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Abstract  
 

Yield point (YP) is an essential rheological property of drilling mud that influences the ability of the mud to lift well cuttings 

from the annulus to the surface, impacting the overall drilling efficiency. Despite its significance, YP is typically measured 

only once or twice a day using complex rheometers. On the other hand, a simple field equipment such as the Marsh funnel is 

used to constantly monitor the drilling fluid's behaviour up to about 144 times daily. This only provides an indication of the 

drilling fluid condition and not detailed rheological characteristics. There have been previous attempts to infer the rheological 

characteristics from the constantly monitored Marsh funnel parameters.  One of the widely used approach to estimate 

rheological properties from Marsh funnel parameters has been the implementation of Back Propagation Neural Network 

(BPNN). BPNN algorithm exhibits some drawbacks such as poor generalisation. Based on that, the present study improved 

the performance of BPNN in predicting YP using particle swarm optimsation (PSO) based BPNN. It was identified from the 

study that PSO-BPNN outperformed BPNN in the estimation of YP in terms of correlation coefficient (R) and mean square 

error (MSE) and variance accounted for (VAF). During testing PSO-BPNN attained 0.929, 1.129 and 92.29 % as R, MSE and 

VAF score, respectively, while BPNN had 0.868, 1.235 and 83.78 % for R, MSE and VAF score, respectively. These findings 

suggest that PSO-BPNN offers a more reliable and efficient approach to predicting drilling fluid yield point from Marsh funnel 

experimentation. 

 

Keywords: Drilling fluid, yield point, particle swarm optimisation, artificial neural network, mud density, 

Marsh funnel viscosity. 

 

1 Introduction  

Drilling fluids are essential in drilling operations, 

facilitating various processes such as wellbore 

cleaning and pressure control. The three primary 

categories of drilling fluids include water-based 

mud, oil-based mud, and synthetic-based mud, each 

optimised for specific downhole conditions of 

pressure and temperature to improve drilling 

performance. The primary function of drilling fluids 

is to clean the wellbore by transporting drilled 

cuttings from the bottom of the hole to the surface. 

Once the cuttings reach the surface, they are 

processed by solid control equipment to separate 

them from the fluid. The cleaned and reconditioned 

fluid is then recirculated back into the well to 

continue the drilling operation efficiently. 

 

Yield Point (YP) is a critical rheological property of 

drilling mud that measures the fluid's resistance to 

initial flow and provides insight into the attractive 

forces among the solids in the mud. The YP depicts 

the capacity of the drilling mud to lift well cuttings 

from the annulus to the surface. It is a good indicator 

of the antiparticle attraction of the solids in the 

drilling fluid and it can be controlled by additives 

such as chemical thinners, dispersants and 

viscosifiers (Adams, 1985) . In the field, YP is 

calculated as the difference between the 300-rpm 

dial reading of a rheometer and the Plastic Viscosity 

(PV) of the drilling mud. These measurements are 

commonly made using multi-speed rotational or 

capillary rheometers, with rotational rheometers 

featuring coaxial cylinders being the most 

frequently used. It was discovered by Luo et al. 

(1994) that turbulent flow conditions require lower 

YP of drilling mud to achieve a higher lifting force 

whereas a high YP of drilling mud is desirable in 

laminar flow conditions for high fluid drag force 

aiding cutting removal. It was further observed that 

it is more effective to regulate the YP than plastic 

viscosity to inhibit hole cleaning issues. Increasing 

YP/PV ratio in laminar flow will elevate the hole 

cleaning efficiency (Elkatatny et al., 2016). 

Therefore, YP, PV, and Apparent Viscosity (AV) are 

important factors in evaluating drilling fluid 

performance, particularly for cleaning the wellbore. 

These rheological properties of YP, PV and AV are 

typically measured once or twice a day (Elkatatny et 

al., 2016). 

