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ABSTRACT 

 

Allometric equations are fundamental for estimating biomass in forests and their accuracy depends 

heavily on the quality and representativeness of the data used to construct them. This study aimed to benchmark 

tree sampling techniques and determine the optimal number of sample trees for constructing allometric equations. 

Ten sampling strategies consisting of the combination of two allometric models and five sampling techniques 

were evaluated. Random sampling techniques and four sampling techniques with eight diameter size-classes 

based on cumulative frequency distribution were compared. A wide range of sample data was simulated using a 

parametric resampling method to ensure unbiased sampling and a representative spread of observations. Data 

were derived from 15 inventory plots in three Congo Basin forest reserves. Results showed that uncertainty due 

to differences in size class distribution was minimized by a sampling technique, which effectively represents 

large trees. High sample sizes were required for precision in the absence of large trees. Sample sizes uncertainty 

was influenced by stand characteristics, mainly the shape of the inventory plot and data distribution. This study 

reveals that the biomass prediction uncertainty depends on the population’s specific characteristics, the type of 

allometric model used, and the representativeness of large trees in the sample. 

© 2024 International Formulae Group. All rights reserved. 
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INTRODUCTION 

The successful implementation of 

climate mitigation and carbon sequestration 

depends on the quality of information on the 

carbon balance and the capacity of forest 

ecosystems to mitigate the effects of changing 

climate (Lung and Espira, 2015). This 

information depends on the robust estimate of 

carbon stocks (Saatchi et al., 2011). Accurate 

estimates for woody biomass were of scientific 

concern for the biomass markets and carbon 

trading. The most biomass pool directly 

affected by deforestation and degradation was 

the aboveground biomass (Saatchi et al., 2011). 

Uncertainty on the amount of forest 

biomass has been pointed out by Lewis et al. 
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(2009), Chave et al. (2014). Modern 

approaches such as remote sensing or LiDAR 

were of interest for the estimation of the 

aboveground biomass (AGB). Allometric 

equations constitute the common tool for 

estimating biomass and forest carbon stock 

(van Breugel et al., 2011; 2016; Ganamé et al., 

2021). They were also used to quantify land-

based sequestration activities that constituted a 

key component so that more attention must be 

given for the accuracy of the methods used for 

their development (Roxburh et al., 2015). 

Appropriate allometric equation 

becomes a major concern for an accurate 

estimation of forest biomass as pointed out by 

Rutishauser et al. (2013) and for the emission 

factor (Picard et al., 2016). It is also the 

preference between available models (from 

other areas or pan-tropical) and the local 

models as well as the choice of predictors (van 

Breugel et al., 2011). Allometric equations are 

established with harvested trees, operations 

that are manual, expensive and time-

consuming. Despite the difficulties, allometric 

equations were reported more accurate and 

flexible (Jalkanen et al., 2005) for biomass 

estimation. Therefore, pantropical allometric 

equations for AGB estimation were established 

with large dataset from many continents 

(Chave et al., 2005, 2014) including data from 

several study sites in Africa (Djomo et al., 

2016). 

Some studies have reported the use of 

site-specific or ecosystem specific allometric 

equations for better estimate of biomass 

(Manzo et al., 2015; Dembele et al., 2023; 

Ngomanda et al., 2014; Djomo et al. 2016). In 

the Congo basin, multi-species allometric 

equations were established but the sampling 

strategies were variable. Ebuyi et al. (2011) 

harvested 12 tree-samples including three 

species: Gilbertiodendron dewevrei (Limbali), 

Autranella congolensis (Mukulungu), and 

Drypetes likwa with tree diameters at breast 

height (dbh) ranging from 24.4 to 52.2 cm. The 

71 trees belonging to 31 species sampled by 

Djomo et al. (2010) were harvested in three 10 

m × 10 m (100 m²) squared plots but only 4.2% 

of the trees had dbh greater than 10.0 cm. 

Fayolle et al. (2013) harvested 138 tree-

samples belonging to 42 species and 

distributed over a wide range of dbh from 5.3 

to 192.5 cm. A particular sampling had been 

observed with Ngomanda et al. (2014) who 

sampled 101 trees, belonging to 10 species and 

distributed approximately 10 trees per species 

and per diameter size-class; tree dbh ranged 

from 11.8 cm to 109.4 cm. Fayolle et al. (2018) 

compiled dataset from six sites in the Congo 

basin, comprising 845 tropical trees belonging 

to 55 African species and covering a large 

range of diameters 10–208 cm. One can 

reasonably admit that there is no standard 

strategy for trees sampling for the 

establishment of ecosystem-specific allometric 

equations for biomass estimation. 

