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Abstract

In 1995 swarm intelligence based PSO (Particle Swarm Optimization) has been designed and implemented for solving
optimization problems. Since then many researchers have developed many versions, based upon its theoretical concept, technical
aspects and parameters involve in the algorithm. In broad sense, every swarm updates its position based upon the knowledge of
its initial velocity and accelerating components such as cognitive and social information. In this paper we have presented a
reformed and modified concept of PSO with the thought that every swarm updates its position based upon cognitive and social
environment knowledge only and the key aspect used here is that these parameters are no longer assumed to be accelerating
components rather position components. This algorithm is termed by us as Cognitive and Social Information based PSO (CSI-
PSO). The performance of CSI-PSO is validated by 23 benchmark functions and the empirical results clearly support the
effectiveness of our concept.
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1. Introduction

Based upon the simulation of swarm of birds searching for food, Eberhart and Kennedy (1995) & Kennedy and Eberhart (1995)
have proposed particle swarm optimization algorithm. In this algorithm, each bird act as a particle and update its position based
upon its initial velocity, its personal last position visited i.e. cognitive component and information gather about the neighboring
best position from social interaction i.e. social component. PSO has certain key merits compared to other evolutionary algorithms
such as faster convergence rate in certain optimization problems (Kennedy and Eberhart, 2001), secondly less number of
parameters to be vary are less. The major drawback of PSO is its sensitivity to fall into local optimum points while optimizing
complex multimodal functions. However looking at its greater and easy implementation qualities researchers have shown a great
interest in this algorithm. In last two decades different modification have been done in PSO algorithm and successfully applied in
different applications such as neural network (Wei et al., 1998) and many more.

Inertia factor (w) has been inducted in the standard PSO to have a better control over the velocity of swarm particles and overall
to get a better performance (Shi and Eberhart, 1998). Xu et al. (2012) has proposed a new incremental particle size PSO (IPPSO),
where the size of the population increases with every iteration based upon the logistic human population growth. A fast
convergence particle swarm optimization algorithm  has been proposed in which a new parameter named particle mean dimension
has been used to balance the diversity of location of each particles in the swarm to bring overall improvement in the performance
of PSO (Sahu et al., 2012). A new variant of PSO based on constriction factor approach where the algorithm ensures the
convergence of the search procedure along with better solutions than standard PSO (Clerc and Kennedy, 2002).

Dynamic chaos has been incorporated with hybrid PSO to improve the efficiency of the algorithm (Liu et al., 2005). For
complex multidimensional problems, the PSO particles ability for stable convergence have been explored by Clerc and Kennedy
(2002). Eberhart and Shi (1998) have compared the exploration and exploitation capacity of GA and PSO. Shi et al. (2005) have
proposed a novel algorithm based on hybridization of PSO and genetic algorithm. Angeline (1998) has incorporated the technique
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of tournament selection with PSO where the properties of the current best particles were transferred to inferior ones. Suganthan
(1999) proposed a variant of the algorithm known as local best (LBest) model, where the entire swarm population is divided into
small neighborhood and each neighborhood maintains its own local best. This technique very well avoids trapping of the swarm in
local optima solution but its convergence rate is very slow. Nickabadi et al. (2011) have proposed adaptive inertia weight PSO
algorithm. Chatterjee and Siarry (2006) have introduced a new variant of PSO to reduce exploitation time to reach global optima
and for improving the search capacity in multidimensional space nonlinear variation of inertia weight has been used. Alireza
(2011) has improved the performance of PSO by mutating the particles of PSO adaptively and adding a dynamic behavioral inertia
factor. Modares et al. (2010) have proposed an improved PSO technique for identification of parameters in chaotic dynamic
systems. In multimodal optimization problems have many global optimum solutions can be found using NichePSO (Brits et al,
2007). Like PSO another evolutionary algorithm BSA (Civicioglu, 2013), which chooses the direction of an individual to move
from any individuals of the last generation randomly while looking for global optima.