 

Due to the limitations of performing comprehensive 

rheological measurements frequently, parameters 

such as Marsh funnel viscosity, solid content, and 

drilling fluid density are monitored more frequently, 

every 10 to 15 minutes, using simpler field 

instruments in the form of Marsh funnel. The Marsh 

funnel is an inexpensive and quick tool that can 
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provide insights into the fluid's behaviour by 

measuring the time it takes for a specific volume of 

fluid to flow through the funnel. This frequent 

monitoring provides a more continuous assessment 

of the drilling fluid's condition, allowing for timely 

adjustments to maintain optimal performance. 

However, it is important to note that Marsh funnel 

parameters can only give an indication of the drilling 

fluid condition and not detailed rheological 

characteristics.  

 

During the drilling operation, there is a pressing 

need for regular monitoring of parameters like YP, 

PV, and AV to ensure that the drilling fluid maintains 

its effectiveness in carrying cuttings to the surface.  

 

1.1 Review of Previous Studies 

Several studies have focused on predicting the 

viscosity of drilling fluid using simple, field-

measurable parameters like Marsh funnel viscosity 

and mud density. 

 

Pitt (2000) developed a correlation to convert Marsh 

funnel viscosity to the effective viscosity of drilling 

fluids as a function of drainage time and mud weight 

based on Eq. (1) 

( )25AV D T= −          (1) 

where AV is apparent viscosity, D is fluid density 

and T is Marsh funnel time 

 

Building on this work, Almahdawi et al. (2014) 

introduced a new model to estimate the apparent 

viscosity of drilling fluids based on Marsh funnel 

viscosity and fluid density. Their research concluded 

that their proposed equation provided more accurate 

results than Pitt's model as expressed in Eq. (2). 

( ) ( )20.0118 1.6175 32.168AV T T= −  + −       (2) 

Almahdawi et al. (2016) further suggested that using 

a constant of 28 instead of 25, as used by Pitt (2000), 

yielded better results. 

 

With the benefits of Artificial Intelligence (AI) over 

the mathematical modelling approach, Elkatany et 

al. (2016) first developed an artificial neural 

network (ANN) model for predicting the rheological 

properties of drilling fluid from Marsh funnel 

viscosity, solid content and density values in real-

time using back propagation neural network (BPNN) 

algorithm.  

Furthermore, Marsh funnel viscosity and solid 

percent were used as input variables to develop a 

BPNN model for providing real-time rheological 

properties of KCl-water based drilling fluid 

(Elkatany, 2017). By converting the BPNN "black 

box" into a "white box," Elkatany (2017) was able 

to extract mathematical models that predict 

rheological parameters. The average absolute error 

for all correlations was less than 6 %, and the 

correlation coefficient was greater than 90 %. These 

developed correlations provide high accuracy in 

predicting drilling fluid properties, eliminating the 

need for labor-intensive laboratory measurements 

and allowing for real-time property assessment. 

 

Gowda et al. (2020) also developed a rheological 

parameter estimator for high-bentonite drilling mud 

using Marsh funnel parameter based on BPNN. 

High-bentonite mud (HBM) is a water-based 

drilling fluid known for its enhanced cutting 

removal and hole cleaning efficiency. Periodic 

monitoring of the rheological properties of HBM is 

essential for optimizing drilling operations. The 

BPNN models showed a significant match between 

the predicted and measured rheological properties, 

with a high correlation coefficient (R) above 0.90 

and a maximum average absolute percentage error 

(AAPE) of 6%. 

 

1.2 Enhancing BPNN Performance with 

Particle Swarm Optimization 

From the literature reviewed, the BPNN is widely 

used to predict the rheological properties of drilling 

fluids from Marsh funnel parameters. However, 

BPNN has notable shortcomings, including poor 

generalisation performance due to overfitting and 

slow convergence during training. 

 

Swarm intelligence algorithms, such as Particle 

Swarm Optimisation (PSO), offer a solution to these 

limitations. PSO improves the performance of 

BPNN by effectively exploring the search space to 

find the global optimum with minimal human 

intervention. This optimisation leads to better 

generalization and faster convergence, enhancing 

the neural network's predictive capabilities. This 

was evidently seen when PSO outperformed other 

optimisers in predicting PV and AV in the study of 

Youcefi et al. (2021). 

