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Abstract

This paper introduces an approach based onwlaens Variant of the Mean-Variance Mapping Optimiaat(MVMO-S) to
solve the multi-scenario formulation of the optimpédcement and coordinated tuning of power systepplementary damping
controllers (POCDCs). The effectiveness of the apgh is evaluated based on the classical IEEE 839{Wew England) test
system. Numerical results include performance caispas with other metaheuristic optimization teciugs, namely,
comprehensive learning particle swarm optimizat{@LPSO), genetic algorithm with multi-parent crosso (GA-MPC),
differential evolution DE algorithm with adaptiveossover operator, linearized biogeography-basdatn@ation with re-
initialization (LBBO), and covariance matrix adaa evolution strategy (CMA-ES).
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1. Introduction

Traditionally, the placement and tuning of powgstem damping controllers have been tackleddisidtual problems based
on participation factors, residues, damping torcgemsitivity coefficients and singular value decaosipon (Karimpouret al,
2005; Pagolat al, 1989; Wanget al, 1997). Alternatively, the simultaneous solution lhoth tasks has also been investigated from
optimization problem point of view. Particularifet joint determination of optimal placement andrdamted tuning of power
system damping controllers (OPCDC) constitutesallehging optimization problem due to the mix-irgegombinatorial nature
as well as to the nonlinearity, multimodality, amulconvexity of the search space (Setta, 2010).

Previously reported approaches based on modifiediores of genetic algorithm (Seba al, 2009), particle swarm
optimization (Eslamiet al, 2009), and differential evolution (Wang al, 2009) highlight the potential of metaheuristic
optimization algorithms for solving the OPCDC. Duethe stochastic nature of the underlying evohary mechanism, further
research is needed to ascertain the robustnebesd tilgorithms, which also motivates the appticaéind extension of emerging
metaheuristic optimization algorithms. This papeesgnts an approach based on the Swarm Mean-Varidapping
optimization (MVMO-S), which extends the singleidn variant of MVMO to a population based stratefo achieve efficient
and fast search capability, MVMO-S, utilizes swantelligence precepts and a multi-parent crossaviéerion. The rest of the
paper is organized as follows: Section Il pres#msformulation of the OPCDC and overviews the niaatures of the MVMO-S
algorithm. Section Il provides a case study onl#EEE New England 39 bus test system. Finally, assiohs and outlook for
future research are summarized in Section IV

2. Theoretical Background
2.1. Optimization problem statement
Mathematically, the OPCDC problem has the followfognat (Ruedat al, 2014):
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Minimize
" 2 * 2
OF: (Csys _Cth) W l(a sys_ a ﬂ') (1)
subject to
Xmin s=Xs Xmax (2)

whereay, is a predefined threshold for minimum acceptabdel@s’ real part (i.e. damping factor;);yS and a;ys correspond to the

global damping ratio and damping factor of the esys{among the nm critical OMs) throughout nsc repnéative scenarios. The
vectorx constitutes the solution of the problem, so ittaors the damping controller’'s tuning parameteengKspc, and time
constantsT; to T4), which are continuous variables, and their lag&j which are coded by using logical variables Weighting

factorw, is a positive number that is used for combining squared difference betweeun;ys anday, with the squared difference
between ¢, andin. (,, anda;, are determined as follows:

¢, = min [ min (¢,)] ©)
o, = max| max(a,)] @

2.2. MVMO-S

Mean-variance mapping optimization (MVMO) is a recently introduced evolutionary algbm, which has some basic
conceptual similarities to other heuristic appraas;hbut it constitutes a fundamentally new evohdry mechanism with two
salient features. Firstly, MVMO performs by considg normalized range of the search space for jiingzation variables
within [0, 1]. This ensures that new values geregrdor optimization variables in offspring creatistage are always within their
bounds. The optimization variables are de-normdlizefore every fitness evaluation. Secondly, MVM@®leits the statistical
attributes of search dynamics by using a specigping function for mutation operation on the basishe mean and variance of
the n-best solutions attained so far and savectonéinually-updated archive (Rueetal, 2013).

The original MVMO represents a single particle aggmwh, which has shown a great potential for soldiffigrent optimization
problems. This paper presents a new variant of MYN&Dmed as MVMO-S, which adopts a swarm intellggescheme and
incorporates a multi-parent crossover strategydoeiase the search diversity while striving foraéahce between exploration and
exploitation. The overall procedure is describefbdews:

- Step 1: Define N,, the initial and final values fé_ini and fg_ﬂna|) for scaling factoffs, solution archive size, dynamic shape

factor Ad, the initial and final proportion of good partisleg;ﬁi and g;jna,), and the initial and final number of dimensions

(mfni and m;ina|) to be selected for mutation operation. Next, gateean initial random population of,@articles within the
search boundaries and normalize the sampled optiimizvariables by considering the range of sewiithin [0, 1].