The PSO algorithm has successfully explored and exploited the number of different unimodal optimization problems (Shi and
Eberhart, 1999). Van den Bergh and Engelbrecht (2006) in their work studied the trajectories of general swarm particles to include
the effect of inertia term in PSO. Tripathi et al. (2007) in their novel approach changes the inertia weight parameter along with the
coefficient of acceleration in each iteration to improvise the exploration capacity of PSO in search problem domain. Here we
present a novel reformed modified version of PSO for optimization problems. We termed our propose algorithm as Cognitive and
Social information based PSO (CSI-PSO) This paper is different from rest of the works in two aspects firstly, here we have
completely eliminate the velocity concept of a swarm particle and assumes that each particle from its own position in search space
using its personal and social information as position updating tool to updates its position. Secondly the capability of computation
of finding global optimum of 23 nos. of standard benchmark functions using CSI-PSO is compared with standard PSO algorithm
(Yao et al., 1999) to validate its performance success. The paper is divided into following parts; In part 2, concept of standard PSO
is briefly discussed, part- 3 comprises of the concept and formulation of CSI-PSO algorithm. In part- 4, we have shown the 23
benchmark functions used here along with the experimental setting and results of performance of CSI-PSO compared with
standard PSO. The last part- 5 encapsulates the contribution of this work and conclusion.

2. Concept of standard PSO

The idea of particle swarm optimization (PSO) is derived by the swarm behavior of birds and fishes. It is a stochastic algorithm
based on population just like any other evolutionary algorithms where the swarm particles are made to explore and exploit the
search space towards the global solution of optimization problem. Basically the assumption used in PSO is that while every swarm
particles exploring and exploiting the search space knows their initial velocities and memorizes their own best local positions and
their best global position in the whole swarm group. By using this knowledge every time every swarm starts updating its velocity
and position.

On considering a d-dimensional search space with N numbers of swarm particles where the ith particle position attribute is given
by )idx,...,3ix,2ix,1ix(iX  , the ith particle velocity attribute is given by )idvel,...,3ivel,2ivel,1ivel(ivel  . This velocity

attribute indicates the velocity of the particle at the ith position, which is to be updated by using the individual experienced local
best position attribute given by )LidP,...,3LiP,2LiP,1LiP(LiP   and globally the best position is accounted by

)gdP,...,3gP,2gP,1gP(Pg  . Every swarm particle updates its velocity and position in the search space while moving towards

global minimum position is governed by the equations given by

)ijxgjP(22)ijxLijP(11ijvelwijvel   (1)

ijvelijxijx  (2)

where j varies from 1 to d and w is the inertia parameter coefficient.

1  and 2 are parameter coefficients for acceleration whose values are greater than zero. 1  and 2  are the randomly generated

values between 0 and 1. The individual experience i.e. cognitive term is given by term )ijxLijP(11  whereas the social

term due interaction among the particles is given by term )ijxgjP(22  .

The cognitive term helps the particles for exploring the search space while the social term helps the particles for exploiting the
search space. From the above equations (1) & (2), it clearly reveals that the swarms are constantly changing their position by
changing their instant velocities based upon the information they have about their own earlier position where they were best and
the position which is best among the group.
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3. Proposed Cognitive and Social Information based PSO (CSI-PSO)

From the last two decades researchers have been greatly motivated by nature and based upon which many  algorithms have been
proposed. It is observed that with increase in problem size the search space increases. So most of the optimization problems solved
by one algorithm may not be solved efficiently in all parameters by others (Wolpert et al., 1997). Hence, there is always an open
platform for new heuristic optimization algorithms for solving the optimization problems. In standard PSO, velocity is a vector
quantity, where the speed and direction both are involve so it indicates the while updating the velocity the particles not only bring
changes in their initial speed at that point of space but also particles inclined in the direction of best position that lead the particles
towards global minima. Now here we have assumed that rather than a swarm particle thinks to change its velocity based upon its
memory information, if a swarm calculates the position to be changed so that the swarm will reach quickly to its food source
because it is very apparent that to reach their destination they made their velocity slow, moderate or fast of their own instinct. So
only availing the information about the next position and direction is sufficient enough to reach the destination of global minima.
Then the above equation (1) and (2) can be modified as