Trees sampling strategy must follow a 

suitable sampling methodology. The number of 

sample trees appeared correlated with the 

available budget and the recommendation of 

Chave et al. (2004) and van Breugel et al. 

(2011). Roxburgh et al. (2015) did an excellent 

work in this area but for plantation forests. The 

variability of the biomass of large trees was put 

in evidence by Lewis et al. (2009) in particular 

for the Congo basin forests and Romero et al. 

(2022) in Amazon rainforest. Logistically, 

biomass data-gathering of large trees requires 

important equipment. Lung and Espira (2015) 

reported that diameter, stem densities of large 

trees, and wood density were the most 

important variables influencing biomass, 

accounting for over 75% of the variation in the 

estimates. Hence, the aim of this study was to 

answer which sampling strategies for reducing 

uncertainty in allometric biomass estimation 

by comparing sampling techniques, 

determining a sufficient number of sampled 

trees according to forest stand structures, and 

assessing the importance of including largest 

trees. 

 

MATERIALS AND METHODS 

Data set used 

For a given ecosystem, the stand data 

easily available was from temporary and 

permanent plots of the management and the 

logging inventories. Therefore, the inventory 

plot dataset from 15 permanent plots of the 

Central African Regional Program for the 
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Environment (CARPE) was used. The plots 

were established in three forest reserves: 

Dzanga Sangha (Balinga et al., 2006), Monts 

de Cristal (Sunderland et al., 2004) and Waka 

(Balinga 2006). In each plot, trees with 

diameter at 1.30 m above ground level (dbh) 

greater than 10 cm were measured and their 

species were identified. The number of trees by 

plot ranged from 314 to 623. The two-

parameter Weibull distribution function 

(Equation 1) was applied to each inventory plot 

data to estimate its shape and scale. 


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The shape values of the plots ranged 

from 1.35 to 1.76 (Table 1), indicating that 

their diameter distributions were left-skewed 

and consistent with the structure of natural 

forests. The maximum diameter was 188 cm 

with an average of 24.8 cm and a median of 

17.8 cm. The number of large trees per plot 

ranged from 5 to 36 for diameters greater than 

70 cm, from 1 to 14 for diameters greater than 

90 cm, and from 0 to 11 for diameters greater 

than 100 cm. Tree species richness ranged from 

66 to 119, confirming that these plots were 

located in the ecoregion of tropical moist 

forest. 

 Destructive biomass data with 283 

sample trees (dbh≥10 cm) from published 

works (Djomo et al., 2010; Henry et al., 2010; 

Ebuyi, et al., 2011; Fayolle, et al., 2013; 

Ngomanda et al., 2014) were compiled. These 

data were drawn from the dense evergreen 

forest and the transition forest between the 

dense evergreen forest and semi-deciduous 

forest. The mean diameter was of 44.9 cm, with 

a median of 37.6 cm and 25% of trees had a 

diameter greater than or equal to 70 cm. The 

number of trees with diameter greater than 70 

cm and 90 cm was respectively 93 and 47. The 

shape value was equal to 1.79 and the greatest 

diameter was 192.5 cm. The total number of 

species was 75. 

For tree species where total height and 

wood specific gravity data were not available 

in both the destructive and inventory datasets, 

total height was estimated using the height 

allometric equation from Djomo et al. (2016) 

2))(ln(036.0)ln(406.0190.1( DDExpH ++=

Wood specific gravity data were sourced from 

the international wood density table (Zanne et 

al., 2009). For tree species absent from this 

table, the average wood density of the plot was 

assigned. The two allometric equations used 

for parametric resampling were established 

using the biomass data and are presented as 

follow 

)ln()ln(421.2272.1)ln( iii DAGB ++−=  

with residual standard error (RSE) of 0.305 and 

)ln()ln(259.0)ln(273.2581.1)ln( iii HDAGB +++−=  

with RSE=0.299 (Fonton et al., 2017). 

 

Components of uncertainty in biomass 

allometric model 

The overall uncertainty of a given 

allometric model used to estimate biomass is 

determined by three key components as 

presented by Roxburgh et al. (2015). The first 

is the inherent variability of biomass on the 

natural scale, which increases with diameter 

(Figure 1a) and remains constant on the 

logarithmic scale (Xiao et al., 2011). This 

variability is reflected in the standard deviation 

of residuals around the line of best fit (Figure 1 

b).  

The second source of variability was the 

number of sampled trees used to establish the 

allometric equation, known as sampling 

uncertainty. The accuracy of biomass 

prediction improves with the number of trees 

used in the equation development (Roxburgh et 

al., 2015). The third source of uncertainty 

relates to the homogeneity of sampled trees to 

the broader population to which the model is 

applied. As pointed out by Snowdon et al. 

