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Abstract

The planning, operation and control of electric power systems has attracted the attention of many researchers. Thus, effort is
put in improving the efficiency of generation and operation of power plants. Economic load dispatch (ELD) is crucial since it is
required to schedule committed generating units so as to meet load demand at minimum operating cost. In addition to satisfying
all system equality and inequality constraints as well as limitations imposed on the generating units during operation. To solve
the economic load dispatch problem, traditional and intelligent techniques were applied. Researchers have shown interest in
utilizing metaheuristic methods to solve complex optimization problems in real life applications. In this paper, three alternatives
of firefly algorithms are applied to solve the nonlinear ELD problem. A comparative study is carried out on the solution of ELD
problem using those recent variants and the classical firefly algorithm for different test cases. Efficiency is evaluated by
comparing best solutions obtained in terms of execution time, fuel cost and power loss.
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1. Introduction

The operation and planning of electric power generation system is significant in the electric industry. Generation, transmission
and distribution of electric power should be done efficiently, economically and optimally. The need to reduce the running charges
of the electric energy became important due to the rise in fuel cost, expansion of the interconnected power systems and limited
availability of generating units. Economic load dispatch (ELD) is a fundamental issue because as the power systems expand and
cost of fuel increase, the need for determining optimal power output from generating units and minimizing operational cost grows.
Economic load dispatch is the allocation of output power of the committed generating units optimally. This is done by generating
optimum power, satisfying load demand and considering other operational system equality and inequality constraints. The ELD
problem is a non-convex optimization problem since the input/output of generating units in real life are highly non-smooth and
nonlinear. In addition, prohibited operating zone, ramp rate limits and multi-fuel options are usually considered. Since the
objective is for the solution to converge to superior results in a reduced amount of time putting into consideration system
constraints, choosing the appropriate optimization approach is important (Zhu et al., 2015).

Traditional mathematical optimization techniques like Linear Programming (LP) (Dhamanda et al., 2013), Quadratic
Programming (QP) (Benhamida et al., 2013), Lambda Iteration (Lin et al., 1992), and Newton method (Jabr et al., 2000) were
applied to solve the ELD problem. They have the advantage of being simple and fast. Nevertheless, they depend on initial points;
sometimes they converge to the neighboring local optimal solution or even diverge. In addition, the solution of non-convex ELD
problems is difficult and the computational effort it requires is enormous. To overcome the limitations of the traditional
optimization techniques, metaheuristic methods were developed. These intelligent metaheuristic methods have shown fruitful
success in solving the toughest nonlinear non convex optimization problems reaching feasible optimal solutions. Therefore, they
have taken over conventional methods, becoming the best alternative choice for researchers in solving the ELD problem to ensure
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global solution with least computational effort. Examples of these intelligent metaheuristic methods are Simulated Annealing (SA)
(Panigrahi et al., 2006), Differential Evolution (DE) (Noman and Iba, 2008), Genetic Algorithm (GA) (Sahoo et al., 2014), Particle
Swarm Optimization (PSO), Ant Colony optimization (ACO), and Firefly Algorithm (FFA) (Moustafa et al., 2016).

