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Abstract 
 
   The flow of steady, incompressible, viscous, electrically conducting fluid past a sphere in the presence of an uniform magnetic 
field parallel to the undisturbed flow is investigated using the finite difference method. The multigrid method with defect 
correction technique is used to achieve the second order accurate solution. The Hartmann number, M  is used as the 
perturbation parameter. It is found that the increase of magnetic field decreases the wake length and increases the drag 
coefficient. The graphs of streamlines, vorticity lines, drag coefficient, surface pressure and surface vorticity are presented and 
discussed.  
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1. Introduction 
 
   The flow of viscous, incompressible and electrically conducting fluid past a sphere in the presence of a parallel magnetic field 
was first investigated by Chester (1957). Subsequently it was discussed by Ludford (1960) and  Cabannes (1970). The work of 
Yosinobu et al. (1959) on axisymmetric flow past a cylinder in aligned and transverse magnetic field for small Hartmann number 
was generalised by Savage (1972) for arbitrary direction of the magnetic field. Swarup et al. (1977) studied the same problem with 
aligned magnetic field in terms of Hartmann number. All these studies concentrated on the flow at low and intermediate values of 
Reynolds number and the main observation was that the magnetic field tends to stabilize the flow. Turkyilmazoglu (2011) studied 
the boundary layer flow of a steady, laminar, incompressible, viscous and electrically conducting fluid arising due to a rotating 
sphere, subjected to a uniform suction and injection through the surface, in the presence of a uniform radial magnetic field. The 
stability of the boundary layer flow due to rotating spheres, disks and cones have been studied theoretically and experimentally by 
Garret et al. (2002, 2004, 2007, 2009), Turkyilmazoglu (2006) and Kohama et al. (1983). They found that at high Reynolds 
number the boundary layer becomes unstable.   
   Viscous flow past a sphere becomes unstable around Reynolds number 130Re =   and past a circular cylinder around 40.Re =  
We are interested in the structure of the steady (but unstable) solutions above these Reynolds numbers. At high Reynolds numbers, 
the conventional analytic methods are not suitable due to the highly non-linear nature of Navier-Stokes equations. As a 
consequence, numerical methods are gaining interest among the researchers. In the high Reynolds number regime, the only 
existing results for the steady viscous flow past a sphere is due to  Le Clair et al. (1970) (for Re upto 400) and Fornberg (1988) (up 
to 5000).Re =   But both Le Clair et al.  and Fornberg did not consider the application of magnetic field and its effects. It would 
be interesting to see the effect of aligned magnetic field on the behaviour of the solutions at higher Re , about which, 
unfortunately, no literature exists. In the two dimensional flow of a liquid under the influence of an applied magnetic field, it is 
proved that if the field is strong enough and has the appropriate orientation, the separation of a viscous boundary layer can be 
prevented even up to the rear stagnation point. Leibovich (1967) suggested that the separation at rear stagnation point of a circular 
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cylinder could be suppressed by a sufficiently large magnetic field perpendicular to the surface of the cylinder. The suppression of 
the separation bubble at the rear stagnation point is also observed for cylinder by Raghava Rao et al. (2000), who approximated the 
convective terms by first order upwind difference scheme. They observed that the drag coefficient increases with the magnetic 
field. However, their results are not second order accurate. In this paper, we discuss the flow of a conducting fluid past a sphere at 
high Reynolds numbers ( 100 1000)Re = −  and for the intermediate values of Hartmann number M using the multigrid (MG) 
method. Compared to the Newton’s method used by Fornberg, the MG method is less demanding on the computational resources. 
We were able to get solutions for values of Re upto 1000 using a personal computer with core2duo processor (2.2GHz) and a 
RAM of 2GiB. However, the multigrid method gives only first order accurate solution (due to the upwind discretization). The 
theoretical and experimental data presented in the literature (Clift et al., 1978) suggests that second order accuracy is at least 
desirable. We employed the defect correction technique (Juncu, 1990; Juncu et al., 1999) to obtain the second order accurate 
solution and it seems to be most adequate for the job.  
 
