.
2

1

, [ ] n
n RxxxX ∈= ..21  

and A  be a symmetric nn×  matrix over R  is negative definite if  
1. AXX T  is negative definite  
2. AXX T  is negative if A  is negative definite. 
3. A  is negative definite if the eigenvalues of polynomial 0),( =−= nIAAg λλ  has negative real parts. 

Frobenius in 1876 gave an alternative method to prove V  to be negative definite in the following lemma: 
Lemma 6.2: (Frobenius 1876) Let 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nx

x
x

X
.
.
2

1

, [ ] n
n RxxxX ∈= ..21  
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and let A  be a symmetric nn×  matrix over R . Then the real quadratic form AXX T  is negative definite if A  is negative 
definite. In particular, a necessary and sufficient condition for the real symmetric matrix A  to be negative definite is that the 
principal minors of A  starting with that of the first order be alternately negative and positive. 

6.1 Global Stability of Cancer Free Equilibrium: 
 
Let us choose the Liapunov function  

                2
2

2
1 )(

2
1)(

2
1 zzkyykxV −+−+=                                                                                                        (6.1) 

The derivative of V  with respect to time t is given by 
              .)()( 21 zzzkyyykxV &&&& −+−+=                                                                                                                (6.2) 
Using )()()( xxgxDxB =− ,  

),,(),( 1 yxxhyxh =  
),(),( 21 yxyhyxh = and equations of the system (2.1) in equation (6.2) we have, 

              ( ) ( ) ( ))(),()()(),()(),()(),()( 222211112 zdzyfxQzzkyxhydzyfQyykyxyhxgxV αηθβα −−+−+−−+−+−=&  
( ) ( ) ( ) ( )

( ) ( ))()()(),()(),(),()(

)()()(),(),()(),(),(),()(

222221221

11111222

zdzdzzkyxhyyykxyxhyyxyhyykx

ydydyykzyfzyfyykyxhyxyxhyyxyhxxgx

−−+−−−−−

−−+−−+−−−=

αββ

α
                                   

( ) ).()(),(),()( 22 xzzkzyfzyfzzk θη −+−−−                                                                                     (6.3) 

Writing (6.3) as AXXV T=&                                                                                                                                     (6.4) 

where   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

zz
yy

x
X  , A is a real symmetric matrix defined by { }

3,1 ≤≤
=

jiijaA  , 

with      

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

332313

232212

131211

2
1

2
1

2
1

2
1

2
1

2
1

aaa

aaa

aaa

A  

and        2
3323

2
221312

2
11 )())(()()()( zzazzyyayyazzxayyxaxaV −+−−+−+−+−+=&  

                  
Where, 

x
yxhyxg

a
),()( 2

11
−

=  

),(),(),(
21

22
12 yxyhk

yy
yxhyyxyha β−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=  

x
xk

a
)(2

13
θ

=  

( )
yy

ydydka
−
−

=
)()( 1111

22
α

 

( ) ( )
yy

zyfzyfk
zz

zyfzyfk
a

−
−

−
−
−

=
),(),(),(),( 21

23
η

 

( )
zz

zdzdka
−
−

−=
)()( 2222

33
α

. 

Thus, by the Frobenius theorem (Nani and Freedman, 2000) and the hermiticity of matrix A , the matrix A  and hence the 
quadratic form (6.4) is negative definite if the following criteria hold, 
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Thus, we have the following theorem for the global stability of the cancer free equilibrium: 
 

Theorem 6.1: The cancer free equilibrium ),,0( zyE  is globally asymptotically stable if conditions (6.5) are satisfied. 
Remark: Global asymptotic stability of the cancer free equilibrium ),,0( zyE gives criteria for total success of therapy in 
eliminating cancer cells from human body. In such cases the immune system fights well with the cancer cells such that they are not 
able to proliferate and spread. 
 
6.2 Global stability of Interior equilibrium  
 
Let us consider a Liapunov function 
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Derivative of V  with respect to time t is given by 
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Equation (6.9) can be written as, 
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Thus, by the Frobenius theorem and hermiticity of matrix B , the matrix B  and hence the quadratic form (6.9) is negative 
definite if the following criteria hold, 
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From the above computations, we have the following theorem for the global stability of interior equilibrium: 
Theorem 6.2: The interior equilibrium ),,( ∗∗∗∗ zyxE  is globally asymptotically stable if conditions (6.10) are satisfied. 

Remark: Global stability of equilibrium ),,( ∗∗∗∗ zyxE  infers that cancer cells proliferate and attain a particular equilibrium level 
in the human body. In this case, although therapy is not able to eliminate cancer cells from the body yet it is effective in controlling 
the cancer cells and reducing them to a lowest possible limit. Thus, immunotherapy would be most effective in the case it is able to 
reduce the number of cancer cells in the body to lowest equilibrium value.  
 