(2002) and Picard et al. (2012), the reduction 

of the precision occurs when the size-class 

distribution of allometric models differs from 

that of the population, mainly in term of 

diameter size-class distribution. This study 

addresses these three sources of uncertainty by 

implementing controlled sampling strategies.  

 

Sampling strategies 

Ten sampling strategies were used and 

characterized by the combination of two 

allometric models and five sampling 
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techniques. The choice of this methodological 

approach was to control the three components 

of uncertainty: the variability of biomass with 

increasing diameter, the number of sampled 

trees (sampling uncertainty) and their 

representativeness according to the forest stand 

structure. 

The two allometric models were natural 

logarithm transformed to reduce the inherent 

variability at natural scale. They differed with 

the number of predictor variables. The first was 

with two predictor variables called Model 1 

(Equation 2), 

)ln()ln()ln()ln( 310  ++= DAGB      (2) 

and the second with three predictor variables 

called, Model 2 (Equation 3), 

)ln()ln()ln()ln()ln( 3210  +++= HDAGB    (3) 

where (D)  was the diameter at breast height, 

(H) the tree height and )( the wood specific 

gravity. According to Fonton et al. (2017), 

these two models were the best one for two and 

three predictor variables with available 

destructive AGB published data with 283 

sampled trees (D ≥ 10 cm) in Congo basin. 

Many studies have highlighted the importance 

of tree height as third predictor variable in the 

AGB equation (Chave et al., 2014; Djomo et 

al., 2016; Fonton, et al., 2017). 

To control the second and third 

components of uncertainty, the algorithm of the 

sampling techniques was guided by a wide 

range of number of sampled trees and their 

representativeness according to the diameter 

size-class distribution of the landscape to 

which the allometric model was applied. The 

first sampling technique was the random 

sample on natural scale (S1): each tree had the 

same probability to be selected. The number of 

the sampled trees was ranged from 10 to 300 

by step of 5 and the sampled trees were selected 

with a uniform distribution in the range minD  

(the minimum diameter) to maxD  (the 

maximum). Based on the relatively smaller 

number of large trees in natural forests (Chave 

et al. 2005; Roxburgh et al. 2015), three other 

sampling techniques were considered, the S2, 

S3 and S4. For S2, random samples were 

selected from cumulative frequency 

distribution of diameter and split into diameter 

size-classes. Size-class boundaries were based 

on the cumulative sums of diameter listed in 

order of increasing tree diameter. The 

cumulative sum of the largest tree was divided 

into eight that corresponded to the upper limit 

of first size-class. The upper limit of the 

remaining size-class was successively 

determined by multiplying this value by 2 to 7. 

The number of eight diameter size-classes was 

reasonably in accordance with Snowdon et al. 

(2002) and Dietz and Kuyah (2011). From each 

diameter size-class thus delimited, equal 

numbers of sampled trees, ranging from 2 to 30 

were randomly selected. The other sampling 

techniques (S3 and S4) were similar to S2 

concerning the eight diameter size-class 

boundaries, but the cumulative sums were 

made with the diameter squared (S3) and with 

the logarithm of diameter (S4). The later 

sampling technique (S5) was a stratified 

random sample on the natural scale where the 

range from minD  to maxD  was divided into 

eight diameter size-classes distribution. The 

first 6 size-classes were from cm10D = to 

cm70D   with equal interval of 10 cm, while 

the two others were cm 100Dcm70  and 

cm 100D  respectively. The numbers of 

sampled trees ranging from 2 to 30, were 

randomly selected by size-class. 

 

Parametric re-sampling simulation 

The simulation design used in this 

study was the one proposed by Roxburgh et al. 

(2015) which differs from bootstrapped 

resampling procedure used by Chave et al. 

(2004) and van Breughel et al. (2011) that led 

to biased biomass prediction due to insufficient 

observed data. The simulation data were 

generated across a wide range of tree numbers 

to ensure their representativeness around the 

fitted line using parametric resampling. This 

parametric resampling was applied to ensure 

unbiased sampling across the entire diameter 

size range and representative spread of 

observations around the fitted line. In the 

theoretical framework of linear regression, the 

dependent variable was considered as random 

and the observed values of the response 
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variable were denoted as a realization of a 

random variable. In equations 2 and 3, the 

variables 𝑙𝑛( 𝐷), 𝑙𝑛( 𝐻),  and  𝑙𝑛( 𝜌)  were 

nonrandom but that was not the case of the 

response variable )ln(AGB  considered as 

random variable with normal distribution, so 

that: 

)4(),ˆ()ln( 2YNAGB
iid

  

where Ŷ = Equation 1 or 2 and 2  the 

residual variance. 