)ijxgjP(2)ijxLijP(1ij   (3)

ij)41(ijx3ijx   (4)

where 4,3,2,1  are randomly generated values between 0 and 1. Equation (3) indicates the probable best calculated

destination position the swarm must ahead while Equation (4) indicates the process of updating the position by the swarm
particles. The first term of equation (3) indicates the cognitive phenomena while the second term indicates the social information.
The best part proposed CSI-PSO is free from any parameter and moreover the time of convergence is much less compared to
standard PSO.

4. Analysis of the results of CSI-PSO

To elucidate the degree of success of our algorithm 23 benchmarks test functions (Yao et al., 1999) were used. All the used
benchmark test functions in our experiment are represented in Tables 1-3. Here, Table 1 shows 7 numbers of unimodal test
functions, where dim indicates the dimension of the functions. Optimizations methods were specifically designed for unimodal
functions to converge, so the rate of convergence these functions put much significant impact for any algorithm performance.
Multimodal functions having variable dimension and fixed dimension are shown in Table 2 and Table 3. In multimodal functions
more than one local minima were present, so it becomes very difficult for any algorithm to find the global minima. Moreover with
increase in dimension the numbers of local minima exponentially increases. The result of optimization for these functions indicates
the performance characteristic of the algorithm to avoid being trapped under local minima and how much near the result reach to
global minima can be traced by the algorithm.

Table 1 Unimodal benchmark test functions, where dim indicates dimension
Function Mathematical expression Range Global Optima

Sphere Model   dim
1

2)(1 i xiXf  100,100 dim 0

Schwefel’s Problem
2.22    dim

1
dim

1)(2 i xii xiXf  10,10 dim 0

Schwefel’s Problem 1.2 










 



dim

1

2
)(3

1i
xXf

i

j
j  100,100 dim 0

Schwefel’s Problem
2.21

 nixiiXf  1,max)(4
 100,100 dim 0

Generalised
Rosenbrock’s Function    














1dim

1

21
22

1100)(5
i

xixixiXf  30,30 dim 0
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Table 1 (cont’d) Unimodal benchmark test functions, where dim indicates dimension
Function Mathematical expression Range Global Optima

Step Function  



n

i
xiXf

1

25.0)(6
 100,100 dim 0

Quartic Function i.e.
Noise





dim

1
)1,0[4)(7

i
randomixiXf  28.1,28.1 dim 0

Table 2 Multi-modal test functions, where dim indicates dimension
Function Mathematical expression Range Global Optima

Generalized
Schwefel’s

Problem
2.26





dim

1
)sin()(8

i
xixiXf  500,500 dim dim*98.418

Generalized
Rastrigin’s
Function

  



dim

1
102cos102)(9

i
xixiXf   12.5,12.5 dim 0

Ackley’s
Function

e
i

xi
i

xiXf 





























 20
dim

1
)2cos(

dim

1
exp

dim

1

2
dim

1
2.0exp20)(10   32,32 dim 0

Generalized
Griewank
Function

1
dim

1
cos

dim

1

2
4000

1
)(11 















i i

xi

i
xiXf  600,600 dim 0

Generalized
Penalized
Function 1

        

 





















dim

1
4,100,10,

1 21dim

1
1sin10 211 2

1sin10
dim

)(12 dim

i
xiu

y
i

yiyyXf i 


 






















aix

aixa

aix

maixk

maixk

mkaixuix
yiwhere

)(

0

)(

,,,,
4

1
1,

 50,50 dim 0

Generalized
Penalized
Function 2

     

 




















dim

1
4,100,5,

)]2 dim(sin21[1 2)]13(sin21[
dim

1
1 23 1sin21.0)(13 dim

i
ixu

xxxi
i

xxXf i 

 






















aix

aixa

aix

maixk

maixk

mkaixuix
yiwhere

)(

0

)(

,,,,
4

1
1,

 50,50 dim 0
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Table 3 Multi-modal test functions with fixed dimensions
Function Mathematical expression Range Global Optima

