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Abstract 
 
The mining industry faces a growing need to accurately predict abrasive wear of excavator bucket teeth in order to establish 

effective maintenance policies. Hence, developing robust predictive models that can effectively track the deterioration of 

ground cutting tools in harsh operational environments is a logical strategy to address this challenge. This research compared 

the effectiveness of three vector machine models for predicting abrasive wear of excavator bucket teeth: the least squares 

support vector machine (LS-SVM), the relevant vector machine (RVM), and the support vector machine (SVM). The research 

included a comparison of the LS-SVM model's predictive performance to that of three reference ANN techniques: radial basis 

function network, backpropagation neural network, and generalised regression neural network. To determine the most effective 

technique, the prediction results of these methods were assessed using metrics such as mean square error (MSE), root-mean-

square error (RMSE), correlation coefficient (R), coefficient of determination (R2), mean absolute error (MAE), and Nash-

Sutcliffe Efficiency (NSE). Additionally, the Bayesian Information Criterion (BIC) was employed to select the best performing 

predictive method. According to the evaluation results, the LS-SVM model outperformed both the RVM and SVM methods 

and the reference ANN techniques, as it achieved the lowest values for MSE, RMSE, and MAE (0.025726, 0.160394, and 

0.131220) respectively, along with the highest values for R, R2, and NSE (0.999900, 0.999800 and 0.999794) respectively. 

Moreover, LS-SVM attained the lowest BIC value (-300.5774), demonstrating its superior ability to predict on-site wear of 

excavator bucket teeth. 
 

Keywords: Artificial Neural Networks, Excavator Bucket teeth, Abrasive Wear, Least Squares Support Vector 
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1 Introduction 

 

In surface mining operations, large excavators are 

used to excavate and load materials into 

transportation units. Excavator buckets are fitted 

with cutting components because of the varying 

characteristic composition of the material being 

excavated. During operation, the bucket teeth, which 

are the cutting elements, are the first to come in 

contact with the formation and, as a result, exposed 

to dynamic-resistive forces and intensive abrasive 

wear. As the excavating bucket teeth moves 

relatively against the muck, the interacting surfaces 

are progressively removed, leading to abrasive wear 

(Bayer, 2004). Exposure to such conditions over an 

extended period results in the gradual deterioration 

of the bucket teeth, which can eventually cause 

deformations or breakages in severe cases. The 

loading and energy consumption of an excavator are 

both adversely affected when the bucket teeth are in 

such a state, because they are unable to achieve their 

primary function. Consequently, the efficiency of 

the excavator decreases, and production becomes 

less economically viable due to the increased costs 

associated with replacement of the worn-out cutting 

elements and reduced output. To optimise the bucket 

teeth for excavation purposes, it is essential to have 

a comprehensive understanding of the excavation 

wear properties of the material being excavated 

(Miletić et al., 2018; Plinninger, 2010), the machine 

or tool characteristics (Kumar and Alam, 2016) and 

the field operational parameters (Khorzoughi and 

Hall, 2016a; Prakash et al., 2013). 

 

Excavator bucket teeth used in harsh working 

conditions are typically made of alloy steel and 

include additional durable compounds such as 

chromium, molybdenum, and nickel to extend the 

tool life against abrasive wear (Suryo et al., 2018; 

Fernandez et al., 2001). Prior studies have attempted 

to carry out experiments in the laboratory in order to 

fabricate and investigate alternative materials for the 

production of excavator bucket teeth, to monitor the 

heat treatment on new products, and to estimate the 

filler materials used for hard facing the cutting 

elements exposed to abrasive wear (Keleş and 

Yildirim, 2020; Suryo et al., 2018). However, the 

challenge with employing laboratory abrasive wear 

studies is that these tests do not entirely and 

precisely mimic field conditions (Blickensderfer, 

1988). Attempts have also been made to assess the 

interaction effects on ground penetrating tools and 

to analyse wear during operation by using numerical 

approaches like the Discrete Element Method 

(DEM) and the Finite Element Method (FEM) 

(Choudhry, 2020; Curry and Deng, 2017; Kumar 

and Alam, 2016). Nonetheless, the computational 

procedures involved in these methods are very 

costly (Arregui-Mena et al., 2016; Rackl and 

Hanley, 2017). Researchers such as Bhushan (2000), 

She et al. (2022), Bošnjak et al. (2018), Khorzoughi 

and Hall (2016b), and Dong et al. (2023) have 

attributed the inefficiency of current approaches to 
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their failure to consider real parameters like the 

quartz content of the muck being excavated, uniaxial 

compressive strength, excavator loading cycles, and 

blasted rock sizes, all of which contribute to the wear 

of excavator bucket teeth. Addressing the issue of 

monitoring excavator bucket teeth wear is a 

significant concern for industry players. Currently, 

no mechanism or methodology in literature has 

adopted these field-controllable factors to forecast 

the on-site abrasive wear of excavator bucket teeth. 

Therefore, this study focuses on utilising these site-

controllable parameters to predict the abrasive wear 

of excavator bucket teeth. 