For each tree i, the simulated value of response 

variable was computed as: 

)6()ln()ln()ln()ln(

)5(or)ln()ln()ln(ˆ)ln(

3210

310

iii

iiiii

HD

DYAGB





++++=

+++=+=  

where 𝜀𝑖 ≈
𝑖𝑖𝑑

𝑁(0, 𝜎2).  

For each number of sample trees 𝑛𝑠, a 

vector of normal random values i  of size sn  

were generated and the equation 5 or 6 was 

applied to compute a vector of ln( AGB) . A 

new allometric model was established and used 

for biomass prediction at the plot level. For 

each sampling strategy and each sample tree 

numbers 𝑛𝑠, the coefficient of variation of the 

predicted biomass (
snCV ) was computed with 

1000 randomly constructed models as: 
)7(/ˆ100 AGBAGBsn xCV =  

where AGB̂  and AGBx  were the standard 

deviation and the mean of the predicted AGB 

according to each size sn . 

 

Variability of large trees 

The accuracy of allometric equation 

without large trees was evaluated with 

truncated sample dataset. The truncated sample 

dataset was the sample dataset without large 

trees. According to Lung and Espera (2015), 

44% of AGB and 25% of total AGB by plot 

were explained by large trees with dbh >50 cm 

while for Silk et al. (2010, 2013), large trees 

corresponded to diameter more than 70 cm. 

Thus, four truncated sample datasets were 

considered: those containing trees with 

diameter lower than 50 cm, 70 cm, 90 cm and 

100 cm. The coefficient of variation of the 

predicted biomass was computed with 1000 

randomly constructed models for each 

sampling strategy and each sample size (except 

for sampling technique S1 and S5). 

 

Statistical analysis 

The required number of sampled trees 

to achieve a given level of precision was 

estimated. Then for each sampling strategy, an 

empirical power function was established to 

determine the relationship between 
snCV  and 

the sample size sn  (Equation 9) as: 

b
ssn naCV =   (9) 

where a  was the intercept and b  the slope. To 

estimate these two unknown parameters 

Equation 9 was log-transformed (Equation 10). 

)ln()ln()ln( ssn nbaCV +=   (10) 

For a better appreciation of the 

relationship between 
snCV and sn , the quality 

of this adjustment was evaluated with two 

statistical parameters, the residual standard 

error (RSE) and the adjusted coefficient of 

determination (R²aj). The analysis of variance 

was carried out to compare the ten sampling 

strategies mainly the interactions with forest 

type. The Snedecor-Newton-Keuls comparison 

of mean test (SNK) was used to set up the 

homogeneity group of sampling strategies. For 

each sampling strategies, the sample size n  

required according to each precision level 

CV of 2.5%, 5%, 7.5% or 10% was computed 

as (Equation 12): 

)11(
)ln()ln(

exp 






 −
=

b

aCV
n 


 

The number of sampled trees were 

calculated for CV  equal to 2.5%, 5%, 7.5% 

and 10% corresponding respectively to 97.5%, 

95%, 92.5% and 90% confidence level with the 

corresponding error on biomass estimation of 

5%, 10%, 15% and 20% respectively. 

The importance of including large trees 

in the sample for the establishment of AGB 

equation was highlighted comparing the 

coefficients of variation of predicted biomass 

of truncated data set ( )( tnsCV  to those of the 

data set ( nsCV ) with the t student paired wise 

test. The precision gap of including largest 
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trees %)( gapP was also quantified as the 

percentage of the difference between tnsCV  

and nsCV  so that: 

nsnstnsgap CVCVCVP /)(100% −=        (12) 

If %gapP is positive, the allometric equation 

established with sampling from dataset is more 

accurate than sampling from truncated dataset 

(without large trees). 

The statistical software R, version 3.6.0 

(R core team, 2019) was used for data 

processing and statistical analysis.

 

 

Table 1: Dendrometrical characteristics of the inventory plots and biomass dataset. 