 

The objective of this study is to enhance the 

performance of BPNN in estimating the viscosity of 

water-based drilling mud from Marsh funnel 

experimental data using the PSO algorithm. By 

integrating PSO with BPNN, the study aims to 

develop a more robust and accurate model for 

predicting drilling fluid properties in real time, 

thereby improving operational efficiency and 

decision-making during drilling processes. 

 

2 Resources and Methods Used 

2.1 Data 

Data used for the present study was obtained from 

an exploratory well located in the North Sea. The 

data constituted measured depth in meters, mud 

weight in g/cm3, Marsh funnel viscosity in mPa.s 
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and YP in Pa.s. The data description used for the 

development of the models is summarised in Table 

1 and graphically represented in Figs. 2 and 3. This 

study employed 69 data points with 80 % of the data 

randomly selected for training and 20 % for testing. 

In addition, MATLAB 2021a was used to develop 

the neural network models.  
 

Table 1 Data Description 

Type of 

Data 

Minimum Maximum Average 

Depth (m) 651 3 574 3 061 

Viscosity 

(mPa.s) 
6.00 62.00 17.74 

Mud Weight 

(g/cm3) 
1.05 1.64 1.54 

Yield Point 

(Pa) 
1.90 16.30 6.69 

 

 
Fig. 1 Boxplot for depth as an input variable  

 

 
Fig. 2 Boxplot for mud weight, viscosity and YP 

as input variables  

 

2.2 Data Normalisation 

As a result of the difficulty of the training process 

and the decline in network performance without 

normalisation, data must be normalised before it can 

be used for training. The objective of data 

normalisation is to demonstrate that the statistical 

distribution of values for each net input and output 

is relatively stable. Additionally, the values must be 

adjusted to align with the input neuron range (Razi 

et al., 2013). The input data was normalised within 

a range of -1 and 1. This is shown in Eq. (1). 
 

I = Imin+ (Imax - Imin ) x 
(D - Dmin)

(Dmax - Dmin)
(1) 

 

where, I = normalised data 

 D = measured values 

 Dmin = minimum measured value 

 Dmax = maximum measured value 

 Imax and Imin  values are set at 1 and -1. 

 

2.3 Back Propagation Neural Network  

Back propagation neural networks (BPNNs) are a 

popular choice for supervised neural networks due 

to their straightforward implementation and efficient 

gradient descent computation. The BPNN algorithm 

involves forward propagation of input data and 

backward propagation of output error (Bullinaria, 

2004). The primary goal of BPNN is to optimise the 

network's weights to minimize the error margin. The 

mathematical formula for determining the optimal 

weights is presented in Eq. (2) (Konaté et al., 2015). 

     

 ( )wEW pminarg* =   (2)

  

where w is weight matrix and Ep(w) is an objective 

function on w.  

 

E(w) is the error that is to be reduced at any point of 

w as seen in Eq. (3) (Konate´ et al., 2015; Asante-

Okyere et al., 2018). 

   

( ) ( )=
p

p wEwE   (3) 

where p is the number of training samples and the 

error for each sample well log point is given as 

Ep(w) as represented in Eq. (4) (Konate´ et al., 2015; 

Asante-Okyere et al., 2018). 

   

 ( )( )2
2

1
 −=

p

pjpjp wydE  (4) 

 

2.4 Training Process of BPNN 

Training is the process of appropriating connection 

weights. The majority of training procedures 
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commence by assigning random numbers to the 

matrix of weights. The authenticity of the network is 

further evaluated. Also, the weights are modified 

based on the performance validity of the neural 

network (Razi et al., 2013). The neural network was 

trained using the Levenberg-Marquardt 

backpropagation technique. The maximum number 

of iteration used was 1000. A sequential trial and 

error method was implemented to obtain the optimal 

BPNN model structure by adjusting the number of 

hidden neurons. Fig. 1 depicts a flow chart of the 

BPNN procedure. 

