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Abstract

The most important step for producing high quality products is the optimum utilization of the manufacturing processes and
its resources, which can be accomplished by using optimal process settings. Extensive research works are reported in
literature for optimization of process settings with respect to single as well as multiple quantitative response variables.
However, in real world, often some aspects of product quality (e.g. dimensions, yield etc.) are measured quantitatively and
some other aspects of product quality (e.g. color, finish etc.) are assessed qualitatively like 'poor', 'average', 'good' etc., which
can be treated as ordered categorical or ordinal variables. Only a few researchers have attempted to tackle the problem of
simultaneous optimization of quantitative and ordinal response variables. But none of these approaches results in an efficient
optimal solution with respect to the desirability values of all the individual response variables. It motivated us to develop a
more useful approach for simultaneously optimizing industrial processes with respect to quantitative as well as ordinal
response variables. In the proposed method, the concept of desirability functions for continuous quantitative variables is
extended for ordinal response variables, and then process settings is optimized considering geometric mean of the individual
desirability functions of continuous as well as ordinal response variables. A set of experimental data, which have been
analyzed by the past researchers, are analyzed using the proposed method and the related results are compared. The
comparison of results reveals that the proposed method leads to better optimal solution than the other methods.
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1. Introduction

In order to survive in today’s highly competitive world, it is essential for a manufacturing organization to produce high
quality products consistently with minimum manufacturing cost. Most of the products are complex in nature and quality of
such a product is often described by several quality characteristics – some of them are quantitative and some of them are
qualitative. In order to improve product quality, all these quantitative and qualitative responses must be optimized
simultaneously. The products' quality characteristics (response variables) are generally affected by the setting combination of
several input variables of the manufacturing process. Therefore, it is essential to choose the best setting combination of input
process variables so that all response variables are optimized.
   Over the last three decades, Taguchi’s robust design methodology has been widely employed in industries for optimizing
input process parameters. Taguchi (1986) employed an orthogonal array to conduct experiments, which facilitates assessing
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the effects of several input process variables using lesser number of experiments. Taguchi applied a quality loss function to
evaluate product quality and employed the signal-to-noise ratio (SNR) with simultaneous consideration of achieving the
target and reducing variability around the target value of the response variable. However, Taguchi (1986) focused on
optimization of a single quality characteristic only, whereas most of the modern manufacturing processes usually have
several response variables.
   Aiming to satisfy the need of the industries, several methodologies were developed utilizing classical statistical techniques
like response surface methodology and various optimization search algorithms, e.g. Desirability function-based approach
(Derringer and Suich, 1980), Mahalanobis distance-based approach (Khuri and Conlon, 1981), multiple regression and linear
programming-based approaches (Vining and Myers, 1990; Castillo and Montgomery, 1993; Pignatiello and Joseph, 1993)
and utility function-based approach (Kumar et al., 2000). Among various approaches for the multi-response optimization, the
desirability function-based approach (Derringer and Suich, 1980) has gained the maximum popularity in solving the multi-
response optimization problems.Subsequently, many researchers (Castillo et al., 1996; Kim and Lin, 2000; Jeong and Kim,
2003; Wu, 2005; Kushwaha et al., 2013; Candioti et al., 2014; Salmasnia and Bashiri, 2015; Ahmad et al., 2017) modified the
desirability functions and used it for optimization of multiple quantitative response variables.All these approaches are
mathematically rigorous and consequently, are not easy to implement in industries. Several other researchers, therefore, have
taken interest in developing appropriate methodologies for optimizing multiple responses under Taguchi's robust design
framework (Tong and Hsieh 2000; Chiang and Su 2003; Tong et al. 2005; Pan et al. 2007; Pal and Gauri, 2010; Khanna et
al., 2015; Priyadarshini et al., 2015; Fard, et al., 2016; Ghani et al., 2017). However, all these researchers make an implicit
assumption that all the responses are quantitative variables and thus, their proposed methodologies for multi-response
optimization are applicable only if all the response variables are quantitative in nature.
   But, in reality, some quality characteristics of a product are often expressed as ordered categorical variables (ordinal
variables).Also, owing to the inherent nature of the quality characteristic or the convenience of the measurement technique
and cost-effectiveness, few aspects of quality of products are described in terms of ordered categorical data, i.e. ordinal data.
For analyzing such ordinal data, Taguchi (1986) proposed accumulation analysis (AA) method. Subsequently several authors
(Agresti, 1986; Box and Jones, 1986; Hamada and Wu, 1986; Nair, 1986; Koch et al., 1990; Chipman and Hamada, 1996)
critically investigated Taguchi's AA method and highlighted the weaknesses in Taguchi's AA method. As described by them,
the main weakness of Taguchi's AA method is that although it has reasonable power for detecting location effects, it performs
poorly in identifying the dispersion effect. Few researchers have proposed some alternative approaches for optimizing an
ordinal response, e.g. scoring schemes approach (Nair, 1986),  Bayesian generalized linear modelling (BA-GLM) approach
(Chipman and Hamada, 1996), weighted probability scoring scheme (WPSS) approach (Jeng and Guo, 1996), weighted
signal-to-noise ratio (WSNR) approach (Wu and Yeh, 2006),  expected loss minimization approach (Asiabar and Ghomi,
2006) and  heuristic/meta-heuristic approach (Bashiri et al., 2012). Again, all these methods deal with a single ordinal
response.
   However, in real world, there are many products for which the overall quality is represented partly by some quantitative
response variables and partly by some ordinal response variables. In such cases, simultaneous optimization of both types of
response variables is essential for improving the quality performance. Therefore, availability of an appropriate methodology
which is capable of optimizing all the quantitative and ordinal variables simultaneously can truly satisfy the practical need of
the industries. It is observed that only Hsieh and Tong (2001), Wu (2008) and Liao et al. (2014) have attempted to optimize
quantitative and ordinal response variables simultaneously under Taguchi's framework of robust design approach. Hsieh and
Tong (2001) applied artificial neural networks for simultaneous optimization of quantitative and ordinal responses. Liao et al.
(2014) developed an ant colony optimization (ACO) algorithm that can tackle mixed-variable optimization problems. On the
other hand, Wu (2008) treated the ordinal data as continuous variables assuming weight for each category is proportional to
the quality loss. Then, he computed total quality loss and transformed it to signal-to-noise ratio (SNR), which is maximized
to derive the optimal process settings.  The problem with Wu’s (2008) approach is that it does not lead to efficient optimal
solution. On the other hand, the problem with the artificial intelligence–based techniques or ACO algorithm is that these do
not help engineers to learn efficient engineering experiences during the period of the optimizing process. Also, these are quite
difficult to be employed in industries. In this article, a new procedure for simultaneous optimization of quantitative and
ordinal response variables is proposed that can be easily implemented. In the proposed method, a new performance metric is
defined that integrates logistic regression technique, multiple regression technique and desirability function concept. The
process parameter is optimized by maximizing the overall desirability index.
   This article is organized as follows. Section 2 reviews literature related to optimization of multiple quantitative response
variables and ordinal response variables. Section 3 describes the framework of the proposed method for simultaneous
optimization of quantitative and ordinal response variables. Section 4 summarizes the necessary steps for implementation of
the proposed method. Analysis of a set of experimental data taken from literature, related results and comparison of
optimization performance are presented in section 5. The article is concluded in section 6.
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2. Literature Review