2.  Formulation of the Problem 
 
   The equations governing the steady flow of an incompressible fluid (with finite electrical conductivityσ ) past a sphere (of 
radius a ) with uniform free-stream velocity 

∞
U  and an uniformly applied magnetic field 

∞
H  at large distances are, in non-

dimensional form,  

 
2

2( ) [( ) ]
2 m

Re M
p

R
⋅ ∇ = −∇ + ∇ + ∇ × ×q q q H H   (1) 

 [ ]
2

mR
= ∇ × = + ×j H E q H   (2) 

 
 0∇ ⋅ =q   (3) 
 
 0∇ ⋅ =H   (4) 
 
 0∇ × =E   (5) 
 
where p  is the pressure, q  is the fluid velocity, H  is the magnetic field, E  is the electric field, and j  is the current density. The 

Reynolds number is 2Re U aρ η
∞

= /  and 1 2( )M H aμ σ η /

∞
= /  is the Hartmann number. The magnetic Reynolds number is given 

by mR U aμσ
∞

= . The viscosity, density and magnetic permeability of the fluid are η , ρ  and μ  respectively. In order to satisfy 
equation (3), the dimensionless stream function ( )rψ θ,  is introduced such that  

 
2

1 1

sin sin
u v

r r r

ψ ψ

θ θ θ

∂ ∂
= , = −

∂ ∂
  (6) 

 
where u  and v  are the dimensionless radial and transverse components of fluid velocity. Spherical polar co-ordinates ( )r θ ϕ, ,  
are used as they are the most suitable in dealing with a spherical boundary. The co-ordinate system is set up in such a way that the 
flow is symmetric about 0oθ =  and 180oθ = . Since the flow is two dimensional, equations (2) and (5) give  
 (0 0 0)= , ,E   (7) 
The problem can be simplified by assuming the magnetic Reynolds number to be small and the magnetic field to be weak enough 
so that its effect can be treated as a small perturbation of the potential flow with no magnetic field. Hence we can use the low- mR  
approximation and ignore equation (2) as well as replace the magnetic field in all MHD equations by  
 ( cos sin 0)θ θ= − , , ,H   (8) 
which will eliminate several non linear terms of unknown quantities in the governing equations. Pressure can be eliminated from 
equation (1) to get  

 [ ]
2

2{ ( )} {( ) }
2 m

Re M

R
ω ω∇ × × = ∇ + ∇ × ∇ × ×q H H   (9) 

where  
 ω = ∇ × q   (10) 
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is the vorticity. Substitution of equation (2) in equation (9) gives  

 [ ] [ ]
2

2 ( ) {( ) }
2 2

Re M
ω ω∇ = ∇ × × − ∇ × × ×q q H H   (11) 

Using equations (6) and (8) along with the transformation r eξ= , equations (10) and (11) can be written as  

 
2 2

3

2 2
cot sin 0e ξψ ψ ψ ψ

θ θ ω
ξ ξ θ θ

∂ ∂ ∂ ∂
− + − + =

∂ ∂ ∂ ∂
  (12) 

and  
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  (13) 

 
in the vorticity-stream function form. Equations (12) and (13) must now be solved subject to the following boundary conditions:  
(1) On the surface of the sphere; ( 1)r = , 0ξ = ,  

 0
ψ

ψ
ξ

∂
= =
∂

 

 

 
2

2

1

sin

ψ
ω

θ ξ

∂
= −

∂
 

 
(2) At large distances from the sphere; ( )r → ∞ , ξ → ∞ ,  

 2 21
sin

2
e ξψ θ∼  

 
 0ω →  
 
(3) Along the axis of symmetry ( 0  180 )o oθ θ= , = ,  0ψ =  and 0ω = .   
 
3. Numerical method 
 
    The coupled nonlinear partial differential equations are solved by first applying finite difference method and the resulting 
algebraic equations are solved by using the multigrid method. Here, a recursive multigrid procedure is employed in which the 
smoother is a point Gauss Seidel iteration and the usual coarse grid correction is applied as follows (Wesseling 1991).  
Let there be a sequence of computational grids 1G , 2G , …, lG  with kG  finer than 1kG − . Let kU → R  be the space of grid 
functions on kG , let 1k k kP U U−: →  be a prolongation operator and let 1k k kR U U+: →  be a restriction operator. Suppose we have 
a non linear (system of) partial differential equation(s), discretized on 1G , 2G , …, lG . On kG , the algebraic problem to be solved 
is given by  
 ( )k k kA u f=  

where, kA  is the matrix obtained by suitable discretization. If û  is the approximation to exact solution u , then, ˆ( )u u−  represents 
the error e . Then, we have  
 ˆAe r Au f= − = −   (14) 
where, r  is called the residue. The coarse grid approximation u  of e−  satisfies  
 Au Rr=  
where, A  is the operator obtained by discretizing the original problem on a coarser grid and R  is the restriction operator. If the 
grid under consideration is coarsest, then the above equation should be solved exactly. The coarse grid correction to be added to û  
is Pu  (where P  is the prolongation operator) given by  