7. Mathematical Model with Time Delay 
 

Time delay is the inherent property of the dynamical systems and plays an important role in almost all branches of science 
and particularly in biological sciences (e.g., population dynamics, epidemiology, etc.). The importance derives from the fact that 
many of the phenomena around us do not act instantaneously from the moment of their occurrence. There is always a time lag 
between the moment an action takes place and its effect is observed. Models that are more realistic should include some of the past 
states, i.e., a real system should be modeled by differential equations with time delays. Therefore, we consider time delay in 
production of immuno-agents due to the presence of antigenic cancer cells. Our model with time delay is as given below: 
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To determine stability of the system with delay we consider the following variational matrix of the system (7.1) at 
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The characteristic equation for the variational matrix )(EV is given by  
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where,  
              11 AA =                    

             22 AA =  

             433 AAA −=  

             ),(),()(4
∗∗∗∗∗′= yxhzyfxA yzθ  

The eigenvalues are the roots of the characteristics equation (7.2) of the system that has infinitely many solutions. We wish to find 
the periodic solutions of the system as existence of periodic solutions is relevant in cancer models. For the periodic solutions 
eigenvalues will be purely imaginary so we substitute ωλ i=  in equation (7.2).We get the following system of transcendental 
equations on separating the real and imaginary parts of the resulting equation. 
              ωτω cos43

2
1 AAA =−                                                                                                                              (7.3) 

              ωτωω sin3
42 AA =−                                                                                                                              (7.4) 

Eliminating τ between (7.3) and (7.4) we get 
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Substituting P=2ω in (7.5), we get a cubic equation given by 
           0~~~)( 32

2
1

3 =+++= MPMPMPPφ                                                                                                            (7.6) 

Now (7.6) will have a unique positive root if 0~
1 >M  and .0~

3 <M                                                                      (7.7) 

Since, the existence condition for interior equilibrium E holds true, we have the condition for 1
~M to be positive and 3

~M to be 
negative. The condition for the existence of positive root ensures that a purely imaginary root of (7.2) can be obtained and a stable 
periodic solution of the system can be observed in the presence of time delay. Thus, we can say that there is a unique positive root 

0ω  satisfying (7.6), if (7.7) holds. Then, the characteristic equation (7.2) has a pair of purely imaginary roots of the form  .0ωi±  
From (7.3) we have, 
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For ,0=τ ∗E  is stable if (5.7) holds. Hence by Butler’s lemma given in (Freedman and Rao, 1983), ∗E remains stable for 0ττ <   
We also observe that the conditions for Hopf-bifurcation (Hale and Lunel, 1993)are satisfied if condition (7.7) holds, that is, 
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This signifies that there exists at least one eigenvalue with positive real part for 0ττ > .    
                                                                                                                                                                       
8. Numerical Simulation 
 
Let us consider the following system to justify the analytical findings 
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We note that all the hypothesis H1-H6 hold for the particular form of functions in (8.2).  
 
Choosing the following set of hypothetical parameters to justify analytical findings in system (8.1),  
              ,1.0 and 01.00.2,  0.8, ,2 ,1 ,2.0 ,2.0 ,1.0 ,5.0 ,5 21212211 =========== ααπ bQQbabar         (8.3) 
We find that interior equilibrium of system (8.1) exist and is given by, 

),*,*,*(* zyxE  where 

              5004.0* =x    9964.4* =y    .0171.14* =z  

The characteristic equation (5.6) corresponding to *E  is given by  
              .00401.05216.08919.2 23 =+++ λλλ                                                                                                     (8.4) 

   Roots of this equation are -2.7045, -0.0937+0.0778i, -0.0937-0.0778i. This implies that *E  is a locally asymptotically stable 
equilibrium owing to the negative real parts of the eigenvalues of characteristic equation. Further, we have found numerically that 
system exhibits bifurcation for 12174.1=Q  as two eigenvalues of the equation (8.4) are purely imaginary. 
   Further, to show changes occurring in populations with time under different conditions, figures have been plotted between 
dependent variables and time for different parameter values. In Fig. 1 and 2, global stability of the system is displayed by plotting 
the graphs in the yx − plane and the zx −  plane respectively. 
   It is observed from the figures that whatever initial values of the equilibrium are taken, trajectory always moves towards the 
equilibrium. Thus, global stability of the system is ensured.  
   In Figure 3, the variation of cancer cell population with time for different proliferation rates of the hunting cells due to external 
infusion of immune cells is given. It is evident from the figure that the cancer cell population decreases as the proliferation rate of 
hunting cells, denoted by 1Q , increases and for a particular value of 1Q , the cancer population vanish.  It may be because 
lymphocytes are cytotoxic to the cancer cells and increase in their proliferation causes reduction in number of the cancer cells as 
enhanced population of lymphocytes kill more cancer cells. In this way, cancer cell population can be reduced largely and hence 
can be controlled.  
   In Figure. 4, the variation of the cancer cell population with time in the presence and absence of recruitment of resting cells due 
to external infusion is determined. It is observed that the cancer cell population approach to a lower equilibrium level when 
external infusion of resting cells is done as compared to the case when no external infusion is considered.  
   Figure. 5 gives the variation of cancer cells with time for different rate of induction of primary immune response against cancer 
due to presence of antigenic cancer cells that is for different antigenicity of cancer cells.  It is observed from the figure that the 
cancer cell population decrease with the increase in antigenicity of the cancer cells. Biologically, it implies that if the cancer cells 
possess distinctive surface markers called tumor-specific antigens, spontaneous immune response is possible against cancer cell 
population that reduces the number of cancer cells in the body. These types of cancer cells that possess such antigens are called 
immunogenic cancers. Thus, higher is the antigenicity of cancer cells easier is to control the cancer population.  
   We observed that there is no effect of delay in the system for above set of parameters given in (8.1). That is, (7.7) does not hold 
and system is stable for all the values of delay. Therefore, in order to study the effect of delay on the system (8.1) we consider 
another set of parameters as given below: 
 