—Step 2: De-normalize each particle from [0, 1] range teitloriginal [min, max] boundaries and evaluatdittsess.

- Step 3: Fill/lupdate the solution archive associated tchgzarticle. The archive stores the n-best childtsmbs achieved so far in
a descending order of fitness. The archive sifigesl for the entire process. For each particleypaiate of its archive takes place
only if the new solution is better than those ia #nchive.

Step 4: The first ranked solutions (i.e. local bests) bfsalution archives are classified into two groupsset of GP good
particles’, and the set of remaining ;MGP ‘bad particles’. Local best-based parent assignment is adopteddoh particle

classified as good, whereas for each bad pasjcibe parenleallrent is synthesized by using the following multi-pareriteria.
XBarem:XkaB(Xi _Xj) 5)

wherex;, x;, andx, represent the first (global best), the last, amdralomly selected intermediate particle in theugrof good
particles, respectively. The factpis a random number, which is drawn according to

B=0.5-0.250, 0 =i Iy (6)

wherei denotes fitness evaluation number, ang a random number with uniform distribution in1p

An element ofxBarent is set to 1 or 0 if it is outside the range [Q, 1]
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Step 5: Create a child vectax"" for each particle by combining a subset Nf,ar—m* directly inherited dimensions from
xgare”t and m selected dimensions (via roulette wheel tournarsetgction) that undergo mutation operation throogpping

function based on the means and variances caldufeten the particle’s solution archivem” is progressively decreased as
follows:

m :round( Minal + ran({mT - nﬂnal)) (7)

m' = round( My = o ( Mhi = Mnar ) (8)

new ;

- Step 6: The new value of each selected dimensipnofx™" is determined by
X =h +(1-h +h)X —hy (9)

where xr is a randomly generated number with uniform disttion between [0, 1], and the temrepresents the transformation
mapping function defined as follows:

h(x.5,,,%) = X({1- €™ )+ (1-x )& ¢ (10)
h,, hy and Ry are the outputs of the mapping function calculébed
h =h(x=x), h =h(x=0), h=h(xx=1) (11)

The shape factors,, and s;, of the variablex are assigned by using a sequential scheme whiobuats for mean and

variance ol , quadratic decrement &ffrom fs*_ini to fs*_ﬁna, andAd in order to exploit the asymmetry ot

Step 7: Stop if the termination criterion is met; elsetg&tep 2.
The above procedure is illustrated in Figure 1.

3. Case Study

Numerical experiments were performed on a compuattr an Intel® Coré&' 2, i7 -3820 central processing unit (CPU), 3.60
GHz processing speed, and 8 GB RAM. The simulatiovironments MATLAE, MATPOWER (Zimmermaret al, 2011), and
DIgSILENT PowerFactory" were used to accomplish the implementation aspemisto test the proposed approach. Qe
method is used for full eigenvalue computation. The apptois tested using a slightly modified versionthaf IEEE New England
39 bus test system (Pai, 2011), which includesTinwistor-Controlled Series Capacitors (TCSCs), as illustrated in Figure 2. All
generators are represented by sub-transient madedguipped with static excitation systems as aelhermal turbine governor
systems.

Changes have been made in the system to accoudiffierent operating conditions. The approach pres in (Ruedat al,
2011) was used to determine the representativeasosrfrom probabilistic model based Monte Carfoidations.

OPCDC is solved by considering the representatte@maios and potential addition of damping congrsllat generators G2 to
G10 as well as at both TCSCs. The damping contsol¢ generators are assumed to have speed assigpats from local
generators and are superimposed to the excitatiotrat system, whereas those at TCSCs have linemisr as inputs and are
superimposed on the device’s main control loop, sehoutput signal is the series compensation sumoept The parameters of
each controller were adjusted considering typigalt$, i.e. Kepc O [1, 100], T, and T5; O [0.2, 2], T/T, and T5/T, O [1, 30],
whereas the location is decided by using logicalabdes. Therefore, the search space has 66 diorenscomprising to 55
continuous variables and 11 two-state discreteabées.