 

Forest 

reserve 

Plot Density N_Esp BA dbh≥70 

cm 

dbh≥90 

cm 

dbh≥100 

cm 

Shape Scale 

Dzanga 

Sangha 

1 424 107 23,96 9 3 3 1,59 24,55 

Dzanga 

Sangha 

2 435 119 29,64 11 5 4 1,54 26,60 

Dzanga 

Sangha 

3 314 66 29,65 16 14 11 1,35 28,43 

Dzanga 

Sangha 

4 429 96 22,42 8 1 0 1,76 24,75 

Dzanga 

Sangha 

5 489 104 35,31 16 9 7 1,55 27,34 

          

Monts de 

Cristal 

1 546 87 28,84 5 2 1 1,72 24,64 

Monts de 

Cristal 

2 587 87 44,91 20 10 6 1,56 28,30 

Monts de 

Cristal 

3 557 96 40,01 21 10 5 1,51 26,91 

Monts de 

Cristal 

4 547 86 39,31 23 13 9 1,49 26,57 

Monts de 

Cristal 

5 569 103 44,52 36 12 9 1,41 26,72 

          

Waka 1 393 83 33,35 22 4 2 1,54 29,83 

Waka 2 422 100 32,34 17 4 4 1,59 28,59 

Waka 3 501 109 39,70 14 2 1 1,67 29,99 

Waka 4 554 105 47,72 24 13 7 1,51 29,67 

Waka 5 623 106 45,15 28 12 5 1,52 27,18 

          

Biomass 

data 

 283 75  93 47 32 1.79 63.74 

N_Esp= Tree species richness; BA=basal area (m2ha-1); 
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(a) 

 
(b) 

 

Figure 1: Site distribution of above ground biomass vs. diameter at breast height (a) and the natural 

logarithm transformation distribution (b). 

 

 

RESULTS 

Analyzing parameters of the power function  

The adjustment quality of the power 

function relating the coefficient of variation of 

predicted biomass (
snCV ) to the sample size    

( sn ) was analyzed using residual standard 

error and coefficient of determination values 

(Table 2). Independently of the allometric 

models, R²aj and RSE were 0.99 and less than 

0.03 respectively, except for sampling 

technique S1. The statistical significance of the 

estimated intercept and slope of the power 

function relationship was then confirmed, 

allowing for comparison of sampling strategies 

based on these parameters. The analysis of 

variance considering all the sampling factors 

(sampling techniques, model types and forest 

reserves) showed significant interactions 

among them. Subsequent analyses were 

performed for each model type and, if 

necessary, by forest reserve. 

For allometric Model 1, there was a 

significant difference among sampling 

techniques, with high intercept parameter 

values of 4.44 and 4.06 for S1 and S4 

respectively, while their slope parameters were 

the lowest (-0.56 and -0.51, Table 3). For 

allometric Model 2, a significant interaction 

occurred between sampling techniques and 

forest reserves. 

The forest reserve MC was 

characterized by the highest value of intercept 

and the lowest value for slope, followed by DZ. 

With multiple comparison of mean, S2, S3 and 

S5 form a homogeneous group that was 

different from S1 and S4 for the intercept while 

for the slope, S1 was different from the four 

others which are homogeneous group (Table 

3). Taking into account the results, it appeared 

that there was a relation between the 

parameters of the plot stand, the power 

function parameters and the sample size.  

 

Number of sampled trees to achieve levels of 

precision based on the result 

To illustrate the underlying power 

function relationship between number of 

sampled trees and precision, differences among 

sampling strategies were evident with the 

computation of the number of trees to achieve 

different levels of precision. In Table 4, the 

number of trees (and their ranges) were 

presented by allometric model for each 

sampling technique. Sample sizes were 

smallest for S3 and S5, and largest for S2, 

followed by S4 and S1. At a precision level of 

CV=5% for Model 1, significant differences in 

sample size were observed among sampling 
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techniques, with S1 requiring the highest 

sample size (167) and S3 (42) and S5 (44) the 

lowest. Similar trends were observed for Model 

2, where S1 required the largest sample size 

(204), and S3 (43) and S5 (47) the smallest. 

The sample sizes computed in Table 4 

were subject to uncertainties, evaluated with 

the coefficient of variation of 10% to 25% for 

Model 1 and 14% to 42% for Model 2 at a 

precision level of 5%. These uncertainties 

could be attributed to stand parameters of 

inventory plots. This variability was analyzed 

to determine the appropriate number of 

sampled trees relative to stand parameters. 

Across each sampling strategy, the intercepts 

on logarithm scale between the biomass 

precision CV% and the number of sampled 

trees varied, as illustrated in Figure 2. 

The variation between intercept of the 

power function (Equation 9) was explained by 

the shape of the Weibull distribution of 

inventory plots data (Figure 2.a). This variation 

was computed with the second-order 

polynomial relationship between the intercept 

values y and the shape x of the Weibull 

distribution applied to the plots inventory data 

for each sampling strategy as 

2
310 xzxzzy ++=  13 

with iz  the regression coefficients. The 

estimated regression of Equation 13, showed 

that the intercept was inversely proportional to 

the shape. This trend reached a saturation with 

S3 and S5 at shape value higher than 1.7 

(Figure 2.b). A correction of the intercept was 

used to generalize equation 11 (Equation 14) 

with CV  the biomass precision level and n  

the adjusted number of sampled trees. 

b

CV

xzxzz
n

1
2

310 )exp(













 ++
=




 14 

The adjusted sample sizes as function of 

the shape values ranging from 1.30 to 1.80 

were computed by step of 0.05 (Table 5). 