Harish and Rajathy / International Journal of Engineering, Science and Technology, Vol. 6, No. 1, 2014, pp. 1-19 

 

4 

 

 ˆ ˆu u Pu= +  
This represents one multigrid cycle. Solving on 1lG −  by γ  multigrid iterations results in the following recursive algorithm:  
procedure MG( k u f, , )  

begin if 1k =  then solve 1 1 1( )A u f=  else  

begin 1 ( )S k u f, ,   

Choose 11 kk Uu
−− ∈�   

1 1 1( )k k kAf u
− − −=� �   

11 1 ( ( ))kk k k k kf R f A uf
−− −= + −�   

for 1i :=  step 1 until γ  do MG( 1k u f− , , )  
1 1( )k k k k ku u P u u
− −= + − �   

2 ( )S k u f, ,   
end  

end MG  
where, S  denotes a smoother involving a small number of point Gauss Seidel iterations.  
The initial solution is taken as 0ψ =  and 0ω =  at all inner grid points except for ψ  at ξ = ∞  where the boundary condition 
holds. In finding the solution for higher values of Re  and M , the solution obtained for lower values of Re  and M  are used as 
starting solution. Among the two variables, ω  and ψ , we first solved for ω  and then for ψ . Convergence is said to have been 

achieved when the difference between two successive iterations m  and 1m + , at all interior grid points, is less than 510− , i.e.,  
 1 510m mψ ψ+ −| − |<  
and  
 1 510m mω ω+ −| − |< .  

The restriction operator 1k

kR −  transfers a fine grid function kU  to a coarse grid function 1kU − . On the other hand the prolongation 

operator, denoted as 1

k

kP
− , transfers a coarse grid function 1kU −  to a fine grid function kU . For the restriction operator, the simplest 

form is ‘injection’ where by the values of a function in the coarse grid are taken to be exactly the values at the corresponding 
points of the next fine grid i.e.,  
 1

1 1 2 1 2 1( )k k k

k i j i jR u u−

+ , + + , +
= .  

We used the above injection operator throughout this study. For the prolongation operator the simplest form is derived using linear 
interpolation. Prolongation by linear interpolation introduces no ambiguity when the interpolated value is desired at the mid points 
of the boundaries of a mesh cell. The following 9-point prolongation operator defined by Wesseling (1980) is used for the present 
study  
 1 1

1 2 1 2 1 1 1( )k k k

k i j i jP u u− −

− + , + + , +
=  

 

 ( )1 1 1

1 2 2 2 1 1 1 2 1

1
( )

2
k k k k

k i j i j i jP u u u− − −

− + , + + , + + , +
= +  

 

 ( )1 1 1

1 2 1 2 2 1 1 1 2

1
( )

2
k k k k

k i j i j i jP u u u− − −

− + , + + , + + , +
= +  

 

 ( )1 1 1 1 1

1 2 2 2 2 1 1 2 1 1 2 2 2

1
( )

4
k k k k k k

k i j i j i j i j i jP u u u u u− − − − −

− + , + + , + + , + + , + + , +
= + + + .  

 
The solution obtained by the above method is not second order accurate as we have approximated all terms by second order central 
difference method except convective terms which are approximated by first order upwind difference scheme to ensure diagonal 
dominance. In order to achieve second order accurate solution, the defect correction method is employed as follows. With B  as 
the operator obtained, for example, by first order upwind discretization and A  is that obtained by second order accurate 
discretization, the defect correction algorithm (Juncu (1990), Juncu et al. (1999)) works as given below.  
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At the start of defect correction, y  is a solution that is not second order accurate, and at the end of defect correction, y  is second 
order accurate.  
begin Solve y b=B   

for 1i :=  step 1 until n  do  
solve By b Ay By= − +   
y y:=   

od  
end  
Usually, in practice, it is sufficient to take 1n =  or 2.  
 