 

The mining industry requires reliable and accurate 

prediction outcomes for making decisions in their 

maintenance practices. This need has become more 

pronounced, leading to an increased demand for the 

testing of new techniques that can provide such 

results. Artificial intelligence techniques have 

emerged as a cutting-edge and potent computational 

approach for developing intelligent systems in 

recent years (Zhang and Lu, 2021).  Due to the 

exceptional tolerance for randomness, as well as the 

robust learning capabilities, artificial intelligence 

(AI) techniques are gaining attention but have less 

been explored to predict abrasive wear of excavator 

bucket teeth. The lone AI technique applied in the 

literature that utilised vibration signals to forecast 

the wear of excavator bucket teeth in surface 

excavation processes is the adaptive neuro-fuzzy 

inference system (Miletić et al., 2020). Hence, the 

authors conducting this research propose that it 

would be intellectually enriching to explore the 

potential of AI tools for predicting the abrasive wear 

of excavator bucket teeth. 

 

Selecting suitable artificial intelligence techniques is 

essential for accurate predictions in diverse mining 

environments. For the first time, this research 

evaluates three vector machine models: Least 

Squares Support Vector Machine (LS-SVM), 

Relevance Vector Machine (RVM), and Support 

Vector Machine (SVM), each offering unique 

benefits, for the prediction of excavator bucket teeth 

wear. LS-SVM is valued for its computational 

efficiency (Wang and Hu, 2005; Temeng et al., 

2022), RVM for its sparse solutions and enhanced 

interpretability (Zio and Di Maio, 2012), and SVM 

for its robustness across various applications (Roy 

and Chakraborty, 2023). Assessing these models in 

a Ghanaian surface mine, considering essential 

excavation wear factors such as uniaxial 

compressive strength, quartz content in rock 

fragments, rock fragment sizes resulting from 

blasting, and the duration of the excavator's loading 

activities, is particularly important to ensure the 

results are relevant and applicable to similar mining 

settings. Subsequently, the accuracy of the most 

suitable vector machine model is compared with that 

of widely used ANN predictive models, namely the 

Radial Basis Function Neural Network, the 

Backpropagation Neural Network, and the 

Generalised Regression Neural Network. 

 

2 Resources and Methods Used  

 

2.1 Resources 

 

The study area where the investigation took place is 

an open pit mine that can be found in Ghana. 

Specifically, the site is located about 133 km west of 

Koforidua, the regional capital and approximately 3 

km west of New Abirem, the district capital. It is 

also about 180 km northwest of Accra (Kaba, 2013). 

The mine sits on a deposit at the extreme northern 

and southeastern borders of the Greenstone Belt. In 

the northwestern part of the mining area, Tarkwaian 

sediments, which consist of conglomerate, 

sandstone, and phyllite, unconformably overlay the 

Birimian volcanic belts. Fig. 1 depicts the location 

of the study site. 

 

 
Fig. 1 Study Area 

 

The mining operations involve a fleet of equipment, 

which comprises of two Liebherr 9400 hydraulic 

shovels and two hydraulic backhoes for muck 

handling. Additionally, there are eighteen 785 

Caterpillar rear dump trucks available at the mine, 

each capable of carrying up to 134 tonnes of ore to 

the stockpile or crusher, or transporting non-

economical materials to the waste dump. The 

loading process employs a single backup loading 

system and removes a 9 m bench using 3 m 

sequential flitch excavations. The mine has seven 

Pantera drill rigs, out of which five have a 165 mm 

drill bit diameter, and they are primarily utilised for 

drilling blast holes. The remaining two drill rigs 

have 115 mm diameter of bit designs, and are mainly 

used for drilling wall control holes. The mining site 

also employs a staggered drill pattern with a 4.0 m × 

4.0 m burden and spacing in the ore zone and a 5.2 

m × 5.2 m burden and spacing in the waste zone.  
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2.2 Data Description and Pre-processing 

 

With the objective of creating predictive models, a 

total of 579 historic data points over a span of 289.5 

effective working days, were acquired from the 

mine. The data comprised of variables, such as 

bucket scooping duration (mins), equivalent quartz 

content (%), mean fragment sizes (cm), and uniaxial 

compressive strength (MPa) as the input parameters 

and average wear of excavator bucket teeth (mm) as 

the output parameter. In this study, the 

FRAGTrackTM system, a cutting-edge technology 

made up of smart image processing device was fixed 

on top of the excavator rollover protection structure 

(ROPS). This system was used to record and report 

the size distribution of rock fragments in both two-

dimensional and three-dimensional formats. The 

mean fragment sizes gathered from each recording 

were utilised for the model development. The 

Liebherr 9400 excavator considered for this study, 

was operated in a zone which comprised of phyllite, 

sandstone and greywacke rock types. Compression 

tests were performed to obtain uniaxial compressive 

strength (UCS), following the protocols outlined by 

the International Society for Rock Mechanics 

(Aydin, 2015). The equivalent quartz content (EQC) 

was acquired by performing X-ray diffraction 

laboratory test. Global Positioning System (GPS), 

typically referred to as dispatch system, was used to 

monitor the excavator’s cycle time, with a specific 

focus on extracting datapoints related to the duration 

of bucket scooping activity. Ground Engaging Tool 

(GET) measurement and change-out tracker was 

used to monitor the longitudinal dimensions of 

bucket teeth as they gradually diminished towards 

the bucket lip at the end of each shift. The average 

wear of the five teeth positions was used for analysis 

in this study. Table 1 presents the statistical 

information pertaining to the dataset that was 

gathered. The correlation coefficient matrix 

described in Table 2 shows the variability between 

the dependent and response variables.. 