 

 
 

Fig. 3 Flow Chart of ANN (Source: Tariq et al., 

2020) 

 

2.5 Particle Swarm Optimisation 

The modelling of social behaviour is what drives 

particle swarm optimisation. By using an operator in 

accordance with the fitness information gathered 

from the environment, this optimisation strategy 

updates the population of individuals, causing the 

population as a whole to migrate towards better 

solution regions (Illias et al., 2015). Fig. 2 depicts a 

flow chart of PSO procedure. 

 
Fig. 4 Flow Chart of PSO (Source: Illias et al., 

2015) 
 

2.5.1 Problem Definition 

The problem is formulated into a form known as the 

objective or cost function. The objective is to 

minimise the value of the cost function. In this 

section, the number of unknown variables or 

decision variables are specified. Additionally, a 

definition of the decision matrix is also provided 

with the upper and lower bounds determined by the 

range of the decision variables. 

 
2.5.2 Parameters of Particle Swarm Optimisation 

The specification of the swarm size or population 

size is followed by the highest number of iterations 

for the particle swarm. A large swarm makes it 

possible to expand the area covered per iteration in 

the solution space. If a suitable uniform initialisation 

approach is used to initialise the particles, the greater 

the swarming particles, the higher the initial 

heterogeneity of the swarm. The learning 

coefficient, one of the remaining characteristics to 

be determined and additionally provided, is the 

inertia weight. The parameters C1 and C2, which 

indicate a particle's certainty in itself and in its 

surroundings, respectively, are also regarded as the 

acceleration metrics. The inertia weight is the key 

determinant in the PSO's convergence behaviour. 

High inertia weight causes the optimisation to 

converge more slowly, whereas low inertia weight 

causes local entrapment (Maurya et al., 2019). The 

maximum population size was 300. 

 

2.5.3 Initialisation of Particle Swarm Optimisation 

Particle initialisation has an essential role in the 

performance of PSO. If the initialisation is poor, the 



 

 

                                     

 173     

 

Vol. 23, No. 2, June, 2024 

algorithm may search in undesirable areas, making 

it difficult to find the optimal solution. Performance 

of PSO is highly dependent on the initialisation of 

swarms (Imran et al., 2013). All initialisation 

procedures required to launch the particle swarm 

optimisation are implemented in this section. As part 

of this, population arrays are created, particle 

positions are initialised, evaluated and initial best 

values for the global and personal also initialised. 

Global best uses a position-velocity update approach 

to examine a set of potential solutions and seek to 

identify the optimal one. Personal best is 

comparable to global best but because it has a ring 

topology, the particles are drawn to the area around 

it. A variety of structures are used to store 

information and the data of swarming particles. 
 

2.5.3 Main Loop of Particle Swarm Optimisation 

The primary loop used in particle swarm 

optimisation is a loop that runs from the first 

iteration up to the specified maximum number of 

iterations. The position and speed of every particle 

is analysed and updated after each iteration. The 

maximum iteration used for the model is 1 000.  

 

2.6 Statistical Parameters 

The performance of the drilling fluid YP prediction 

model from PSO-BPNN and BPNN was determined 

using statistical parameters namely correlation 

coefficient (R), mean square error (MSE) and 

variance accounted for (VAF). The correlation 

between the prediction from the models and 

measured YP was explained by the R value (Eq. 5). 

The R value ranges from 0 to 1, with a strong 

correlation existing if the R value approaches 1. The 

average square deviation between the observed and 

predicted yield point values were also expressed 

using the MSE value shown in Eq. (6). The MSE 

value provides an indication of how much the 

estimates deviate from the measured density log data 

and reflects the quality of the predictive model. The 

VAF shows the degree of the variance of the 

measured data captured by the prediction. 

