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Abstract 
 

   This paper introduces an approach based on the Swarm Variant of the Mean-Variance Mapping Optimization (MVMO-S) to 
solve the multi-scenario formulation of the optimal placement and coordinated tuning of power system supplementary damping 
controllers (POCDCs). The effectiveness of the approach is evaluated based on the classical IEEE 39-bus (New England) test 
system. Numerical results include performance comparisons with other metaheuristic optimization techniques, namely, 
comprehensive learning particle swarm optimization (CLPSO), genetic algorithm with multi-parent crossover (GA-MPC), 
differential evolution DE algorithm with adaptive crossover operator, linearized biogeography-based optimization with re-
initialization (LBBO), and covariance matrix adaptation evolution strategy (CMA-ES).  
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1. Introduction 
 
   Traditionally, the placement and tuning of power system damping controllers have been tackled as individual problems based 

on participation factors, residues, damping torque, sensitivity coefficients and singular value decomposition (Karimpour et al, 
2005; Pagola et al, 1989; Wang et al, 1997). Alternatively, the simultaneous solution for both tasks has also been investigated from 
optimization problem point of view. Particularly, the joint determination of optimal placement and coordinated tuning of power 
system damping controllers (OPCDC) constitutes a challenging optimization problem due to the mix-integer combinatorial nature 
as well as to the nonlinearity, multimodality, and no convexity of the search space (Sebaa et al, 2010). 

Previously reported approaches based on modified versions of genetic algorithm (Sebaa et al, 2009), particle swarm 
optimization (Eslami et al, 2009), and differential evolution (Wang et al, 2009) highlight the potential of metaheuristic 
optimization algorithms for solving the OPCDC. Due to the stochastic nature of the underlying evolutionary mechanism, further 
research is needed to ascertain the robustness of these algorithms, which also motivates the application and extension of emerging 
metaheuristic optimization algorithms. This paper presents an approach based on the Swarm Mean-Variance Mapping 
optimization (MVMO-S), which extends the single-solution variant of MVMO to a population based strategy. To achieve efficient 
and fast search capability, MVMO-S, utilizes swarm intelligence precepts and a multi-parent crossover criterion. The rest of the 
paper is organized as follows: Section II presents the formulation of the OPCDC and overviews the main features of the MVMO-S 
algorithm. Section II provides a case study on the IEEE New England 39 bus test system. Finally, conclusions and outlook for 
future research are summarized in Section IV 
 
2.  Theoretical Background 
2.1. Optimization problem statement 

Mathematically, the OPCDC problem has the following format (Rueda et al, 2014): 
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Minimize 

( ) ( )2 2* *
sys th 1 sys thOF ζ ζ +w= − α − α  (1) 

subject to  

min max≤ ≤x x x  (2) 

where αth is a predefined threshold for minimum acceptable modes’ real part (i.e. damping factor). *
sysζ  and *

sysα   correspond to the 

global damping ratio and damping factor of the system (among the nm critical OMs) throughout nsc representative scenarios. The 
vector x constitutes the solution of the problem, so it contains the damping controller’s tuning parameters (gains KSDC, and time 
constants T1 to T4), which are continuous variables, and their locations, which are coded by using logical variables. The weighting 
factor w1 is a positive number that is used for combining the squared difference between  *

sysα  and αth with the squared difference 

between  *
sysζ  and ζth. 

*
sysζ  and *

sysα  are determined as follows: 

( )*
sys kj 1 nsc k 1 nm
ζ min min

= =
 = ζ
 K K

 (3) 

( )*
sys k

j 1 nsc k 1 nm
max max
= =

 α = α
 K K

 (4) 

 

2.2. MVMO-S 
Mean-variance mapping optimization (MVMO) is a recently introduced evolutionary algorithm, which has some basic 

conceptual similarities to other heuristic approaches, but it constitutes a fundamentally new evolutionary mechanism with two 
salient features. Firstly, MVMO performs by considering normalized range of the search space for all optimization variables 
within [0, 1]. This ensures that new values generated for optimization variables in offspring creation stage are always within their 
bounds. The optimization variables are de-normalized before every fitness evaluation. Secondly, MVMO exploits the statistical 
attributes of search dynamics by using a special mapping function for mutation operation on the basis of the mean and variance of 
the n-best solutions attained so far and saved in a continually-updated archive (Rueda et al, 2013). 

The original MVMO represents a single particle approach, which has shown a great potential for solving different optimization 
problems. This paper presents a new variant of MVMO, termed as MVMO-S, which adopts a swarm intelligence scheme and 
incorporates a multi-parent crossover strategy to increase the search diversity while striving for a balance between exploration and 
exploitation. The overall procedure is described as follows: 

− Step 1: Define Np, the initial and final values (*s_inif  and *
s_finalf ) for scaling factor fs, solution archive size, dynamic shape 

factor ∆d , the initial and final proportion of good particles ( *
p_inig  and *

p_finalg ), and the initial and final number of dimensions 

( *
inim  and *

finalm ) to be selected for mutation operation. Next, generate an initial random population of Np particles within the 
search boundaries and normalize the sampled optimization variables by considering the range of search within [0, 1]. 