   Most often, quality characteristics of a manufactured product are expressed as quantitative response variables, and
therefore, traditionally the problem of multi-response optimization is focused on the assumption that all the response
variables are quantitative (particularly, continuous) in nature. Derringer and Suich (1980) first proposed the use of a
desirability function, which was originally introduced by Harrington (1965), as a metric for optimization of multiple response
variables. Subsequently, many researchers (Castillo et al., 1996; Kim and Lin, 2000; Jeong and Kim, 2003; Wu, 2005;
Kushwaha et al., 2013; Candioti et al., 2014; Salmasnia and Bashiri, 2015; Ahmad et al., 2017) modified the desirability
functions and used it for optimization of multiple quantitative response variables. Till date, the desirability function-based
approaches are most commonly used for optimizing multiple quantitative response variables. However, there are several
other approaches reported in literature for optimizing multiple quantitative response variables, e.g. Mahalanobis distance-
based approach (Khuri and Conlon, 1981), multiple regression and linear programming-based approaches (Vining and
Myers, 1990; Castillo and Montgomery, 1993; Pignatiello and Joseph, 1993), utility function-based approach (Kumar et al.,
2000).Some of these mathematically rigorous techniques aim at minimizing deviation from target as well as maximizing
robustness to noise, which conform to Taguchi’s philosophy. However, those are not easily comprehendible and thus, are
quite difficult to implement in industry. Keeping this in mind, a group of researchers (Tong and Hsieh 2000; Chiang and Su
2003; Tong et al. 2005; Pan et al. 2007; Pal and Gauri, 2010; Khanna et al., 2015; Priyadarshini et al., 2015; Fard, et al.,
2016; Ghani et al., 2017) have proposed some simplified approaches for the multi-response optimization, which can be
applied under the framework of Taguchi method (1986) of experimentation and analysis. In these approaches, the quality loss
or SNR of individual responses is converted first into an overall process performance index (PPI) and then, the optimal
settings of the input variables are determined by examining the level averages on the PPI.
   The importance of analyzing ordered categorical quality characteristics (ordinal data) also got attention of several
researchers. Taguchi (1986) primarily developed the accumulation analysis (AA) method to optimize input factor settings for
an ordinal response variable. In this method, the number of observations indifferent categories is first converted to number of
observations by cumulative categories and then, probabilities for the cumulative categories are computed. The optimal input
factor settings are determined for the desired cumulative category. Taguchi (1986) recommended the use of Omega (Ω)
transformation to predict the defect counts from the probabilities of the cumulative categories. Subsequently several authors
(Agresti, 1986; Box and Jones, 1986; Hamada and Wu, 1986; Nair, 1986; Koch et al., 1990; Chipman and Hamada, 1996)
critically investigated Taguchi's AA method and highlighted the weaknesses in Taguchi's AA method. As described by them,
the main weakness of Taguchi's AA method is that although it has reasonable power for detecting location effects, it performs
poorly in identifying the dispersion effect. Subsequently, many researchers proposed some alternative approaches for
optimizing an ordinal response. Nair (1986) presented two scoring schemes to identify the location and dispersion effects.
These two sets of scores are used to find the contribution of factor levels on location and dispersion effects and determining
the optimal factor setting combination. McCullagh (1986) developed a logistic regression model using maximum likelihood
method to assess location and dispersion effects of ordered categorical data. Jeng and Guo (1996) proposed a weighted
probability scoring scheme (WPSS). They suggested using mean square deviation (MSD) as a performance measure to avoid
making compromise between location and dispersion effects. The optimal factor setting is obtained by minimizing MSD.
Chipman and Hamada (1996) proposed a Bayesian model for the ordinal data. They employed the combination of a
generalized linear model with Bayesian estimation techniques to optimize the factor settings. Asiabar and Ghomi (2006)
proposed a simple method for optimization of ordered categorical data using expected loss minimization. Wu and Yeh (2006)
presented a weighted signal-to-noise ratio (WSNR) method for analyzing ordered categorical data, and compared
optimization performance of four methods: AA method, WSNR method, Scoring Scheme and WPSS methods. They
observed that efficiency of WSNR method is inferior to Scoring Scheme method but better than the other two methods.
Bashiri et al. (2012) optimized an ordinal response variable by using ordinal logistic regression and heuristic/meta-heuristic
optimization algorithms.
   However, analyses of quantitative response variables and ordinal response variables separately usually are not much useful.
This is because, most often, the optimal parametric settings with respect to quantitative response variables and ordinal
response variables are different. Ideally, process settings have to be optimized taking into consideration the quantitative as
well as ordinal response variables simultaneously. The problems of simultaneous handling of quantitative and ordinal data
have got least attention of the researchers. Only Hsieh and Tong (2001), Wu (2008) and Liao et al. (2014) have attempted to
optimize simultaneously the quantitative and ordinal responses. Hsieh and Tong (2001) applied artificial neural networks for
simultaneous optimization of quantitative and ordinal responses. Liao et al. (2014) developed an ant colony optimization
(ACO) algorithm that can tackle mixed-variable optimization problems. On the other hand, Wu (2008) treated the ordinal
data as continuous variables assuming weight for each category is proportional to the quality loss. Then he computed total
quality loss and transformed it to signal-to-noise ratio (SNR), which is maximized to derive the optimal process setting. The
problem with the artificial intelligence-based techniques (Hsieh and Tong, 2001) or ACO algorithm is that these do not help