( )( )

( ) ( )

1

2 2

1 1

n

i i

i

n n

i i

i i

m m g g

R

g g m m

=

= =

− −

=

− −



 

       (5) 

 

( )
2

1

1 n

i i

i

MSE m g
n =
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( )

2

1

2

1

1 100%

n

i

i

n

i i

i
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VAF

m g

=

=
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 = − 
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                (7) 

where g is the predicted drilling fluid YP, m is the 

measured YP and n is the total number of 

observations. 

 

3 Results and Discussion 

3.1 BPNN model structure 

After a sequential trial and error method, eight 

hidden neurons were optimum for the BPNN model 

as indicated in Table 2. This implies that at a model 

structure of three inputs, a hidden layer with eight 

hidden neurons and one output layer, the highest 

correlation coefficient and lowest mean squared 

error values were obtained. Fig.s 3 and 4 show the 

correlation plot for the training and testing stages 

respectively. During training, the correlation 

coefficient varied across different neuron counts, 

indicating variations in the model's performance. As 

indicated in Table 2, the optimal BPNN obtained an 

R value of 0.86867 when training and 0.86836 

during testing.  

 

Table 2 Optimal BPNN structure 

Number 

of 

hidden 

neurons 

Training 

correlation 

coefficient 

(R) 

Testing 

correlation 

coefficient 

(R) 

1   0.01336   0.00869 

2 0.56600 0.67502 

3 0.54660 0.34767 

4 0.83566 0.67744 

5 0.69277 0.6974 

6 0.85780 0.56422 

7 0.58861 0.43189 

8 0.86867 0.86836 

9 0.47568 0.65718 

10 0.20220 0.79882 

11 0.90217 0.64646 

12 0.74397 0.47267 

13 0.90637 0.18280 

14 0.67594 0.82671 

15 0.82280 0.43786 

16 0.58823 0.40919 

17 0.5553 0.21673 

18 0.53125 0.88741 

19 0.83491 0.68633 
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20 0.79150 0.68603 

21 0.81161 0.76245 

22 0.89326 0.85755 

23 0.51409 0.52721 

24 0.87446 0.5809 

25 0.44871 0.079289 

 ⁝ ⁝ ⁝ 

100 0.44278 0.70893 

 

 
Fig. 5 Training Correlation Plot for the Optimal 

BPNN Model 

 

 
Fig. 6 Testing Correlation Plot for the Optimal 

BPNN Model 

 

 

3.2 PSO-BPNN Model Structure 

In order to enhance the performance of the BPNN 

model, PSO was employed to further improve the 

BPNN results by selecting the optimal weights and 

biases for the model.  

 

The correlation plot for the training and testing 

samples is depicted in Fig.s 7 and 8 respectively. 

Table 3 shows the PSO-BPNN parameters used. The 

optimal PSO-BPNN YP model had a training and 

testing correlation coefficient of 0.90721 and  

0.92885 respectively (Figs. 7 and 8). 

 

 
Fig. 7 Training Correlation Plot for PSO- BPNN 

 

 
Fig. 8 Testing Correlation Plot for PSO- BPNN 
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Table 3 PSO-ANN Parameters 

 

 

 

 

 

 

 

 

 
 

 

3.3 Discussion 

The training results presented in Table 3 indicate a 

comparative analysis of the performance of BPNN 

and PSO-BPNN in predicting the YP of drilling 

fluid. The PSO-BPNN model achieved an R value of 

0.90721, significantly higher than the BPNN's R 

value of 0.86867. This indicates that the PSO-BPNN 

model has a stronger ability to capture the 

underlying patterns in the training data compared to 

the BPNN. A higher R value suggests that the 

training predictions from the PSO-BPNN model are 

more closely aligned with the actual values, 

demonstrating improvement in the BPNNs 

performance.  

 

The PSO-BPNN model recorded an MSE of 1.0160, 

which is lower than the BPNN's MSE of 1.2326 as 

indicated in Table 3. A lower MSE value signifies 

that the training predictions made by the PSO-BPNN 

model are more accurate, with smaller deviations 

from the actual values. This reduction in error 

highlights the effectiveness of the PSO algorithm in 

optimizing the neural network, resulting in more 

precise predictions. 