Shekel’s
Foxholes
function

  





















 
 



25

1 2

1

6

1
500

1

1

)(14
j

i
iji axj

Xf













32,32,32,...,16,32,32,32,32

32,16,0,...,32,32,16,0,16,32
aij

)53.65,53.65( 2
)32,32(1  at

Kowalik
function

    
211

1
43

2
2

2
1)(15 




i
xxbibixbibixaiXf

]0246.0,0235.0,0323.0,0342.0,0456.0,0627.0

,,0844.0,1600.0,1735.0,1947.0,1957.0[ ai

]16,14,12,10,8,6,4,2,1,5.0,25.0[1bi

 5,5 4
)1358.0,1231.0,1908.0,1928.0(

,0003075.0

at



Six Hump
Camel-
Back

function

4
242

2421
6
13

1
1.2 4

14 2
1)(16 xxxxxxxXf   5,5 2

)7126.0,08983.0(

)7126.0,08983.0(

,0316285.1

or

at




Branin
Function 101cos

8

1
1106

5

4

1.5
2

)(17 1
2
122 






 








 xxxxXf


)15,0()10,5( 

)425.2,425.9(

)275.2,142.3(

)275.12,142.3(398.0

or

or

at 

Goldstein
Price

Function )]2
22721362482

11213218(2)2312(30[

)]2
232162142

1311419(2)121(1[)(18

xxxxxxxx

xxxxxxxxXf




 5,5 2 )1,0(3 at

Hartman
Family-1








4

1

3

1
)2)(exp()(19

i j
ijpjxijaicXf





















30101.0

30103

35101.0

30103

a





















8828.05743.00381.0

7470.04387.01091.0

7470.04387.04699.0

2673.0117.03689.0

p

 2,3,3,2,1,1c

3)1,0(
)852.0,556.0,114.0(

86.3 at

Hartman
Family-2








4

1

6

1
)2)(exp()(20

i j
ijpjxijaicXf





















141.01005.0817

81710175.33

1481.0171005.0

87.15.317310

a





















038.0109.0574.0873.0882.0404.0

665.0304.0288.0352.0141.0234.0

999.0100.0373.0830.0413.0232.0

588.0828.0012.0556.0169.0131.0

p

 2,3,3,2,1,1c

6)1,0(
)657.0,311.0,275.0,477.0,15.0,201.0(

32.3 at
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Table 3 (cont’d) Multi-modal test functions with fixed dimensions
Function Mathematical expression Range Global Optima

Shekel’s
Family-1





5

1

1]))([()(21
i

icT
iaXiaXXf









































6.376.37

2626

1818

3355

9292

7373

6666

8888

1111

4444

a







































5.0

5.0

7.0

3.0
6.0

4.0

4.0
2.0

2.0

1.0

'c

4)10,0( 1532.10

Shekel’s
Family-2





7

1

1]))([()(22
i

icT
iaXiaXXf

fassamevaluescanda 21

4)10,0( 4028.10

Shekel’s
Family-3





10

1

1]))([()(23
i

icT
iaXiaXXf

fassamevaluescanda 21

4)10,0( 5363.10

Here in our experiment we averaged the results over 30 runs and keeping the dimension dim=30 for the functions in the Table 1
and Table 2. The number of iterations was kept 1000. Experimentally setting for standard PSO: 221   and w varies from

0.9 to 0.2.The results of the simulations are shown in Table 4.