Pal and Gauri / International Journal of Engineering, Science and Technology, Vol. 10, No. 1, 2018, pp. 76-8779

engineers to learn efficient engineering experiences during the period of the optimizing process, whereas, Wu's (2008)
approach does not lead to efficient optimal solution. So there is a need for developing a better method for simultaneous
optimization of quantitative and ordinal response variables.

3. The Framework of the Proposed Method

   One of the most popular performance metrics for simultaneous optimization of multiple continuous response variables is
the desirability function (Derringer and Suich, 1980). In this approach, the individual responses are estimated first through
regression techniques, and then, each estimated response is transformed into a desirability value. The individual desirabilities
are then combined using the geometric mean to get the overall desirability, i.e. the performance metric. Our basic idea was
that if it is possible to obtain desirability functions for the ordinal response variables, then the geometric mean of individual
desirability indices of continuous as well as ordinal response variables can be considered as the performance metric for
simultaneous optimization of quantitative and ordinal response variables. It is well established that the probabilities in each
category of the ordinal variable can be predicted by using the ordinal logistic regression model (Agresty, 2010). Jeng and
Guo (1996) proposed a weighted probability scoring scheme (WPSS) for estimating the location and dispersion effects
(scores) for an ordinal variable using the predicted probabilities. We observed that both location score (LS) and dispersion
score (DS) are quantitative, and therefore, considering LS and DS as LTB and STB type variables, the desirability functions
for location effect and dispersion effect of an ordinal response variable can be defined appropriately without loss of
generality. This indicates that our idea for simultaneous optimization of quantitative and ordinal response variables using
overall desirability index is feasible.