 

Prediction gap with dataset of large trees  

The comparison of the observed 

coefficient of variation of predicted biomass 

across the 15 inventory plots using the pairwise 

t-test revealed significant differences, except 

for the truncated diameter dataset. The 

magnitude of this difference varied with 

sampling strategies, with no significant 

interactions observed among forest types. As 

presented in Table 6, the gap %)( gapP  ranged 

from 8.0 to 10.4 and 23.9 to 31.8 respectively 

for Model 1 and Model 2 considering trees with 

dbh<100 cm. Sampling technique S4 was 

characterized by greater precision regardless 

the Dmax.

 

 

Table 2: Summary ranges of the residual standard errors (RSE) and coefficient of determination 

(R²aj) of the relationship between 
snCV  and  sn for the ten sampling strategies. 

 

Strategy 

technique 

 

Model 1 

 

Model 2 

 RSE R²aj RSE R²aj 

S1 (0,032   0,091) (0,964   0,995) (0,534   0,807) (0,674   0,797) 

S2 (0,019   0,031) (0,994   0,998) (0,021   0,027) (0,995   0,997) 

S3 (0,018   0,027) (0,995   0,998) (0,017   0,025) (0,996   0,998) 

S4 (0,019   0,028) (0,995   0,998) (0,022   0,064) (0,982   0,997) 

S5 (0,019   0,026) (0,995   0,998) (0,021   0,028) (0,995   0,997) 

Model 1=allometric model with D and  , Model 2= allometric model with D, H and  , S1=random sample on natural 

scale;S2= random sample with cumulative frequency distribution of diameter, S3= the random sample with cumulative 
frequency distribution on diameter squared, S4= random sample with cumulative frequency distribution on logarithm scale and 

S5= stratified random sample with diameter size-classes distribution on natural scale; S2 to S5 are split into eight diameter 

size-classes distribution. 
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Table 3: Sampling technique comparison of mean by Student-Newmn-Keuls method for Intercept 

and slope parameters of the power function relationship between coefficient of variation of predicted 

biomass (
snCV ) and the sample size used to establish the allometric models ( sn ); in bracket the 

standard error of mean. 

 

Sampling Model 1 Model 2 DZ MC WA 

techniques Intercept     

S1 4.437 (0.137) a 8.578 (0.917) a 8.608 (0.830) a 9.335 (0.766) a 7.789 (0.418) a 

S2 3.747 (0.120) c 3.906 (0.246) c 3.963 (0.299) c 3.976 (0.270) c 3.780 (0.138) c 

S3 3.475 (0.060) d 3.495 (0.066) d 3.485 (0.088) c 3.529 (0.071) c 3.472 (0.019) d 

S4 4.063 (0.128) b 4.610 (0.407) b 4.714 (0.450) b 4.810 (0.391) b 4.305 (0.206) b 

S5 3.500 (0.067) d 3.545 (0.158) d 3.548 (0.183) c 3.625 (0.186) c 3.461 (0.053) d 

 Slope     

S1 -0.555 (0.012) c -1.313 (0.146) c -1.312 (0.115) b -1.437 (0.128) b -1.188 (0.076) b 

S2 -0.502 (0.004) a -0.519 (0.013) a -0.527 (0.014) a -0.519 (0.013) a -0.511 (0.008) a 

S3 -0.501 (0.006) a -0.503 (0.005) a -0.499 (0.004) a -0.507 (0.005) a -0.503 (0.003) a 

S4 -0.508 (0.004) b -0.576 (0.034) b -0.590 (0.032) a -0.596 (0.026) a -0.542 (0.013) a 

S5 -0.502 (0.004) a -0.505 (0.011) a -0.506 (0.008) a -0.512 (0.014) a -0.498 (0.006) a 
M1= Allometric model with two predictor variables M2= Allometric model with two predictor variables; DZ= Dzanga Sangha 

forest, MC=Monts de Cristal forest, WA= Waka forest. 

 

Table 4: Number of sample trees to achieve biomass prediction with a given precision ( nsCV  ) by 

sampling techniques and by allometric model with data from 15 1-ha plots data distributed across 3 

forest reserves in the Congo Basin. 