The FFA is a developing optimization technique that is simple with a great ability to converge to optimum solutions faster than
other intelligent methods (Subramanian and Thanushkodi, 2013; Younes, 2013). As a result, it is very useful when used in real
time application making it suitable in solving the ELD problem. However, when dealing with complex optimization problems, the
FFA shows deficiency in reaching global optima. It also doesn’t save better-quality previous solutions and the parameters are not
dynamic and the tuning of such parameters has proven to be a difficult task. It is a challenging task to solve complex optimization
problems. Consequently, it is necessary to develop and enhance the optimization techniques. Although FFA has been widely
applied to solve benchmark functions and numerous practical problems and has shown promise in finding optimal solutions, it has
limitations in finding global optimum, especially when the complexity of the problem increases. Therefore, it became essential to
propose modifications to the FFA and combining it with other intelligent techniques and creating new hybrids, hence, obtain
efficient and reliable solutions (Fister et al., 2013). Modifications include and not restricted to: adding memory, varying
parameters of the algorithm throughout the iterations and altering the updating formula for the fireflies. New variants of FFA were
proposed and implemented to solve benchmark functions, engineering design problems, economic load dispatch problems and so
on (Kazemzadah-Parsi, 2014; FisterJr et al., 2012, Yu et al., 2015; Farhani et al., 2011; Gandomi et al., 2013; Yu et al., 2014).
Some of these new versions of firefly algorithm recently developed, but not yet applied to solve the ELD problem like modified
firefly algorithm(MFA), memeticfirefly algorithm (MFFA) and variable step size firefly algorithm (VSSFA) (Kazemzadah-Parsi,
2014; FisterJr et al., 2012, Yu et al., 2015). In this paper, these three variants are applied to solve the nonlinear ELD problem. A
comparative study was carried out on the solution of ELD problem using those recent variants and the classical FFA for different
test cases. Efficiency was evaluated by comparing best solutions obtained in terms of execution time, fuel cost and power loss.

2.  Problem Formulation

The objective of the nonlinear ELD optimization problem is to minimize cost while satisfying the load demand and other
operational system equality and inequality constraints (Zhu et al., 2015).
2.1 Objective function- cost function
Minimize = ( ) = ∑ ( ) $/ℎ (1)( ) = + + $/ℎ (2)
where
Fт: Total Quadratic cost function; it could be also a cubic function
Pi: Real power generated
Ng: Number of generation busses
ai, bi, ci : Fuel cost coefficients for ith unit

2.2 Constraints
The objective function must be minimized while considering the following constraints:

1)Equality constraint- Energy balance equation∑ = + (3)= ∑ ∑ (4)

where
PD = Load demand
PL= Power transmission losses
Bij= Loss coefficients (constants)
Pi, Pj = Active power injection at the ith and jth generators
In some cases, power losses are neglected and the active power balance equation becomes:∑ = (5)
2)Inequality constraint- Generating limits

Generated active power should lie between minimum and maximum operational values≤ ≤ (6)
where
Pi= Power output from generator (i)
Pi

min = Minimum permitted power output by generator (i)
Pi

max = Maximum permitted power output by generator (i)
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3. Firefly Algorithm

Firefly algorithm is a recent nature based metaheuristic developed by Yang to solve the continuous optimization problems. The
idea behind FFA is that fireflies emit light produced by chemical reactions. The light flashing behavior attracts fireflies to each
other for mating purposes (Yang, 2008).

To simulate such idyllic behavior, some rules must be followed:
a) Fireflies are assumed to be unisex. Attraction of fireflies doesn’t depend on their sex, but depend only on their brightness.
b) The brightness of a firefly is determined by the objective function
c) Attractiveness is directly proportional to brightness and both are inversely proportional to distance

Using Firefly algorithm in optimization problems, light intensity and brightness represents the objective function and the
attraction and movement towards the brightest firefly resembles reaching optimal solution. The factors affecting the algorithm are
light intensity, attractiveness, distance, and movement and are given by:ℎ ( ) = (7)( ) = (8)

where I0 and β0 are the initial light intensity and initial brightness, respectively.

This distance between firefly i and firefly j is represented as:

= − = ∑ − (9)

The formula that controls the fireflies’ movement is given by:= + − + ( − 0.5) (10)

where t is the number of current iteration, α∈[0,1]is the randomization parameter and γ∈[0,∞) is the coefficient of absorption. The
first term is the current position of the firefly i, the second term is due to attraction towards a brighter firefly j and the last term
represents the random walk of the firefly.