4. Results and discussions 
 
    The multigrid method with coarse grid correction is applied to solve the resulting algebraic equations which enhances the 
convergence rate. The computational grid extended up to 60 times the radius of the sphere. Five grids are taken with 512 512×  as 
finest grid and 32 32  64 64  128 128× , × , ×  and 256 256×  as coarser grids. Results obtained from the finest grid 512 512×  of the 
above multigrid procedure are presented for the range of the Reynolds numbers 100 to 1000 and for the intermediate values of 
Hartmann number. We found that first order upwind difference scheme approximation to the non-linear convective terms ensures 
diagonal dominance even at high Reynolds numbers (upto 1000Re =  in this study). So we could apply Point Gauss-Seidel 
method to solve the algebraic system throughout this study. Defect correction (DC) technique is then employed to achieve second 
order accuracy.  
As a check for our method, we solved the problem for some low Reynolds numbers. We observed the separation at the rear 
stagnation point for all 25Re ≥  in 0M =  case. The length of the wake is found to increase with Re  as observed by some 
researchers [LeClair et al. (1970), Dennis et al. (1971), Fornberg (1988)] which gives the confidence that the method is correct. 
We observed that as the magnetic field is increased, the ×j H  forces dominate and produce a convective rate in a direction 
opposite to the flow resulting in the decrease of wake length (Figs. 1–8) and separation angle (Fig. 9) for all Re  values under 
consideration. A similar phenomenon was observed by Raghava Rao et al. (1993, 1995) in the case of the translation of a sphere in 
a rotating viscous fluid and MHD flow past a circular cylinder (2000). At 1000Re =  and 0M = , we observed a second 
separation bubble between 48 77oθ = .  and 55 78oθ = .  due to the weakening of tangential stresses, which is also observed by 
Fornberg (1988). This indicates that the flow is becoming turbulent. But as M  increases, this bubble is suppressed and eventually 
disappears (Figs. 7–8).  

 
 

 
Figure 1. Streamlines for Re = 100 and M = 0. 



Harish and Rajathy / International Journal of Engineering, Science and Technology, Vol. 6, No. 1, 2014, pp. 1-19 

 

6 

 

 
Figure 2. Streamlines for Re = 100 and M = 10. 

 

 
Figure 3. Streamlines for Re = 200 and M = 0. 

 

 
Figure 4. Streamlines for Re = 200 and M = 14. 
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Figure 5. Streamlines for Re = 500 and M = 0. 

 

 
Figure 6. Streamlines for Re = 500 and M = 20. 

 

 
Figure 7. Streamlines for Re = 1000 and M = 0. 

 



Harish and Rajathy / International Journal of Engineering, Science and Technology, Vol. 6, No. 1, 2014, pp. 1-19 

 

8 

 

 
Figure 8. Streamlines for Re = 1000 and M = 30. 

 

 
Figure 9. Hartmann number versus angle of separation 

 
At the higher Reynold’s numbers, we found that the vorticity distribution in the wake bubble resembles that of a Hill’s spherical 
vortex as observed by Fornberg (1988) and this resemblance disappears for increased values of M  due to opposite convection 
(Figs. 10–12).  

 
Figure 10. Vorticity distribution in the wake bubble for Re = 1000 and M = 0. 
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Figure 11. Vorticity distribution in the wake bubble for Re = 1000 and M = 20. 

 

 
Figure 12. Vorticity distribution in the wake bubble for Re = 1000 and M = 30. 

 
Since the magnetic forces are proportional to and resist the flow of fluid in any other direction than that of the unperturbed 
magnetic field, near the sphere, they produce a change in the pattern of the vorticity lines. The length of standing vortex is reduced 
slightly and the strength of the disturbance in front of the sphere is increased with increasing magnetic field (Figs. 13–20).  

 

 
Figure 13. Vorticity lines for Re = 100 and M = 0. 
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Figure 14. Vorticity lines for Re = 100 and M = 10. 

 

 
Figure 15. Vorticity lines for Re = 200 and M = 0. 