Table 4 Simulation Results
Functions Std. PSO CSI-PSO Global Optimum

1

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

8.033073e-09
4.635137e-06
1.968225e-05

0.768658

0.000000e+00
0.000000e+00
0.000000e+00

0.546670

0

2

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

5.078186e-06
4.115557e-04
6.560489e-04

0.792497

0.000000e+00
0.000000e+00
0.000000e+00

0.592173

0

3

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

5.040351e+02
1.170540e+03
5.896480e+02

2.334003

0.000000e+00
0.000000e+00
0.000000e+00

2.084937

0

4

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

5.252002e+00
9.461725e+00
2.673489e+00

0.795775

0.000000e+00
0.000000e+00
0.000000e+00

0.543911

0

5

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

7.457628e+00
1.280729e+04
3.083828e+04

0.952693

2.878556e+01
2.885955e+01
4.881516e-02

 0.738134

0
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Table 4 (cont’d) Simulation Results
Functions Std. PSO CSI-PSO Global Optimum

6

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

8.337011e-09
1.744402e-05
8.590423e-05

0.772846

3.806837e-01
 9.445605e-01
3.303452e-01

  0.542214

0

7

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

2.727459e-02
4.965538e-01
1.013664e+00

0.974887

1.603811e-06
 6.123198e-05
5.330837e-05

0.778061

0

8

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

-1.042698e+04
-9.081028e+03
6.803315e+02

0.830034

-7.716223e+03
-6.147632e+03
6.829164e+02

0.619309

-12569.5

9

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

2.089605e+01
3.969773e+01
1.037592e+01

0.865196

0.000000e+00
0.000000e+00
0.000000e+00

0.596760

0

10

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

2.327036e-05
5.204727e-01
7.522436e-01

0.833737

8.881784e-16
 8.881784e-16
0.000000e+00

0.624138

0

11

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

3.638274e-09
1.611585e-02
2.178763e-02

0.941037

0.000000e+00
0.000000e+00
0.000000e+00

0.730760

0

12

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

1.071827e-07
3.279810e-01
5.453923e-01

1.642140

5.269191e-02
 1.478794e-01
6.831147e-02

   1.416239

0

13

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

3.216099e-07
8.516446e-03
1.130800e-02

1.632731

2.662227e-01
 9.142214e-01
3.523762e-01

   1.399192

0

14

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

9.980038e-01
9.980038e-01
4.123265e-17

3.029553

9.980038e-01
 9.980397e-01
1.606160e-04

  2.676650

1

15

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

3.074860e-04
3.552816e-04
6.792865e-05

0.839056

3.074788e-04
 3.348297e-04
3.239084e-05

  0.823824

0.0003075

16

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

-1.031628e+00
-1.031628e+00
6.648565e-16

0.669986

-1.031628e+00
-1.031601e+00
2.559598e-05

   0.496887

-1.0316285

17

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

3.978874e-01
3.978874e-01
0.000000e+00

0.653549

3.978878e-01
 3.979120e-01
6.375437e-05

  0.450994

0.398

18

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

3.000000e+00
3.000000e+00
1.068872e-15

0.649428

3.000000e+00
3.000000e+00
7.412977e-05

0.460747

3
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Table 4 (cont’d) Simulation Results
Functions Std. PSO CSI-PSO Global Optimum

19

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

-3.859668e+00
-3.452439e+00
2.641498e-01

0.911920

-3.862679e+00
-3.862025e+00
6.134601e-04

   0.689937

-3.86

20

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

-2.946255e+00
-1.838538e+00
6.291126e-01

0.907574

-3.321345e+00
-3.274047e+00
5.949037e-02

   0.729937

-3.32

21

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

-5.588914e+00
-3.610832e+00
8.068221e-01

0.975175

-1.014021e+01
-1.007302e+01
5.976998e-02

0.750750

-10.1532

22

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

-6.285257e+00
-3.587447e+00
7.635625e-01

1.027297

-1.039922e+01
-1.033032e+01
6.097903e-02

0.856586

-10.4028

23

Achieved Best value
Achieved Average
Standard Deviation

Computing Time per Run

-6.873460e+00
-4.105762e+00
1.050350e+00

1.258646

-1.052564e+01
-1.045940e+01
7.868030e-02

0.986546

-10.5363

The graphical comparison results of 23 benchmark functions between CSI-PSO and Standard PSO are shown below.