According to our proposed method, optimization of a process having quantitative as well as ordinal response variables
would require the following four steps: (i) obtaining individual desirability index for each quantitative response variable, (ii)
obtaining desirability indices for location effect and dispersion effect of each ordinal response variable, (iii) obtaining overall
desirability index and (iv) optimizing the overall desirability index.

Let us assume a process for describing the proposed procedure. Suppose the process has m control factors (X1, X2,…, Xm),
which are to be optimized with respect to r continuous response variables and s ordinal response variables (each ordinal
response have k levels or categories of ordered categorical data). Suppose, an orthogonal experimentation with n trial runs is
carried out and each trial run is replicated q times. In each replication, values of all the response variables are observed.

3.1 Obtaining Desirability Function for Quantitative Response Variables
For obtaining the desirability function for a quantitative response variable, the first requirement is to establish the most

appropriate regression equation for prediction of the response variable. In an experimentation set up, different levels of the
control factors in a trial run are represented by the numerical values like 1, 2, 3 etc., i.e. each trial run has different set level
values of the input variables X. Using these set level values of the input variables X and the response values of Yi

corresponding to n trial runs, appropriate multiple regression equation for prediction of expected mean of ith quantitative
response variable (Yi) (i = 1, 2, 3,..., r) can be worked out. The regression model will be as given in Eqn. (1).

2
0 1 1 2 2 1 11

.... ....i m m p m mm
Y x x x x x x               (1)

where i’s are regression coefficients, m is the number of input variables, p is the total number of regressor terms in
respective equations and  is random error. Generally, it is assumed that  is independently and normally distributed with
mean value as zero and with constant variance 2

e . It is important to note that the number of regressor terms in any equation

should be smaller than the number of trial runs in the designed experiment.
The regression coefficients can be obtained by the least square method. The option of performing multiple linear regression

analysis is available in Microsoft Excel and in many statistical software packages, e.g. MINITAB and STATISTICA. Using
these packages, appropriate multiple regression equations can be established. However, diagnostic checks must be performed
for validating each fitted regression equations. The adequacy of fitted model can be checked using ANOVA and an F-test for
significance of regression. Any kind of possible anomalies can be detected by examining residual analysis in terms of various
plots, e.g. normality plot of residuals, plot of residual versus individual regression variable etc. If, after the diagnostic checks,
no serious violations of model assumptions are detected, then the regression equations are assumed to be adequate fit to
predict means of the response variable.

The concept of desirability function was originally proposed by Harrington (1965) for continuous response variable. It is a

function by which an estimated response variable iŶ  is transformed into desirability value id , where 10  id . The value of

di increases as the desirability of the response increases. If the product characteristic is in an unacceptable range, the
desirability value is 0 and if the product characteristic is at the optimum value, the desirability value is 1.
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Derringer and Suich (1980) modified this desirability function for optimization of multiple response variables. They
defined three classes of desirability functions for nominal-the-better (NTB), smaller-the-better (STB) and larger-the-better
(LTB) types of response variables. For the NTB type, the desirability function is defined as

| | ,

| | ,           T

0,                      y <  or y >

s

t

y LSL
LSL y T

T LSL
y USL

d y USL
T USL

LSL USL

   
   




(2)

where the exponents s and t are the shape constants of the desirability function, and LSL and USL are respectively the lower
and upper specification limit for the NTB type response variable with a target value T. In general, the shape constants are
chosen in the range from 0.01 to 10. We use both the shape constants are equal to 2 so as to look similar as Taguchi’s
quadratic loss function.

For the STB type, the desirability function is defined as
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where a is a smallest possible value for response Y.

For the LTB type, the desirability function is defined as
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3.2 Obtaining Desirability Functions for Location and Dispersion effects of Ordinal Response
Let us assume that any one of s ordinal response variables Yl(l=1,2,…,s) has k number of ordered categories, denoted by

1,2,…,k, where k ≥ 3, integer. From the experimental data, for each of n experimental runs, the number of observations
(frequencies) in each category from q number of repeated samples are first observed. These frequencies can easily be
converted into individual and cumulative probabilities for each of k categories. Using ordinal logistic regression, these
cumulative probabilities are modeled as a function of input controllable variables. Generally, a logit transformation of
cumulative probabilities are used as a link function while modeling the cumulative probabilities as a function of input
variables and accordingly, this type of ordinal regression models are named as cumulative logit models. If there are k
categories of the ordinal variable Yl, then there will be k-1 cumulative logit models for describing first k-1 cumulative
probabilities of Yl.

Let pi denotes the probability that the uth(u = 1, 2,…, q) sample of the ordinal response variable Yl, falls in ith category, that

is, pi = P(ylu = i), where i = 1,2,…,k. The transformation ln
1i

i

i

p

p
 


is called the logit transformation of probability pi.