A. Variants of Firefly Algorithm
Since FFA was developed, it has become a popular optimizer. It has been widely applied to solve benchmark functions and

numerous practical problems. Although the FFA has shown promise in finding optimal solutions, it has limitations in finding the
global optimum, especially when the complexity of the problem increases. In recent studies, major improvements and changes
were applied to the FFA to enhance its performance. New variants of FFA were proposed and implemented to solve benchmark
functions, engineering design problems and so on (Kazemzadah-Parsi, 2014; FisterJr et al., 2012; Yu et al., 2015; Farhani et al.,
2011; Gandomi et al., 2013; Yu et al., 2014).

Gaussian firefly was developed by (Farhani et al., 2011). Gaussian distribution was used to control the random movement of
fireflies so they are directed to the global solution. Firefly with chaos was proposed by (Gandomi et al., 2013). Chaos was
introduced to FFA for a more efficient global optimization. Wise step size firefly algorithm was developed by (Yu et al., 2014).
Parameter α is controlled by global best position and vary dynamically with iterations. Modified firefly algorithm was presen ted by
(Kazemzadah-Parsi, 2014). The updating formula is adjusted, memory is added and newborn fireflies are added in each iteration.
Memetic firefly was developed by (FisterJr et al., 2012). It was applied to combinatorial problems. Instead of having fixed
parameters α and β, these parameters are dynamically fine-tuned and the random movement is scaled as well. Variable step size
firefly algorithm was used by (Yu et al., 2015). Parameter α varies dynamically with the iterations.

B. Modified Firefly Algorithm
Modified firefly algorithm was presented by (Kazemzadah-Parsi, 2014). Updating formula is adjusted, memory is added and
newborn fireflies are added in each iteration.
Three new modifications were suggested: adding memory, newborn fireflies and updating formula.

a) Adding memory: Two approaches are considered in the adding memory modification.

1. (m₁) high quality solution fireflies are not updated and transferred to the following iterations. The rest of the
fireflies (n − m₁) are updated using a new updating formula discussed later.
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2. (m₂) high quality solution fireflies are copied and saved from the current iteration. In the next iteration, (m₂)
low quality solution fireflies are exchanged by the (m₂) high quality solution fireflies saved from the preceding
iteration.
In our work only the second approach is implemented.

b) Newborn fireflies: (k) low quality solution fireflies are exchanged by (k) randomly generated fireflies within the search
space.

Figure 1. Schematic diagram that shows the zigzag path that firefly (6) takes to approach the five more luminous fireflies
than itself. Its location is updated in five steps.

c) Updating formula: The strategy implemented by the original firefly algorithm is that the fireflies to reach the optimum
solution by taking steps towards the brightest firefly, then a step towards the second bright and so on. The fireflies
approached brighter ones in a zigzag like path.

Depending on the value of objective function, the six fireflies arranged. Firefly (1) is the most luminous and firefly (6) is
the least luminous. In the first iteration to update the location of firefly (6), it approaches firefly (1) since it is the
brightest. During the second iteration, firefly (6) approaches firefly (2) since it is the second bright, and thus; its location
is updated. During the upcoming iterations, the former steps are repeated until there no fireflies brighter than firefly (6) as
shown in Figure1.  The number of steps each firefly takes to update its location is equal to the number of more luminous
fireflies than itself.

This approach is ineffective, requires more computational time and affects the performance of the algorithm negatively.The
modification to this time consuming approach suggests that a point representing the general overall location of the more luminous
fireflies is calculated as shown in Figure 2. The representation proposed in our study is to calculate the mean location of the more
luminous fireflies. This mean point (Pi) that represents the mean coordinates of fireflies more luminous than firefly (i) is given by
the following formula: = ∑ (11)= ‖ − ‖ (12)

Figure 2. Schematic diagram illustrating the mean point (P) that represents the mean coordinates of fireflies more luminous than
firefly (6). Its location is updated in only one step

and thus changing the updating formula with a scaled random movement to be:
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= + − + (13)

with =β0e-γri
2
, ε= rand-0.5 * U-L

where U and L are the upper and lower bounds of the search space, respectively.