− Step 2: De-normalize each particle from [0, 1] range to their original [min, max] boundaries and evaluate its fitness.  

− Step 3: Fill/update the solution archive associated to each particle. The archive stores the n-best child solutions achieved so far in 
a descending order of fitness. The archive size is fixed for the entire process. For each particle, an update of its archive takes place 
only if the new solution is better than those in the archive. 

Step 4: The first ranked solutions (i.e. local bests) of all solution archives are classified into two groups: A set of GP “good 
particles”, and the set of remaining Np-GP “bad particles”. Local best-based parent assignment is adopted for each particle 

classified as good, whereas for each bad particle xp, the parent parent
px  is synthesized by using the following multi-parent criteria. 

( )parent
p k i j= + β −x x x x  (5) 

where xi, xj, and xk represent the first (global best), the last, and a randomly selected intermediate particle in the group of good 
particles, respectively. The factor β is a random number, which is drawn according to 

max0.5 0.25 ,    /i iβ = − ⋅α α =  (6) 

where i denotes fitness evaluation number, and rn is a random number with uniform distribution in [0,1].  

An element of parent
px  is set to 1 or 0 if it is outside the range [0, 1]. 
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Step 5:  Create a child vector xnew for each particle by combining a subset of *
varN - m  directly inherited dimensions from 

parent
px  and *m  selected dimensions (via roulette wheel tournament selection) that undergo mutation operation through mapping 

function based on the means and variances calculated from the particle’s solution archive. *m  is progressively decreased as 
follows: 

( )( )†
final final* round m rand mm m= + −  (7) 

 ( )( )†
ini ini finalround m m mm = − α −  (8) 

    

− Step 6: The new value of each selected dimension rx   of xnew is determined by 

*
r x 1 0 r 0(1 )x h h h x h= + − + ⋅ −  (9) 

where r
*x  is a randomly generated number with uniform distribution between [0, 1], and the term h represents the transformation 

mapping function defined as follows: 

1 2(1 )
1 2( , , , ) (1 ) (1 )x s x sh x s s x x e x e− ⋅ − − ⋅= ⋅ − + − ⋅  (10) 

hx, h1 and h0 are the outputs of the mapping function calculated for 
*

x r 0 1( ), ( 0), ( 1)h h x x h h x h h x= = = = = =  (11) 

 

The shape factors r1s  and r2s  of the variable rx  are assigned by using a sequential scheme which accounts for mean and 

variance of rx , quadratic decrement of fs from *
s_inif   to *

s_finalf , and ∆d  in order to exploit the asymmetry of h . 

Step 7:  Stop if the termination criterion is met; else go to Step 2. 
The above procedure is illustrated in Figure 1. 
 
3.  Case Study 
Numerical experiments were performed on a computer with an Intel® Core 2, i7 -3820 central processing unit (CPU), 3.60 

GHz processing speed, and 8 GB RAM. The simulation environments MATLAB®, MATPOWER (Zimmerman et al, 2011), and 
DIgSILENT PowerFactoryTM were used to accomplish the implementation aspects and to test the proposed approach. The QR 
method is used for full eigenvalue computation. The approach is tested using a slightly modified version of the IEEE New England 
39 bus test system (Pai, 2011), which includes two Thyristor-Controlled Series Capacitors (TCSCs), as illustrated in Figure 2. All 
generators are represented by sub-transient model and equipped with static excitation systems as well as thermal turbine governor 
systems.  

Changes have been made in the system to account for different operating conditions. The approach presented in (Rueda et al, 
2011) was used to determine the representative scenarios from probabilistic model based Monte Carlo simulations. 

OPCDC is solved by considering the representative scenarios and potential addition of damping controllers at generators G2 to 
G10 as well as at both TCSCs. The damping controllers at generators are assumed to have speed as input signals from local 
generators and are superimposed to the excitation control system, whereas those at TCSCs have line currents as inputs and are 
superimposed on the device’s main control loop, whose output signal is the series compensation susceptance. The parameters of 
each controller were adjusted considering typical limits, i.e. KSDC ∈ [1, 100], T1 and T3 ∈ [0.2, 2], T1/T2 and T3/T4 ∈ [1, 30], 
whereas the location is decided by using logical variables. Therefore, the search space has 66 dimensions, comprising to 55 
continuous variables and 11 two-state discrete variables. 