 

Model Sampling Predicted AGB CV 

type technique 2.5% 5% 7.5% 10% 

Model 1 S1 583 ( 139 ) 167 ( 39 ) 81 ( 19 ) 48 ( 11 ) 

 S2 287 ( 65 ) 72 ( 17 ) 32 ( 7 ) 18 ( 4 ) 

 S3 165 ( 16 ) 42 ( 4 ) 18 ( 2 ) 10 ( 1 ) 

 S4 504 ( 124 ) 129 ( 32 ) 58 ( 15 ) 33 ( 8 ) 

 S5 173 ( 24 ) 44 ( 6 ) 20 ( 3 ) 11 ( 1 ) 

      

Model 2 S1 346 ( 57 ) 204 ( 38 ) 149 ( 31 ) 120 ( 27 ) 

 S2 333 ( 125 ) 88 ( 36 ) 41 ( 17 ) 24 ( 10 ) 

 S3 170 ( 24 ) 43 ( 6 ) 19 ( 3 ) 11 ( 2 ) 

 S4 633 ( 230 ) 194 ( 82 ) 97 ( 45 ) 59 ( 29 ) 

 S5 185 ( 46 ) 47 ( 13 ) 21 ( 6 ) 12 ( 4 ) 
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ln(ns) 

 
ln(ns) 

A. Precision vs. number of sampled trees on logarithm scale 

x  
x 

B. Intercept vs. shape and the adjusted model  

Figure 2: Relationships between predicted biomass precision and the sample size on logarithm scale 

for S2 - model 1 and S5 - model 2 applied to inventory data and the variation of the Intercept explained 

by the shape of 15 plots. 

 

Table 5: Number of sampled trees adjusted to stand shape for precision of CV=5% by model type 

and sampling technique. 

 

Model Sampling Stands shape value 

type technique 1.30 1.35 1.40 1.50 1.55 1.60 1.65 1.70 1.75 1.80 

Model 1 S1 271 240 215 176 162 149 139 131 124 118 

 S2 123 110 98 79 71 64 58 53 48 43 

 S3 60 54 49 42 40 39 38 38 38 39 

 S4 248 210 180 138 123 111 102 94 89 84 

 S5 65 58 53 45 42 40 39 38 38 38 

Model 2 S1 715 505 371 226 188 162 146 136 133 135 

 S2 331 234 170 99 80 66 56 49 45 42 

 S3 70 60 52 43 41 39 38 39 40 42 

 S4 1102 716 480 237 175 133 105 85 71 62 

 S5 145 103 76 49 42 38 36 36 38 42 
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Table 6: Gap percentages %)( gapP  of predicted biomass with diameter lower than 50, 70, 90 and 

100 cm by sampling technique and allometric model. 

 

Sampling Model 1 
 

Model 2 

technique 50 70 90 100  50 70 90 100 

S2 67,3 28,8 13,3 9,4  345,0 112,9 47,7 31,8 

S3 88,7 34,3 15,0 10,4  425,2 126,1 45,5 27,8 

S4 48,0 21,2 11,3 8,0  246,6 80,9 35,7 23,9 

S2= random sample with cumulative frequency of size-class diameter on natural scale, S3= the random with cumulative 

frequency of size-class diameter squared, S4= random sample with cumulative frequency of size-class diameter on logarithm 

scale, all were split into eight diameter size-classes distribution. 

 

 

 

DISCUSSION 

The sample size ( n ) for modeling 

biological phenomenon has retained more 

attention in biometrics with an increasing 

precision as a function of √𝑛  (Picard et al., 

2012). Despite the development of biomass 

allometric equation for prediction use, it is 

surprising that little attention has been given to 

the optimum sample size versus the 

performance of biomass prediction, except for 

Roxburgh et al. (2015) in planted forests. This 

situation can be explained by the challenges 

associated with the cost and time-consuming 

nature of harvest data collection, and the 

variability in tree numbers and diameter classes 

that result from it. Nonetheless, it remains 

crucial to estimate the precision achievable 

with the resources invested. Some guides have 

been provided by Chave et al. (2004) and van 

Breughel et al. (2011) with investigation of 

error propagation. Therefore, many sources of 

uncertainty have been revealed (Ketterings al., 

2001; Chave et al., 2004; Molto et al., 2012) 

and the most important one is the error due to 

the choice of allometric equations or model 

misspecification (Chave et al., 2004; van 

Breugel et al., 2011; Melson et al., 2011; Molto 

et al., 2012; Picard et al., 2016). This major 

source of variation of the predicted biomass is 

correlated with the number of trees used to 

calibrate allometric models (Chave et al. 2004) 

where fewer trees lead to increased uncertainty 

in aboveground biomass estimates at the 

landscape level (van Breugel et al., 2011). The 

central concern of this study was to determine 

the optimal number of sampled trees required 

to establish accurate aboveground biomass 

allometric equations.  