Logit of cumulative probability up to ith category is defined as

( )
log [ ( )] log ,     1,2,..., ; 1,2,...
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it P Y i l s u q

P y i


   

 
(5)

These logits of cumulative probabilities are modeled as function of input controllable variables as shown below:
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1

log [ ( )] ,   1, 2,..., 1
m

lu i j j
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it P Y i x i k 


     (6)

All the cumulative logit models for all response categories of the ordinal variable Yl have the same effect of controllable
variables. That means, the βj coefficients of jth input variable of response Yl are same in all k-1 logit models. The only
difference in the models from one response category to the next is the intercepts α i. The {αi} are increasing in i because
cumulative probability P(yl ≤ i) increases in i and logit transformation is an increasing function of this cumulative probability.

From the cumulative logit models, the cumulative probabilities of ith category of the ordinal variable Yl can be computed as
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From the cumulative probabilities of first k-1 categories, individual probabilities of all k categories can be easily obtained.
Individual probability of ith category can be computed as

1
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For the first category, individual and cumulative probabilities are same. For the individual probability of 2nd category, the
cumulative probability of 1st category is to be subtracted from the cumulative probability of 2nd category and so on. For the
individual probability of the last kth category, the cumulative probability of (k-1)th category is to be subtracted from 1,
because total cumulative probability of kth category is always equal to one. Multiplying individual probabilities by the sample
size, the expected individual frequencies of all k categories of the lth ordinal response variable can be computed. Using
similar method, the cumulative logit regression models for all s ordinal response variables can be established. The regression
coefficients of the ordinal logistic regression models can be obtained by using any statistical package e.g. Minitab, SPSS etc.
However, usual goodness-of-fit tests and diagnostic checks must be performed for validating the cumulative logit models for
the ordinal data.

For computing location and dispersion effects in case of an ordinal response variable, Jeng and Guo (1996) proposed a
weighted probability scoring scheme (WPSS). In this method, the categorical data is listed first in a progressively undesirable
order, and then, the more desirable category is given more weight to make the location effect as the larger-the-better (LTB)
type quantitative response variable. Let there are K categories of an ordinal quality characteristic with first category
representing the best quality and a weight wk = K – (k – 1), k = 1,2,..,K is assigned to each category. The location score LS
and the dispersion score DS for a particular setting combination is then defined as

1

,
K

k k
k

LS w p


 (9)

2

1

[ (Target Value) ]
K

k k k
k

DS w p


  (10)

where pk is the proportion of observation in kth category and the target values are defined as [K,0,0,…,0] for categories 1,
2,…,K, respectively.

It may be noted that both LS and DS are quantitative. The maximum possible value of LS is K and the minimum
possible value is 1. Higher value of LS is desirable, and therefore, LS may be considered as LTB type quantitative response
variable with USL = K and LSL = 1. On the other hand, the maximum possible value of DS is [K2 + (K-1)2] and the
minimum possible value is 0. Smaller value of DS is desirable, and therefore, DS may be considered as STB type quantitative
response variable with USL = [K2 + (K-1)2] and LSL = 0. Thus, without loss of generality, both LS and DS can be converted
into desirability indices using the following desirability function

2

1

1











K

LS
dLS (11)
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3.3. Formulation of the Performance Index
For the purpose of simultaneous optimization of quantitative and ordinal response variables, weighted geometric mean of

desirability indices of the individual quantitative response variables and desirability indices of LS and DS of all the ordinal
response variables may be considered as the overall desirability index. The overall desirability index D, therefore, at a chosen
setting combination can be obtained

 1 ( 2 )

1 2 1 1 2 2( ... ) ( ... )
r sQ Q Q LS DS LS DS LS DS

r s sD d d d d d d d d d


                                        (13)

where Q
id is the desirability index of ith (i = 1, 2, ...r) quantitative response variable at the chosen setting combination, and

LS
jd and DS

jd  (j = 1, 2, ...s)  are the desirability indices for location score and dispersion score of jth ordinal response variable

at the chosen setting combination. As per definition, higher desirability index is better.

3.4 Optimization of the Performance Index
   It is important to note that overall desirability index D is a function of some predicted values, which are again functions of
the control factor levels. Thus, D is essentially a function of the control factor levels. So the object of optimization is to
determine the level values of the control factors (input variables) that maximize the D value.
   The task of determining optimal level values of the control factors can be accomplished by changing level values of the
input variables and comparing the resulting D values. The 'Solver' tool of Microsoft Excel package is very effective for
performing such enumerative search and finding the optimal level values for the input variables. The Solver tool employs the
generalized reduced gradient (GRG) method for optimization, proposed by Castillo and Montgomery (1993). While running
the 'Solver' tool it is necessary to specify the range of levels for the input variables. In certain cases, where the input variable
takes only discrete values, the integer restriction for that input variable need to be specified.
   It may be noted that for obtaining optimal solution using the 'Solver' tool one has to choose an arbitrary setting combination
(say, existing combination) first, and then to carry out all the necessary computations for prediction of quantitative responses,
LS and DS scores of ordinal responses, desirability indices for quantitative responses, LS and DS of ordinal responses and
the overall desirability for the chosen combination in Excel worksheet. Finally he/she has to run the 'Solver' tool.