 

The PSO-BPNN model achieved a VAF of 0.900798 

or 90.0798 %, higher than the BPNN's VAF of 

0.838089 or 83.8089 % (Table 3). A higher variance 

indicates that the model can explain a greater 

proportion of the variability in the training data. This 

suggests that the PSO-BPNN model has better 

captured the complexity and variability of the 

training data. 

 

During the testing stage, the PSO-BPNN model 

achieved a correlation coefficient of 0.92885, 

indicating a stronger correlation between predicted 

and actual values compared to the BPNN model, 

which had an R value of 0.86836 as summarised in 

Table 4. This significant improvement suggests that 

the PSO-BPNN model provides more accurate 

predictions, effectively capturing the relationship 

between input variables of Marsh funnel parameters 

and the YP of drilling fluid. 

 

When evaluating prediction errors, the PSO-BPNN 

model demonstrated a lower mean squared error 

(MSE) of 1.1287, as opposed to the BPNN model's 

MSE of 1.2350 (Table 4). This reduction in MSE 

indicates that the PSO-BPNN model's predictions 

are closer to the actual values, reflecting fewer 

deviations and better overall accuracy in its 

predictive performance. 

 

The PSO-BPNN model also showed a higher 

variance (VAF) of 0.92285 or 92.285 % compared to 

the BPNN model's VAF of 0.83779 or 83.779 % 

(Table 4). This increased variance signifies that the 

PSO-BPNN model explains a larger portion of the 

variability in the testing data, indicating a more 

comprehensive and reliable understanding of the 

data's underlying patterns. 

 

Table 3 Comparing the training performance of 

PSO-BPNN and BPNN in predicting YP of 

drilling fluid 

Indicator BPNN PSO-BPNN 

R 0.86867 0.90721 

MSE 1.2326 1.016 

VAF 0.838089 0.900798 

 

Table 4 Comparing the testing performance of 

PSO-BPNN and BPNN in predicting YP of 

drilling fluid 

Indicator BPNN PSO-BPNN 

R 0.86836 0.92885 

MSE 1.2350 1.1287 

VAF 0.83779 0.92285 

 
Fig. 9 YP Prediction performance of PSO-BPNN 

and BPNN 

 

 

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

YP PSO-BPNN BPNN

Parameter Value 

Population Size 300 

Upper Bound 5 

Lower Bound -5 

Maximum Iteration 1000 

Cognitive Constant 

(C1) 1.5 

Social Constant (C2) 2.5 



 

 

                                     

 176     

 

Vol. 23, No. 2, June, 2024 

4 Conclusions  

This study aimed to enhance the prediction of YP 

from Marsh funnel data by integrating PSO with a 

BPNN. The performance of the PSO-BPNN model 

was compared with the traditional BPNN model 

using data from an exploratory well in the North Sea. 

During training, the PSO-BPNN model 

demonstrated superior performance with a higher 

correlation coefficient (R = 0.90721) and lower 

mean squared error (MSE = 1.016) compared to the 

BPNN model (R = 0.86867, MSE = 1.2326). The 

PSO-BPNN model also exhibited a higher variance 

accounted for (VAF = 90.08%) than the BPNN 

model (VAF = 83.81%). Testing results further 

confirmed the superiority of the PSO-BPNN model, 

achieving a testing correlation coefficient of 

0.92885, significantly higher than the BPNN 

model’s 0.86836. Additionally, the PSO-BPNN 

model recorded a lower MSE (1.1287) compared to 

the BPNN model (1.2350) and a higher VAF 

(92.29%) than the BPNN model (83.78%). These 

findings indicate that the PSO-BPNN model 

provides a more reliable and efficient approach to 

predicting the YP of drilling fluids from Marsh 

funnel data. The enhanced performance suggests its 

potential application for real-time drilling fluid 

management and optimization, contributing to more 

effective and efficient drilling operations. 
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