              1.0 and 08.00.2,  7, ,2 ,1.1 ,449.0 ,1.0 ,1.0 ,6.0 ,5 21212211 =========== ααπ bQQbabar  (8.5) 
 
which satisfy corresponding model with time delay, 
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With this set of parameters, we observed there exists a unique interior equilibrium given by 
,0512.0 x =∗ ,9066.7y =∗ .1553.0z =∗  For this set of parameter, we found that  0~

1 >M  and ,0~
3 <M which indicates that 

there exist a unique positive root.  We found a positive root 0303.00=ω , with this value of  0ω  we calculated the critical value of 
delay that was found to be .4935.90 =τ  Critical value of delay implies the value of τ where stability switch may occur. Stability 
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switch in our case stands for switching from stable steady state to stable oscillatory state. Figure 6 shows the stable dynamics of 
the system for ).(8 0ττ <=  Further, Figures 7 and 8 show large amplitude oscillations for long time for ).(22 0ττ >=  
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Figure 1: Graph of )(tx versus )(tz for different initial starts for the set of parameters same as (8.3) 
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Figure 2: Graph of )(tx versus )(ty for different initial starts for the set of parameters same as (8.3) 
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Figure 3: Graph of )(tx versus t  for different 1Q and initial conditions )00.10 ,00.2 ,10.0( ,  

other values of parameters are same as (8.3) 
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Figure 4: Graph of )(tx versus t  for different 2Q  and initial conditions )00.10 ,00.2 ,10.0( ,  

other values of parameters are same as (8.3) 
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Figure 5: Graph of )(tx versus t  for different π  and initial conditions )00.10 ,00.2 ,10.0( ,  

other values of parameters are same as (8.3) 
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Figure 6: Graph of )( ),( ),( tztytx versus t  for 08 ττ <= and other values of parameters are same as (8.5)  

with initial conditions )10.0 ,00.3 ,01.0(  
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Figure 7: Graph of )( ),( tztx versus t  for 022 ττ >= and other values of parameters are same as (8.5)  

with initial conditions )10.0 ,00.3 ,01.0(  
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Figure 8: Graph of )(ty versus t  for 022 ττ >= and other values of parameters are same as (8.5) 

 with initial conditions )10.0 ,00.3 ,01.0(  
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9. Conclusion 
 
   This paper considers a mathematical model to discuss the effect of immunotherapy on immunogenic cancer cells with prey 
predator dynamics using nonlinear ordinary differential equations. The model is analyzed using stability theory of differential 
equations and numerical simulations. It is found that the model has two equilibria. Conditions for local and global stability of these 
equilibria are determined. Cancer free equilibrium ),,0( zyE  gives the criteria for total success of therapy in eliminating cancer 
cells from the body. This case implies that the immune system fights so well with the cancer cells that they are not able to 
proliferate and spread in the body and hence cancer can be cured. Interior equilibrium ),,( ∗∗∗∗ zyxE  demonstrates the case of 
how the cancer cells proliferate and attain a particular equilibrium level in the human body. In this case, although therapy is not 
able to eliminate cancer cells from the body yet it is effective in controlling the cancer cells and reducing them to a lowest possible 
level. Further, time delay in production of immuno-agents due to the presence of antigenic cancer cells is also studied as any 
process is not instantaneous and it is imperative to consider the effect of time delay on the dynamical system.  
   To substantiate the analytical findings, the model is studied numerically for a particular case using fourth order Runge-Kutta 
method. Local stability conditions are verified for a set of hypothetical parameter values. Further, to illustrate the global stability of 
the equilibria, numerical simulation is performed for different initial values and the results are displayed graphically. Numerically, 
it is observed that the cancer cell population is very sensitive to the proliferation rate of hunting cells due to external infusion of 
immune cell during immunotherapy. A little increase in the numerical value of proliferation rate of lymphocytes produces a 
considerable decrease in the equilibrium level of cancer cell population. It is further observed that cancer cell population decrease 
with an increase in induction of the immune response in resting cells due to cancer antigens. However, if antigenicity is zero i.e., 
cancer is non-immunogenic then cancer cell population rise to a large value. On the other hand, it is observed that if the rate of 
antigenicity is higher the cancer cell population can be controlled considerably to a lower level. Critical value of delay for the 
corresponding model with time delay is determined. Through figures, we have shown the stable dynamics of the system for the 
values of delay less than critical value of delay and large amplitude periodic oscillations for time delay larger than critical value of 
delay.  
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