4. The Procedure for Implementation of the Proposed Method

   The proposed method for simultaneous optimization of quantitative and ordinal response variables can be implemented
using the following five steps:
Step 1: Identify the types of quantitative response variables, i.e. if LTB, STB or NTB type. For each experimental trial,
record the replicated values of each quantitative response variable. On the other hand, identify different categories for each
ordinal response variable and arrange the categorical data in a progressively undesirable order. Then compute cumulative
probabilities for all the categories of an ordinal response variable.
Step 2: Fit appropriate multiple regression equations for prediction of the expected means for all the quantitative response
variables using models shown in Eqn. (1). On the other hand, establish appropriate cumulative logit model for prediction of
cumulative probability up to a given category of an ordinal response variable using Eqn. (6). For an ordinal response with k
categories, there will be k-1 cumulative logit models for describing first k-1 cumulative probabilities.
Step 3: Choose an arbitrary combination of control factor levels (say, existing combination), and then, obtain the overall
desirability index for the chosen setting combination in a Microsoft Excel worksheet as follows:

(a) Obtain the predicted means of all quantitative response variables using respective regression equations. Similarly,
obtain predicted probabilities in each category of each ordinal response variable using respective ordinal logistic
regression model.
(b) Transform the predicted mean of each quantitative response variable into desirability indices using Eqns. (2-4) as
appropriate depending on the type of the response variable. Also transform the predicted probabilities of each ordinal
response variable into location and dispersion scores, LS and DS, using Eqns. (9-10), and transform these further into
desirability indices for location effect and dispersion effect using Eqns. (11-12).
(c) Combine all the desirability indices of all individual response variables (quantitative as well as ordinal) in a single
overall desirability index, D, using Eqn. (13).
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Step 4: Using 'Solver' tool of Microsoft Excel package, determine the level values of the input variables (control factors) that
maximize the D value.
Step 5: Obtain the expected values (along with confidence intervals) of each quantitative response variable at the optimal
setting condition using the relevant multiple regression equation and expected frequencies at each category of the ordinal
response variable. Then, carry out the confirmatory trial and verify that the actual results conform to the expected results.

5. Analysis and Results

   For illustrating the application of the proposed method and evaluate the effectiveness of the proposed method, the case
study data on ion implantation process of a Taiwanese IC fabrication manufacturer, described by Hsieh and Tong (2001), is
analyzed. In this case study, two responses were considered: the first one was one was quantitative (on the measurement of
ion amount) and the second one was qualitative (total defect counts of 36 sensitive areas in a wafer). The quantitative
response is of NTB type with a target value of 1000 and with LSL and USL of 800 and 1200 respectively. The qualitative
response is ordinal variable and it includes five categories of defect situation: very good, good, not good and not bad, bad,
and very bad and those are denoted by grade I, II, III, IV, and V. Six control factors A – F were studied. Among them, A is
discrete with 2 levels and other five factors B – F each having 3 levels. An L18 orthogonal array was planned and each
experiment was conducted with two repetitions. The experimental data in summarized form is shown in Table 1.

Table 1. Experimental data from ion implantation process
Factors Ion Amount (IA) (Y1) Defect Count (DC) (Y2)Expt

No. A B C D E F Rep1 Rep2 I II III IV V
1 1 1 1 1 1 1 745.2 741.4 33 3 0 0 0
2 1 1 2 2 2 2 968.3 972.1 24 5 6 1 0
3 1 1 3 3 3 3 800.2 796.1 6 2 20 8 0
4 1 2 1 1 2 2 795.9 797.8 0 14 4 4 0
5 1 2 2 2 3 3 791.4 796.6 2 12 4 12 16
6 1 2 3 3 1 1 800.4 802.1 4 12 20 4 8
7 1 3 1 2 1 3 912.2 908.2 0 2 6 14 14
8 1 3 2 3 2 1 650.0 645.7 10 2 8 4 12
9 1 3 3 1 3 2 651.2 650.3 0 0 0 24 12

10 2 1 1 3 3 2 1075.1 1072.5 34 0 2 0 0
11 2 1 2 1 1 3 1314.0 1616.1 30 2 4 0 0
12 2 1 3 2 2 1 884.4 890.5 10 10 12 0 4
13 2 2 1 2 3 1 884.3 886.6 14 8 10 4 0
14 2 2 2 3 1 2 817.4 826.5 8 16 12 0 0
15 2 2 3 1 2 3 796.0 800.1 0 8 6 4 18
16 2 3 1 3 2 3 819.8 816.1 18 12 6 0 0
17 2 3 2 1 3 1 821.8 824.2 10 6 0 4 16
18 2 3 3 2 1 2 732.4 735.6 0 4 2 6 24

As described in step 2, the multiple regression equation for prediction of IA (quantitative response variable) is now
established as a function of controllable variables A-F. The fitted multiple regression equation for prediction of IA is given in

Eqn. (14) along with the 2R and 2
adjR values.