 

 
Figure 16. Vorticity lines for Re = 200 and M = 14. 
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Figure 17. Vorticity lines for Re = 500 and M = 0. 

 

 
Figure 18. Vorticity lines for Re = 500 and M = 20. 

 
 

 
Figure 19. Vorticity lines for Re = 1000 and M = 0. 
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Figure 20. Vorticity lines for Re = 1000 and M = 30. 

 
It can also be seen that the radial component (u) of fluid velocity near the sphere at 90oθ =  is affected more compared to the 
transverse component (v) as it (u) is not parallel to the magnetic field (Figs. 21–22).  As the Hartmann number increases, the 
thickness of the boundary layer adjoining the sphere surface decreases, indicating that it tends to zero for sufficiently large values 
of  M  ( 1)M �   (Fig. 21). This is due to the enhanced velocity gradients required by the viscous stresses to compete with the 
large magnetic forces. 

 

 
Figure 21. ‘r’ versus radial component of velocity at θ = 90˚ for Re = 1000. 
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Figure 22. ‘r’ versus transverse component of velocity at θ = 90˚ for Re = 1000. 

 
The drag coefficients and surface pressure are calculated using the following relations:  
Viscous drag coefficient  

 2

00

4
sinvC d

Re

π

ξω θ θ
=

= − ∫   (15) 

Pressure drag coefficient  

 2

0
0

2
sinpC d

Re

π

ξ

ω
ω θ θ

ξ =

∂
+=
∂

⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∫   (16) 

Total drag coefficient  
 D v pC C C= +   (17) 
Surface pressure  

 0 0
0

8 4
( ) 1P d d

Re Re

θ

ξ π
θ π ξ

ωω
ωθ ξ θ

ξθ

∞

=

= =

∂∂
+= + +

∂∂

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∫ ∫   (18) 

 
The surface pressure values at 0θ = D   and 180 ,θ = D  the wake length, the separation angle and the drag coefficient values in two 
different grids 256 256×   and 512 512×  are presented in Tables 1–4. 
 
 

Table 1. Drag coefficient values for 100Re =   

M  
256 256×  512 512×

sθ   (0)oPξ =   0 ( )Pξ π
=   

( )l a/
vC   pC

  DC   vC pC DC

0.00  0.28  0.25  0.53  0.28  0.25  0.53  53.33  -0.08  1.10  2.80  
2.00  0.28  0.26  0.54  0.28  0.26  0.54  53.32  -0.08  1.10  2.70  
5.00  0.28  0.27  0.55  0.28  0.27  0.55  50.88  -0.08  1.10  2.50  
7.00  0.28  0.29  0.57  0.28  0.29  0.57  48.77  -0.10  1.10  2.33  
9.00  0.28  0.32  0.60  0.28  0.32  0.60  46.32  -0.12  1.10  2.19  

10.00  0.29  0.34  0.63  0.29  0.34  0.63  44.91  -0.17  1.11  2.10  
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Table 2. Drag coefficient values for 200Re =   

M  
256 256×  512 512×

sθ   (0)oPξ =   0 ( )Pξ π
=   

( )l a/
vC   pC

  DC   vC pC DC

0.00  0.17  0.19  0.36  0.17  0.20  0.37  64.21  -0.07  1.05  4.20  
5.00  0.17  0.20  0.37  0.17  0.20  0.37  62.80  -0.08  1.05  3.80  
8.00  0.17  0.22  0.39  0.17  0.23  0.40  61.05  -0.09  1.05  3.50  

10.00  0.17  0.24  0.41  0.17  0.25  0.42  59.30  -0.10  1.05  3.30  
12.00  0.18  0.26  0.44  0.18  0.27  0.45  57.54  -0.14  1.05  3.10  
14.00  0.18  0.28  0.46  0.18  0.29  0.47  55.44  -0.16  1.06  2.90  

 
Table 3. Drag coefficient values for 500Re =   

M  
256 256×  512 512×

sθ   (0)oPξ =   0 ( )Pξ π
=   

( )l a/
vC   pC

  DC   vC pC DC

0.00  0.09  0.14  0.23  0.09  0.14  0.23  78.60 0.12  1.02  5.50  
5.00  0.09  0.15  0.24  0.10  0.15  0.25  77.19 0.10  1.02  5.20  