C. Memetic Firefly Algorithm

Memetic firefly was developed by (Fister et al., 2012). The MFFA was applied on combinatorial problems. Instead of having
fixed parameters α and β, these parameters are dynamically fine-tuned and the random movement is scaled as well. Memetic
algorithm (MA) attains the balance between diversity and intensity of solution in search space. Diversification (randomness)
allows fireflies to wander in search space and not cluster near local optima. Intensification allows fireflies to smoothly converge to
the global optimal solution. Such balance utilizes global and local search to obtain optimal solutions effectively. MFFA combines
the balance of search in memetic algorithms and the superiority of firefly algorithm compared to other methods. Memetic firefly
algorithm can solve problems with high dimensions and various strategies were proposed. High diversification can lead to
inefficient search and high intensification can lead to converging prematurely.

α is adjusted dynamically by: = ∗ ( − ) (14)
where
α is initially set to 0.2
t = number of current iteration
U = upper bound of the search space
L = lower bound of the search space.
β changes in the range [0.2,1] using this formula:= + ( − ) (15)
where βmin=0.2 and β0=1
and thus changing the updating formula with a scaled random movement to be:= + − + ( − 0.5) ∗ ( − ) (16)

where U and L are the upper and lower bounds of search space, respectively.

D. Variable Step Size Firefly Algorithm

Variable step size firefly algorithm was used by (Yu et al., 2015). Parameter α varies dynamically with the iterations. The
parameters of the firefly algorithm are kept fixed. The balance between global and local search is controlled by the randomization
parameter or step size α. Such balance is affected by keeping this parameter unchangeable.  The initial iterations should encourage
exploring possible solutions in the search space. Therefore, a larger α initially is required to evade local optimum. As the iterations
go on, a smaller α is more appropriate to exploit the neighborhood of prospective solutions. The decreasing of step size α as
iterations proceed guarantees convergence to global optimal solution efficiently.  In the variable step size firefly algorithm
(VSSFA), step size α is adjusted dynamically as iterations progress.
The step size α formula given by the following formula:( ) = .. ∗( ) (17)

where
k: the current iteration
MaxGeneration: the total number of iterations.

4. Test and Results

The FFA and its three variants explained in the preceding chapter are applied on the ELD problem of three units systems. The
number of fireflies, maximum number of iterations, light absorption coefficient and initial brightness are the same for the firefly
algorithm and its variants. The randomization parameter is different for each application. Memory and newborn parameters are
given for the MFA. Minimum brightness is given for the MFFA. The best and mean solutions and standard deviation of twenty
independent runs are calculated in each application. The best solutions, time of execution and the statistical results were evaluated
and analyzed. Comparisons of the results obtained by firefly algorithm, its variants and other techniques mentioned in literature
were carried out (Reddy and Reddy, 2012; Sudhakaran et al., 2007; Tiwari et al., 2013).
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Table 1. Parameters for firefly algorithm and its variants

Parameters
Values for different algorithms

FFA MFA VSSFA MFFA
MaxGeneration 150 150 150 150

n 25 25 25 25
α 0.2 0.2 Varies with iterations Initially α=0.2 but decreases with iterations
γ 1 1 1 1
β0 1 1 1 1

βmin NA NA NA 0.2
m1 NA 0 NA NA
m2 NA 1 NA NA
k NA 1 NA NA

The cost functions to be minimized for the three thermal units are given as follows:= 561 + 7.92 + 0.001562 $/ℎ (18)= 310 + 7.85 + 0.001940 $/ℎ (19)= 78 + 7.97 + 0.004820 $/ℎ (20)

Real power limits: 100 ≤ ≤ 600 (21)100 ≤ ≤ 400 (22)40 ≤ ≤ 200 (23)+ = + + (24)

Loss coefficient Bij = 0.000075 0.000005 0.00000750.000005 0.000015 0.000010.0000075 0.00001 0.000045
4.1 Transmission losses not included
The power distribution, cost and time for the best solution obtained by the different approaches for different power demands are
given in the Tables (2–7).  The reliability analyses for twenty independent runs are given in the Tables (8 – 13).
The comparisons between best cost and time of execution for the FFA, its variants and GA are given in Table (14) and Figures (3 –
4).