2 2
adj

( ) 181.4 570.4 297.42 116.15 208.88 245.26 484.1 76.74

             149.48 35.86 72.2 106.06 104.6

         [ 0.996    and R 0.994 ]

IAE Y A B C D E F AC

AD AE BC CF EF

R

        
    

 

  (14)

On the other hand, for prediction of probabilities of 5 categories of DC (ordinal response), 4 ordinal logistic regression
equations are developed using the observed frequencies in different categories of DC. These equations are:



Pal and Gauri / International Journal of Engineering, Science and Technology, Vol. 10, No. 1, 2018, pp. 76-8784

log     3.48155 0.63594 1.47767 1.13997 0.26504 0.14133 0.31945         (15)

log    4.67765 0.63594 1.47767 1.13997 0.26504 0.14133 0.31945         (16)

log  5.81795 0.63594 1.477

it I A B C D E F

it II A B C D E F

it III A

      
      
   67 1.13997 0.26504 0.14133 0.31945          (17)

log  6.84735 0.63594 1.47767 1.13997 0.26504 0.14133 0.31945          (18)

B C D E F

it IV A B C D E F

   
      

Using the above logistic regression equations, the cumulative probabilities of the ith category can be computed as
exp(log  )

( ) ,    , , ,
1 exp(log  )DC

it i
P y i i I II III IV

it i
  


            (19)

   From the cumulative probabilities, individual probability of each category can be easily computed. For the Vth category, the
individual probability is 1 ( ),DCP y IV  as the cumulative probability for Vth category is always 1.

   For the purpose of using 'Solver' tool for determination of optimal setting combination, it is now required to compute in
Excel worksheet the overall desirability index for any one setting combination.  Arbitrarily the existing setting combination,
i.e. A1B1C3D3E1F2 is chosen here for carrying out computation in the Excel worksheet. The expected value of the quantitative
response variable IA at this setting is obtained using regression equation (14). Since IA is NTB type of response variable, the
desirability index for IA is computed from this expected value using equation (2). On the other hand, the expected individual
probabilities of each category of the ordinal variable DC are obtained using ordinal logistic equations (15-19). Since category
I is most preferred, weight 5 is assigned to category I and weights 4 to1 are assigned to categories II to V respectively. Then
using equations (9) and (10) respectively, the location score (LS) and dispersion score (DS) for the ordinal response DC are
computed and then, those are converted into desirability indices using Eqns. (11-12). According to the formula, shown in
Eqn. (13), geometric mean of the desirability index of IA, desirability index of LS of DC and desirability index of DS of DC
is taken as the overall desirability index D.
   The computed expected value of IA and the expected probabilities in different categories of DC at the existing setting
combination, i.e. A1B1C3D3E1F2 are shown in Table 2.  The LS and DS values for the ordinal response DC are computed as
3.6825 and 13.467 respectively. The computed desirability index for IA and desirability indices for LS and DS of DC at the
existing combination are given in Table 3.

Table 2. Expected value of IA and probabilities in five categories of DC
Ion Amount (IA) Categories of DCSetting

Combination Exp value 1 2 3 4 5
A1B1C3D3E1F2 936.65 0.317 0.289 0.222 0.103 0.069

Table 3. Desirability index of IA and desirability indices for LS and DS of DC
Setting
Combination IAd LS

DCd DS
DCd

A1B1C3D3E1F2 0.467 0.450 0.451

The overall desirability index, D, at the existing combination is thus calculated as

456.0)( 31  DS
DC

LS
DCIA dddD

   The overall desirability D is essentially a function of the level values of the input variables. We now use 'Solver'
optimization tool of Excel to maximize the value of D by changing the level values of input variables. Hsieh and Tong (2001)
analyzed the same data using their proposed neural network (NN)-based approach and determined the optimal process
condition considering no integer restrictions (IR) for the factors B-F. They also determined the optimal process condition
using Taguchi methods and trade-off compromising strategy in which factors B-F are considered as integer variables. Using
their NN-based approach, they derived the optimal solution as A1B1C0.9D2.5E3F2 and using Taguchi methods with trade-off
compromising strategy, they obtained that the optimal combination is A1B2C1D3E2F1. In order to facilitate comparison of the
optimization performance with the Hsieh and Tong's (2001) optimal solutions, solver tool is applied first without imposing
integer restriction (IR) for factor B-F, and then solver tool is applied again with imposing IR on the factors B-F. By applying
the proposed desirability-based approach without considering IR for factors B-F and with considering IR for factors B-F, the
optimal process conditions are determined as A2B1C1D3E2.83F1 and A2B1C1D3E3F1 respectively. The expected value of the
quantitative response IA, expected probabilities in the five categories of the ordinal response DC, and the values of the
desirability indices for IA, LS of DC and DS of DC under these two optimal setting combinations of input variables are