A static penalty scheme is defined for MVMO and the compared algorithms in order to properly consider the fulfillment degree 
of constraints as well as to ensure fair comparison. The fitness *f  is calculated as follows: 

[ ]
conN

2*

1

max 0,i i
i

f f g
=

= + ρ∑  (12) 

where f stands for objective function value, Ncon is the number of constraints, gi denotes the i-th constraint, and ρ is the penalty 
coefficient for each constraint. 
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Figure 1. MVMO-S based solution procedure for OPCDC. 

 

Figure 2. IEEE New England 39 Bus test system. 
 
The average convergence of the fitness, i.e. the OF defined in (1), among 30 independent optimization repetitions is shown in 

Figure 3, which provides an illustrative comparison between MVMO-S and other emerging metaheuristic optimization algorithms, 
such as the comprehensive learning particle swarm optimization (CLPSO) (Liang et al, 2011), genetic algorithm with multi-parent 
crossover (GA-MPC) (Elsayed et al, 2011), differential evolution DE algorithm with adaptive crossover operator (Reynoso-Meza 
et al, 2011), linearized biogeography-based optimization with re-initialization (LBBO) (Simon et al, 2014), and  covariance 
matrix adaptation evolution strategy (CMA-ES) (Hansen, 2011).  By using typical settings provided in the aforesaid references, 
the goal is to test the suitability of these algorithms as general purpose tools. The stopping criterion was set to 2,000 function 
evaluations. All algorithms used a population of 40 particles. 
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Figure 3. Comparison of average convergence of MVMO-S with other metaheuristic optimization methods. 
 

Table 1. Comparative Performance Statistics 
Algorithm 

Fitness (p.u.) 
MVMO-S CLPSO GA-MPC DE-ACO LBBO CMA-ES 

Min. 1.6691×10-7 8.8302×10-3 5.0714×10-3 4.9339×10-3 4.7855×10-3 8.5323×10-5 
Max. 1.0659×10-4  4.1739×10-2 1.1517×10-2 9.8407×10-3 1.1517×10-2 6.9723×10+1 
Mean 1.5199×10-5  1.5509×10-2 1.0590×10-2 8.4228×10-3 1.0178×10-2 0.7809×10+1  
Std. 2.9867×10-5  1.1341×10-2 2.1137×10-3  1.3087×10-3 2.2180×10-3 2.1906×10+1 
Average 
execution 
time (min) 

26.2537 26.6231 29.7757 26.6538 25.9259 26.5142 

 
From Figure 3, note the excellent performance of MVMO-SM in terms of both convergence speed and the minimum reached, 

since after the first 1,600 function evaluations, it is able to locate the global optimal solution in the search space (when the 
thresholds for damping performance are reached , i.e. OF = 0) without being trapped in a local optimum. 

 

 
 

Figure 4. Active power flow in line 9-39. 
In the figure, the high nonzero values of fitness observed at the beginning of the convergence progress are due to fact that the 

global damping factor measure is lower that the threshold, cf. (1). It is also noticed in the figure that all algorithms are capable of 
finding solutions that entail satisfying the damping factor threshold (i.e. obtaining fitness values that are considerably smaller than 
those obtained at the beginning of the search process), but finding solutions that simultaneously allow satisfying both damping 
factor and damping ratio thresholds (i.e. OF=0) is what make the difference in the performance of the algorithms. A statistical 
survey of the achieved fitness values for all optimization repetitions is given in Table I, where the outstanding performance of 
MVMO-S can be more clearly appreciated by comparing different statistical attributes. The table also summarizes the average 
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execution time of the optimization task for all algorithms. It can be seen that there are some slight differences, which are due to 
inherent algorithmic characteristics of each method. 

Time domain simulation was also performed to confirm the effectiveness of the obtained results. For this purpose, the 
simulation was conducted for one of the scenarios considered in the OPCDC by applying a three-phase fault at bus 15 at t = 1 s, 
with a duration of 100 ms. Figure 4 presents the oscillograms corresponding to the active power flow of transmission line 9 – 39, 
showing the enhancement of damping performance. 

 
4.  Conclusions 

This paper presents a metaheuristic based approach to tackle the problem of optimal placement and coordinated tuning of power 
system supplementary damping controllers. The optimization task is solved via MVMO-S. Numerical results attest the outstanding 
performance of the proposed MVMO-SM in terms of convergence behaviour and lowest statistical attributes associated to 
optimization repetition. The application of the approach to a real large-size power system is currently being carried out in order to 
further ascertain its effectiveness. Moreover, the proposed approach can be extended to include other devices in which a damping 
controller can be added. Ongoing research is also being conducted to evaluate the performance of MVMO-S when solving other 
power system optimization problems, like the optimal active-reactive power dispatch problem in wind-hydro-thermal systems 
considering uncertainties and security constraints and the optimal dynamic transmission expansion planning. 
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