Table 2. Solution for power demand = 450MW
FFA MFA VSSFA MFFA

P1 210.9323 205.5350 202.7603 204.1462
P2 178.5729 183.0785 183.7123 183.7871
P3 60.4947 61.3865 63.5275 62.0667

Cost 4652.5 4652.4 4652.5 4652.4
Time(seconds) 0.498447 0.078653 0.524861 0.217412

Table 3. Solution for power demand = 585MW
FFA MFA VSSFA MFFA

P1 266.6992 269.3735 267.6083 267.2763
P2 238.3142 233.6227 234.6370 234.5635
P3 79.9866 82.0038 82.7547 83.1602

Cost 5821.6 5821.6 5821.6 5821.6
Time(seconds) 0.514214 0.078843 0.533350 0.212202

Table 4. Solution for power demand = 600MW
FFA MFA VSSFA MFFA

P1 275.6610 276.3577 271.5320 276.2698
P2 242.0674 239.6248 244.0853 239.4353
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P3 82.2716 84.0175 84.3827 84.2950
Cost 5953.2 5953.1 5953.2 5953.1

Time(seconds) 0.509636 0.077439 0.532048 0.199898

Table 5. Solution for power demand = 700MW
FFA MFA VSSFA MFFA

P1 326.3860 323.1222 320.9296 322.6530
P2 275.7047 278.1399 276.2013 277.9427
P3 97.9093 98.7379 102.8691 99.4043

Cost 6838.7 6838.6 6838.7 6838.6
Time(seconds) 0.508926 0.079287 0.552621 0.207671

Table 6. Solution for power demand = 800MW
FFA MFA VSSFA MFFA

P1 366.1402 368.0085 372.5973 368.5635
P2 318.9648 317.0630 314.0788 316.6006
P3 114.8950 114.9284 113.3239 114.8359

Cost 7738.8 7738.8 7738.8 7738.8
Time(seconds) 0.515501 0.078750 0.545341 0.212810

Table 7. Solution for power demand = 900MW
FFA MFA VSSFA MFFA

P1 413.4513 415.4486 414.8906 416.6916
P2 355.9829 354.6639 352.8460 353.4335
P3 130.5658 129.8874 132.2634 129.8749

Cost 8653.6 8653.6 8653.6 8653.6
Time(seconds) 0.517866 0.079307 0.555965 0.214578

The cost of fuel and time of execution is minimal for both the MFA and MFFA. However, the time of execution for the MFA is
less than that of the MFFA. Time of execution of VSFFA is maximal in this case.

Table 8. Reliability analysis for power demand = 450MW
FFA MFA VSSFA MFFA

Best 4652.5 4652.4 4652.5 4652.4
Mean 4654.57 4652.4 4653.945 4653.02

SD 2.342535738 0 1.4964783 0.900643

Table 9. Reliability analysis for power demand = 585MW
FFA MFA VSSFA MFFA

Best 5821.6 5821.6 5821.6 5821.6
Mean 5824.465 5812.6 5823.495 5822.045

SD 1.9107108 0 1.5669195 0.9389103

Table 10.Reliability analysis for power demand = 600 MW
FFA MFA VSSFA MFFA

Best 5953.2 5953.1 5953.2 5953.1
Mean 5955.05 5953.12 5953.965 5953.425

SD 1.6410844 0.0410391 0.7125012 0.7946366

Table11. Reliability analysis for power demand = 700MW
FFA MFA VSSFA MFFA

Best 6838.7 6838.6 6838.7 6838.6
Mean 6839.92 6838.6 6840.025 6838.7

SD 1.8019288 0 1.3633839 0.2655679
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Table 12. Reliability analysis for power demand = 800MW
FFA MFA VSSFA MFFA