The present results revealed that the 

uncertainty in predicted biomass was function 

of the characteristics of the population to which 

the model is applied, the allometric model type 

and the representativeness of large trees 

relative to the sample size. The random sample 

on natural scale (S1) is characterized by the 

highest sample sizes compared to other 

techniques. In contrast, the random sample on 

the square of diameter with an eight size-class 

distribution (S3) yields the lowest sample sizes. 

While for S1, all the trees had the same 

probability of being part of the sample, S3 was 

characterized by one equal number of trees per 

diameter size-class and privileged diameter 

classes of large trees based on the cumulative 

sum of the squared diameters. This privilege 

decreased with S2 where the algorithm were 

based on the cumulative sum of the diameters 

and even more so with S4, which used the 

logarithm of diameters. This difference 

between the sampling techniques is attributed 

to the size-class distribution of trees used to 

establish the allometric model, which aligns 

with the population characteristics, as 

advocated by Fu et al. (2017). This size-class 
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distribution is not solely the unique source of 

uncertainty in predicted biomass. The 

uncertainty on the sample sizes for 5% level of 

precision (Table 4) ranged from 4 to 39 and 6 

to 82 respectively for Model 1 and Model 2. 

This source of error was analyzed with the 

shape of the inventory data. The intercept was 

a function of the shape in second-polynomial 

relationship and a new relationship between the 

sample size and the power function was 

adjusted. This confirmed the approach of Dietz 

and Kuyah (2011) that stipulated selecting 

trees to span more evenly the potential 

diameter range to which the model is expected 

to be applied. 

Integrating height as a third predictor 

variable improved the quality of predicted 

biomass. The study showed that, with this 

model type, more sample size data were 

required to achieve the same level of precision. 

Uncertainty occurred with the number of 

predictor variables. This source of uncertainty 

can be explained by the model’s coefficient of 

variation as a component of prediction error 

which was inversely proportional to the 

number of observations used for model fitting. 

The simulated study of Knofczynski and 

Mundfrom, (2008) demonstrated that the 

sample size increased with the number of 

predictor variables. Thus, the selected sample 

size must take into account the number of 

predictor variables in the model. 

Overall, precise AGB estimates are 

presented for the standard precision level of 

5%. For all sampling techniques, the number of 

trees required ranged from 176 to 42 and 237 

to 43 respectively for Model 1 and Model 2 

with a stand shape value of 1.50. This result is 

similar to the minimum sample trees 

recommended by Chave et al. (2004). 

However, care must be taken regarding the 

diameter structure of the forest to which the 

allometric model is applied. While the slopes 

of the relation between predicted biomass 

precision and the number of sample trees on a 

logarithm scale appear identical, the intercepts 

were correlated with the shape of the diameter 

structure of the tree population.  

With allometric Model 1, the sampling 

technique with the fewest sample trees ranging 

from 60 to 40 were S3; it was followed by S5 

(65 to 38) and S2 (123 to 43). For Model 2, S3 

with 70 to 42 was characterized by lowest 

number of sample trees, followed by S5 (145 to 

42) and S2 (331 to 42). For these three 

sampling techniques, uncertainty due to 

differences in size class distribution was 

minimized according to the algorithm. S3 and 

S5 can be reasonably considered the best-

performing sampling techniques, while S4 and 

S1 were the poorest and should be avoided. 

 

Conclusion 

The common tool for estimating 

biomass and forest carbon stock is the 

allometric equation despite modern 

approaches. Ecosystem-specific allometric 

equations have been identified by many studies 

as more accurate than regional or pantropical 

equation.  

For the biomass allometric equation 

establishment, sampled trees were harvested. 

Taking into account the components of 

uncertainty in biomass equation estimation, the 

strategies for tree sampling were based on the 

inherent variability of biomass with increasing 

diameter, the number of sampled trees and the 

representativeness of the sampled trees 

according to the forest. 

The results of this study provide 

necessary information for management and 

scientific decisions on sampling strategy and 

sample trees for the establishment of forest 

biomass allometric equations. While many 

questions are asked about the number and 

diametric structure of sampled trees for data 

collection, this study fills that gap. It shows that 

the accuracy of carbon stock estimation in 

forest reserves should rely on these findings to 

reduce uncertainty and to get more reliable 

results. Therefore, the definition of the 

sampling techniques and number of sample 

trees must consider the stand shape value and 

level of precision. Hence, the relationship 

between the intercept of the power function 

(predicted aboveground biomass coefficient of 

variation versus sample size) and the shape of 

stand was investigated. The accuracy of 

predicted biomass taking into account the large 
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trees in sampled biomass data remained very 

important based on the results obtained. 
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