Pal and Gauri / International Journal of Engineering, Science and Technology, Vol. 10, No. 1, 2018, pp. 76-8785

presented in Table 4. Hsieh and Tong (2001) computed expected values of IA and probabilities in five categories of DC at the
two optimal process conditions (A1B1C0.9D2.5E3F2 and A1B2C1D3E2F1) derived by them. For the purpose of easy comparison
of optimization performance, the expected values of IA and probabilities in five categories of DC at the two optimal process
conditions (A1B1C0.9D2.5E3F2 and A1B2C1D3E2F1) are reproduced from Hsieh and Tong (2001) in Table 4. Then, expected
values of desirability indices for IA, LS of DC and DS of DC as well as overall desirability value Dat these optimal
conditions are also computed and presented in Table 4.

Table 4. Expected values of different measures at different optimal process conditions
IA Exp. prob. in different categories of DC Values of desirability indicesOptimal solutions

(Method) Exp. value 1 2 3 4 5
IAd LS

DCd DS
DCd D

A2B1C1D3E2.83F1

(Proposed approach
without IR)

1000.00 0.901 0.067 0.022 0.007 0.004 1.0 0.929 0.984 0.971

A1B1C0.9D2.5E3F2

(NN-based approach
without IR)

1056.8 0.88 0.08 0.03 0.01 0.00 0.513 0.917 0.977 0.772

A2B1C1D3E3F1

(Proposed approach
with IR)

1011.47 0.899 0.068 0.022 0.007 0.004 0.889 0.927 0.984 0.932

A1B2C1D3E2F1

(Taguchi method &
trade off with IR)

1072.6 0.76 0.09 0.09 0.05 0.01 0.406 0.783 0.921 0.664

   The first two rows in Table 4 reveal the comparison of optimization performance of the proposed desirability-based
approach and the Hsieh and Tong's (2001) NN-based approach, where no integer restriction is imposed for the levels of the
continuous type control factors. It may be noted that under the optimal process condition derived by the proposed method, the
expected value of IA becomes 1000 and the expected probability in first category (very good) of the ordinal response DC
becomes 0.901. These leads to desirability values for IA, LS of DC and DS of DC as 1.0, 0.929 and 0.984 respectively, and
the overall desirability D becomes as high as 0.971. On the other hand, at the optimal process condition derived by the NN-
based approach (Hsieh and Tong, 2001), the expected value of IA substantially deviates from its  target value leading to quite
poor desirability value for IA as well as overall desirability.  Thus, the results in the first two rows clearly indicate that the
proposed desirability-based approach leads to better optimization performance than the NN-based approach.  The results in
last two rows in Table 4 reveal further that the proposed desirability-based approach (with IR for the control factors) also
leads to better optimization performance than Taguchi method & trade off-based approach in terms of individual as well as
overall desirability indices.

6. Conclusion

   In real world, the overall quality of a product is often represented partly by the measured values of some quantitative
variables and partly by the observed values of some ordinal variables. For ensuring production of high quality products, the
manufacturing process of such a product needs to be optimized with respect to all these quantitative and ordinal response
variables. In such a situation, usually the ordinal responses are treated as countable quantitative response variables and then,
the optimal process setting is determined by applying appropriately chosen technique for simultaneous optimization of
multiple quantitative response variables. But this approach, may not lead to the true optimal solution. In this article, a new
approach for simultaneous optimization of quantitative and ordinal responses is presented, where ordinal response is treated
as it is. In the proposed method, the relationship of the ordinal and the quantitative responses with the input controllable
variables (control factors) are modeled by using ordinal logistic regression and multiple regression respectively. Then,
individual desirability of the ordinal responses are computed based on the predicted probabilities for different categories of
ordinal responses and individual desirability of the quantitative responses are computed based on the predicted values of the
quantitative responses. Finally, an overall desirability function is defined, which is maximized to determine the optimal
process settings. The results obtained from analysis of a case study data reveals that the proposed method leads to better
optimization performance than the NN-based approach as well as Taguchi method-based trade off approach. After
optimization of the process settings, the process needs to be monitored continuously for achieving good quality product
consistently. Therefore, further research is required for developing appropriate methodology for simultaneous monitoring of
quantitative and ordinal quality characteristics.
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