Figure-1- Performance Comparison for
CSI-PSO and Std-PSO for function-1

Figure-2- Performance Comparison for
CSI-PSO and Std-PSO for function-2

Figure-3- Performance Comparison for
CSI-PSO and Std-PSO for function-3

Figure-4- Performance Comparison for
CSI-PSO and Std-PSO for function-4

Figure-5- Performance Comparison for
CSI-PSO and Std-PSO for function-5

Figure-6- Performance Comparison for
CSI-PSO and Std-PSO for function-6
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Figure-7- Performance Comparison for
CSI-PSO and Std-PSO for function-7

Figure-8- Performance Comparison for
CSI-PSO and Std-PSO for function-8

Figure-9- Performance Comparison for
CSI-PSO and Std-PSO for function-9

Figure-10- Performance Comparison for
CSI-PSO and Std-PSO for function-10

Figure-11- Performance Comparison for
CSI-PSO and Std-PSO for function-11

Figure-12- Performance Comparison for
CSI-PSO and Std-PSO for function-12

Figure-13- Performance Comparison for
CSI-PSO and Std-PSO for function-13

Figure-14- Performance Comparison for
CSI-PSO and Std-PSO for function-14

Figure-15- Performance Comparison for
CSI-PSO and Std-PSO for function-15

Figure-16- Performance Comparison for
CSI-PSO and Std-PSO for function-16

Figure-17- Performance Comparison for
CSI-PSO and Std-PSO for function-17

Figure-18- Performance Comparison for
CSI-PSO and Std-PSO for function-18
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Figure-19- Performance Comparison for
CSI-PSO and Std-PSO for function-19

Figure-20- Performance Comparison for
CSI-PSO and Std-PSO for function-20

Figure-21- Performance Comparison for
CSI-PSO and Std-PSO for function-21

Figure-22- Performance Comparison for
CSI-PSO and Std-PSO for function-22

Figure-23- Performance Comparison for
CSI-PSO and Std-PSO for function-23

For the evaluation of performance of CSI-PSO, we have calculated the Achieved Best value, Achieved Average of all best,
standard deviation and computing time taken per run to converge by the algorithm. For all the functions shown in Table 1-3 the
numbers of evaluations done are 1000.Each algorithm is run 30 number of times. The word “Achieved Best value” here stands for
the minimum value obtained after running algorithm with every mentioned functions 30 number of times. The word “Achieved
Average” implies the mean value after running algorithm for 30 numbers of times. Standard deviation has been calculated among
30 runs of the algorithm. The term ‘Computing Time per Run’ refers to the average time taken by the algorithm after 1000
numbers of evaluation 30 numbers of times. For the benchmark functions used here lower is the value for all these four parameters
of performance evaluation better is the algorithm. Following are the observation made looking at the empirical data obtained and
shown in Table 4 and Figure 1 to Figure 23, for the function-1 to function-4, function-7, function-9 to function-11 and function-14
to function-23 the proposed algorithm CSI-PSO has reached or almost touch the global optimum value for the functions defined
while taking comparatively less time than standard PSO. But in functions function-5 to function-6, function-8 and function-12 to
function-13, standard PSO reflects better results.

5. Conclusion

Every optimization problem has its own characteristic features which should be taken under consideration while optimizing the
problem. Indeed in last few years a lot of optimization techniques have been developed but it is not possible by any algorithm to
successfully optimize all the optimization problems (Wolpert et al. 1997). Almost all optimization algorithms are based upon the
hypothetical concepts framed into mathematical expressions to get desired result. Here we have assumed that swam particles only
looks into the cognitive and social information. Their initial velocity factor has been neglected keeping the assumption in mind that
initial velocity may drag the particles to shift forward to more extent, leads the particles to move away from optimum. The results
obtained are very much authenticating our thought and research of renovating and modifying the concept of standard PSO. Here
we have limit our research with the concept that only one group of swarm particles are heading towards optimum. Giving a
varying thought to swarm concept if assumption has been made that two or more number of swarm groups are heading towards the
optimum then apart from social, cognitive information, a new factor neighboring group information may drag the attention of
researcher into a another new concept of PSO.
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