10.00  0.10  0.16  0.26  0.10  0.16  0.26  74.74 0.06  1.02  4.90  
15.00  0.10  0.20  0.30  0.10  0.20  0.30  71.58 -0.01  1.02  4.50  
20.00  0.11  0.23  0.34  0.11  0.23  0.34  68.42 -0.06  1.02  4.25  

 
Table 4. Drag coefficient values for 1000Re =   

M  
256 256×  512 512×

sθ   (0)oPξ =   0 ( )Pξ π
=   

( )l a/
vC   pC

  DC   vC pC DC

0.00  0.05  0.09  0.14  0.05  0.10  0.15  85.45  0.15  1.01  6.00  
10.00  0.05  0.11  0.16  0.05  0.12  0.17  84.05  0.14  1.01  5.76  
20.00  0.05  0.14  0.19  0.05  0.15  0.20  80.35  0.10  1.01  5.51  
25.00  0.05  0.17  0.22  0.05  0.17  0.22  77.74  0.07  1.01  5.30  
30.00  0.06  0.19  0.25  0.06  0.19  0.25  75.64  0.04  1.01  5.12  

 
 
It can be seen from figures 23–25 that magnetic field tends to suppress the surface vorticity behind the sphere thereby competing 
with the viscous diffusion of vorticity out from the surface.  

 
Figure 23. Theta versus surface vorticity for Re = 200. 
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Figure 24. Theta versus surface vorticity for Re = 500. 

 
 
 

 
Figure 25. Theta versus surface vorticity for Re = 1000. 

 
 
We found that as the thickness of the boundary layer decreases, the increased velocity gradients at the surface will increase the 
pressure drop (Figs. 26–28) necessary to maintain the given flow rate. The observed flow field is in accordance with the 
assumption that the effect of magnetic field is the small perturbation of zero field potential flow.  
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Figure 26. Theta versus surface pressure for Re = 200. 

 
 
 
 
 
 
 
 

 
Figure 27. Theta versus surface pressure for Re = 500. 
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Figure 28. Theta versus surface pressure for Re = 1000. 

 
 

 
In the case of 0M = , the drag coefficient values are in good agreement with the earlier work [Fornberg (1988), Juncu et al. 
(1990)]. The comparison of the drag coefficient values for 0M =  is given in Table 5 and the graph of Reynolds number versus 
drag coefficient is presented in figure 29.  
 

Table 5. Comparison of Drag coefficient values for 0M =   
 Re  

References  100  200  500  1000   
Present results  0.53  0.37  0.23  0.15   

Fornberg (1988) 0.54 0.38  0.24  0.16   
Juncu et al.(1990) 0.53  — — —   

 
 

 
Figure 29. Reynolds number versus drag coefficient. 
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Variations in the values of drag coefficient with Hartmann number are illustrated in figure 30.  
 

 
Figure 30. Variation of drag coefficient with Hartmann number  

 
It can be noted that the flow pattern corresponding to some higher Reynolds number with magnetic field will be the same as the 
flow pattern corresponding to a lower Reynolds number with zero magnetic field. Hence we can infer that the application of an 
aligned magnetic field tends to stabilize the flow. We can also observe that the effect of magnetic field decreases as the Reynolds 
number is increased.  

 
5. Conclusions 
 
   Steady flow of a finitely conducting fluid past a sphere at high Reynolds numbers is investigated using the multigrid method. 
Second order accurate solutions are obtained using the defect correction technique. A computational domain of size equal to sixty 
times the radius of the sphere is considered for the study.  The effect of magnetic field on surface pressure, the wake length, the 
separation angle and the drag coefficient are studied and presented. It is found that the application of an aligned magnetic field 
tends to stabilize the flow by reducing the convection at higher Reynolds numbers. Also the magnetic field reduces the separation 
and slipping of the fluid at the surface of the sphere at the entire range of Reynolds numbers considered in this study. The 
application of magnetic field also tends to suppress the surface vorticity behind the sphere. It is further found that the drag 
coefficient increases with increasing magnetic field.   The multigrid method with defect correction is found to give better results in 
terms of accuracy and computational cost as is evident from the fact that all the computations for the present study were carried out 
on a personal computer with core2duo processor (2.2GHz) and 2GiB RAM. 
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