Best 7738.8 7738.8 7738.8 7738.8
Mean 7742.865 7738.8 7742.175 7739.03

SD 2.9462331 0 2.120793 0.6009641

Table 13. Reliability analysis for power demand = 900MW
FFA MFA VSSFA MFFA

Best 8653.6 8653.6 8653.6 8653.6
Mean 8656.5011 8653.6 8656.085 8653.605

SD 3.2084989 0 2.3611494 0.0223607

The result obtained by MFA is the most stable and the FFA is the least stable. MFFA is more stable than VSSFA.

Table 14. Comparing cost for different power demands with Genetic Algorithm
Power demand GA FFA MFA VSSFA MFFA

585 5827.5 5821.6 5821.6 5821.6 5821.6
700 6877.2 6838.7 6838.6 6838.7 6838.6
800 7756.8 7738.8 7738.8 7738.8 7738.8

Figure 3. Comparing cost for different power demands
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Figure 4. Comparing time for different power demands

As shown in the above table and figures FFA achieves better solution than GA in terms of minimum cost. The difference in cost
between FFA and its variants is not significant. However, the MFA is almost 6.5 times faster than the FFA. The MFFA is almost
2.5 times faster than FFA.

4.2 Transmission losses included
The power distribution, cost, time and power losses for the best solution obtained by the different approaches for different power
demands are given in the Tables (15 –18).  The reliability analyses for twenty independent runs are given in the Tables (19 – 22).
The comparisons between best cost time of execution and power losses of FFA, its variants and PSO are given in Tables (23 – 24)
and Figures (5 – 7).

Table 15. Solution for power demand = 585MW
FFA MFA VSSFA MFFA

P1 229.8586 233.1711 227.2825 232.9819
P2 265.1271 268.1007 273.4247 267.9658
P3 96.9115 90.6825 91.0920 91.0032

Ploss 6.8971 6.0667 6.7993 6.9509
Cost 5887.3 5887.0 5887.2 5887.0

Time(seconds) 2.410235 0.344904 2.710710 0.603812

Table 16. Solution for power demand = 600MW
FFA MFA VSSFA MFFA
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Cost 6935.1 6934.9 6935.2 6934.9
Time(seconds) 2.443697 0.330166 2.692303 0.622944

Table 18. Solution for power demand = 800MW
FFA MFA VSSFA MFFA

P1 319.7665 319.8415 316.4809 318.4764
P2 363.9400 365.1622 366.1312 366.1738
P3 129.4296 128.1260 130.4087 128.4306

Ploss 13.1361 11.7293 13.0208 13.0808
Cost 7867.5 7867.4e 7867.5 7867.4

Time(seconds) 2.422965 0.324316 2.608767 0.752689

The minimum fuel cost and least execution time are achieved by both the MFA and MFFA. However, MFA is faster than MFFA.
The best solution obtained by VSSFA is the worst in terms of execution time and minimum cost.

Table 19. Reliability analysis for power demand =585MW
FFA MFA VSSFA MFFA

Best 5887.3 5887.0 5887.2 5887.0
Mean 5890.245 5887.09 5888.865 5887.375

SD 2.5351165 0.0307794 1.5218669 1.1433446

Table 20. Reliability analysis for power demand =600MW
FFA MFA VSSFA MFFA

Best 6022.3 6022.3 6022.4 6022.3
Mean 6025.5 6022.3 6024.245 6022.625

SD 3.6103652 0 1.493662 0.6239728

Table 21. Reliability analysis for power demand =700MW
FFA MFA VSSFA MFFA

Best 6935.1 6934.9 6935.2 6934.9
Mean 6937.745 6934.915 6936.75 6935.13

SD 2.3209515 0.0366348 1.2492103 0.6375116

Table 22. Reliability analysis for power demand =800MW
FFA MFA VSSFA MFFA

Best 7867.5 7867.4e 7867.5 7867.4
Mean 7869.84 7867.4 7869.935 7867.915

SD 3.5845282 0 2.4009373 0.5294237

The variants of firefly algorithm are more stable the FFA. MFA is the more stable than MFFA and MFFA is more stable than
VSFFA.