A static penalty scheme is defined for MVMO and tloenpared algorithms in order to properly consitierfulfillment degree
of constraints as well as to ensure fair compariste fithessf " is calculated as follows:

NCDn
f =+ p max 0,gi]2 (12)
i=1

wheref stands for objective function value¢Nis the number of constraintg, denotes thé-th constraint, ang is the penalty
coefficient for each constraint.
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Figure 2. IEEE New England 39 Bus test system.

The average convergence of the fitness, i.e. thal€iifed in (1), among 30 independent optimizatiepetitions is shown in
Figure 3, which provides an illustrative comparis@mtween MVMO-S and other emerging metaheuristtompation algorithms,
such as theomprehensive learning particle swarm optimization (CLPSO) (Lianget al, 2011),genetic algorithm with multi-parent
crossover (GA-MPC) (Elsayedtt al, 2011),differential evolution DE algorithm with adaptive crossover operator (Reynoso-Meza
et al, 2011),linearized biogeography-based optimization with re-initialization (LBBO) (Simonret al, 2014), and covariance
matrix adaptation evolution strategy (CMA-ES) (Hansen, 2011). By using typical settimyovided in the aforesaid references,
the goal is to test the suitability of these altjoris as general purpose tools. The stopping @itenas set to 2,000 function
evaluations. All algorithms used a population ofpéBticles.
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Figure 3. Comparison of average convergence of MVMO-S witter metaheuristic optimization methods.
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Table 1. Comparative Performance Statistics

Fitness (p.u.) Algorithm

MVMO-S CLPSO GA-MPC DE-ACO LBBO CMA-ES
Min. 1.669%107 | 8.830x10° | 5.071410° | 4.933%10° | 4.785%10° | 8.532%10°
Max. 1.065%10* | 4.173%10° | 1.151%10% | 9.840%10° | 1.151%10% | 6.972%10"
Mean 1.519%10° | 1.550%10° | 1.059x10% | 8.422&10° | 1.017&10% | 0.780%10"
Std. 2.986%10° | 1.134%10° | 2.113%10° | 1.308%10° | 2.218%10° | 2.1906<10"
Average
execution 26.2537 26.6231 29.7757 26.6538 25.9259 26.5142
time (min)

From Figure 3, note the excellent performance ofN®4SM in terms of both convergence speed and thenmim reached,
since after the first 1,600 function evaluationsisi able to locate the global optimal solutiontie search space (when the
thresholds for damping performance are reached OF = 0) without being trapped in a local optimum
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Figure 4. Active power flow in line 9-39.

In the figure, the high nonzero values of fithebsayved at the beginning of the convergence pregaes due to fact that the
global damping factor measure is lower that theghold, cf. (1). It is also noticed in the figuhat all algorithms are capable of
finding solutions that entail satisfying the dangpfactor threshold (i.e. obtaining fitness valuest tare considerably smaller than
those obtained at the beginning of the search psdcbut finding solutions that simultaneously wallsatisfying both damping
factor and damping ratio thresholds (i.e. OF=0yist make the difference in the performance ofalyorithms. A statistical
survey of the achieved fitness values for all otétion repetitions is given in Table |, where thgtstanding performance of
MVMO-S can be more clearly appreciated by compadifferent statistical attributes. The table alsonsarizes the average
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execution time of the optimization task for all @lighms. It can be seen that there are some diiifferences, which are due to
inherent algorithmic characteristics of each method

Time domain simulation was also performed to comfithe effectiveness of the obtained results. Fig fpurpose, the
simulation was conducted for one of the scenarisidered in the OPCDC by applying a three-phask & bus 15 att = 1 s,
with a duration of 100 ms. Figure 4 presents tha@llograms corresponding to the active power floitransmission line 9 — 39,
showing the enhancement of damping performance.

4. Conclusions

This paper presents a metaheuristic based apptodabkle the problem of optimal placement and dowted tuning of power
system supplementary damping controllers. The apdition task is solved via MVMO-S. Numerical resudtttest the outstanding
performance of the proposed MVMO-SM in terms of \@ngence behaviour and lowest statistical attrébudssociated to
optimization repetition. The application of the apgch to a real large-size power system is cugrdiging carried out in order to
further ascertain its effectiveness. Moreover,gh@posed approach can be extended to include déhdces in which a damping
controller can be added. Ongoing research is agugbconducted to evaluate the performance of MVBI@hen solving other
power system optimization problems, like the optimetive-reactive power dispatch problem in windtorthermal systems
considering uncertainties and security constraintsthe optimal dynamic transmission expansionrpien
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