Table 23. Comparing cost for different power demands with particle swarm algorithm
Power demand PSO FFA MFA VSSFA MFFA

585 5889.9 5887.3 5887.0 5887.2 5887.0

Table 24. Comparing loss for different power demands with particle swarm algorithm
Power demand PSO FFA MFA VSSFA MFFA

585 6.9661 6.8971 6.0667 6.7993 6.9509
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Figure 5. Comparing cost for different power demands

Figure 6. Comparing time for different power demands
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Figure 7. Comparing losses for different power demands

As shown in the above table and figures FFA achieves better solution than PSO in terms of minimum cost and execution time. The
MFA outperforms the other approaches in terms of execution time and power loss. The MFA is almost 7.4 times faster than the
FFA. The MFFA is almost 3.6 times faster than FFA. The VSSFA is the slowest but has less power losses compared to MFFA and
FFA.

5. Conclusions

Since its development, firefly algorithm was utilized to solve many complex optimization problems. It was applied in the
solution of economic load dispatch problem. When compared to other techniques, it has shown its superiority in achieving high
quality solutions. Because FFA has some disadvantages, several modifications were proposed. In this study, three novel
enhancements of FFA: modified firefly algorithm, Memetic firefly algorithm and variable step size firefly algorithmwere
implemented to solve the ELD problem. The results show that the MFA capability of reaching global optimal solutions in the
minimal execution time and with least transmission losses. It is superior to FFA and the other two variants. The MFFA algorithm
was more successful in comparison to the FFA and VSSFA in terms of getting better solutions faster. The ELD problem is a
fundamental issue. The need to generate optimum power and satisfy all system constraints in the least amount of time is important.
With the noticeable difference in execution time of almost 6.5-7.5 speed gain than that of the FFA, the MFA is the most suitable
method of solution of the economic load dispatch problem. It generates optimum power, at minimum operating cost and minimum
transmission losses.

Nomenclature
Fт Total cost function
aᵢ, bᵢ, cᵢ Fuel cost coefficients for ith unit
Eт Total Emission cost function
αᵢ, βᵢ, γᵢ, δi , ᵢ Emission coefficients for ith unit
Ng Number of generation busses
eᵢ, fᵢ Fuel cost coefficients for ith unit considering valve pointeffects
Pi, Real power output from generator (i)
Pi

min Minimum permitted real power output by generator (i)
Pi

max Maximum permitted real power output by generator (i)
Pi

0 Preceding power output from generator (i)
PD Load demand
PL Power transmission losses
Bij Loss coefficients (constants)
URi Up ramp rate limit by generator (i)
DRi Down ramp rate limit by generator (i)
Pi,k

lower Lower limit of kth prohibited operation zones for generator (i)
Pi,k

upper Upper limit of kth prohibited operation zones for generator (i)
PZi Number of allowed operating zones for generator (i)
Qi Reactive power output from generator (i)
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Qi
min Minimum permitted reactive power output by generator (i)

Qi
max Maximum permitted reactive power output by generator (i)

δi Phase angle of bus (i)
δi

min Minimum phase angle of bus (i)
δi

max Maximum phase angle of bus (i)
I0 Initial light intensity
β0 Initial brightness
t Number of current iteration
α Randomization parameter
γ Light absorption coefficient
U Upper bound
L Lower bound
n Number of fireflies
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