 

Table 1 Statistical Interpretation of Data 

Parameters Unit Min Max Average Std Dev 

Digging Duration min 164.28 407.60 298.24 57.86 

Fragment Sizes cm 12.16 41.82 22.20 6.34 

Uniaxial Compressive Strength MPa 58.00 157.00 87.06 40.75 

Equivalent Quartz Content % 24.00 60.00 35.40 15.73 

Average Wear mm 24.00 56.00 36.08 10.85 

 

Table 2 Correlation Coefficient Matrix of the Dataset 

Parameters 
Loading 

Duration 

Mean Fragment 

Sizes 
UCS 

Equivalent 

Quartz Content 

Average 

Wear 

Loading Duration 1     

Mean Fragment Sizes -0.5923 1    

Uniaxial Compressive 

Strength 
-0.9006 0.6121 1   

Equivalent quartz content -0.8737 0.6042 0.9952 1  

Average wear -0.8079 0.4908 0.9688 0.9603 1 

The data was separated into two sets: the testing 

dataset and the learning (training) dataset. The 

learning dataset comprised 80% of the entire dataset 

which was employed to construct the predictive 

models while the second set (20%) was reserved for 

testing the efficacy of the candidate techniques. To 

accomplish this, the hold-out cross-validation 

strategy was adopted in the data division criterion. 

This criterion entails using a training data size that 

is greater than the size of testing data (Kohavi, 

1995). Also, the learning and testing data points 

should be carefully sorted out in order to represent 

the population’s characteristic features (Dobbin and 

Simon, 2011). Not complying with this condition 

may result in overfitting, particularly when the hold-

out sample falls outside the domain of the training 

dataset. To ensure uniformity in the dataset and 

reduce the impact of values with large magnitudes 

on smaller ones, the input parameters in the dataset 

used for model development were normalised using 

Equation (1) (Ali et al., 2014). This was necessary 

because the parameters had varying physical units 

and dimensions. Normalising the parameters to the 

range of [-1, 1] helped to achieve quick and better 

convergence to a global optimal result.   

            (1) 
( ) (y  y )maxmin min

y
min( )max min

−  −
= +

−

i

i

x x
n

x x
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ni is data point after normalisation, where the 

observed data point is represented by xi, and xmin and 

xmax define the minimum and maximum values of 

the observed points. In this context, ymin and ymax are 

marked values of -1 and 1, respectively. 

 

2.3 Methodology 
 

In the first part of this section, the mathematical 

descriptions, and procedures for constructing the 

vector machine models explored and applied in this 

research are presented. The second section of the 

research methodology provides a concise conceptual 

overview of three commonly utilised neural 

networks namely, Radial Basis Function Neural 

Network (RBFNN) Generalised Regression Neural 

Network (GRNN), and Backpropagation Neural 

Network (BPNN). The procedure for building each 

model is also provided. 

2.3.1 Support Vector Machine  

This study employed the SVM to perform function 

approximation by using input vector 

 and correlating target 

value (f) (Cortes and Vapnik, 1995). To accomplish 

this, an SVM classifier was applied to regression

, as shown in Equation (2).  

                               (2) 

weight vector , the 

bias term b, and the basis function vector 

referring to a sequence 

of non-linear transformations, are used in the SVM. 

The R-dimensional input vector is transformed from 

a low-dimensional state to a high state using the 

dynamic basis function .The support vector 

machine seeks to determine the optimal separating 

hyperplane that maximises learning capability of 

dataset to solve a specific problem (Brezak et al., 

2012).  

To solve Equation (2), Equation (3) is required, 

subject to the restrictions specified in Equation (4). 

It is worth noting that the SVM’s network is not 

predetermined, and the input variables that support 

the network or structure are generally chosen during 

the model learning process (Malakar et al., 2018). 

 

   (3) 

 

Subject to: 

         (4) 

The positive trade-off parameters,  and control 

the scale of the empirical error in maximisation, 

while the slack variables and  solve the 

learning errors based on the loss expression in 

Equation (4). 

Typically, the quadratic expression described by 

Equation (3) with respect to Equation (4) can be 

computed by duality approach, as shown in 

Equation (6) with respect to Equation (7), by 

maximising the multipliers and Lagrangian function 

in Equation (5). 

 (5) 

The Lagrange multipliers are used in 

conjunction with the Lagrangian, L. To solve 

Equation (5), it is necessary to comply with Karush-

Kuhn-Tucker requirements. Here, entries that satisfy 

the requirements by having Lagrangian multipliers 

that are not zeros are considered to be support 

vectors since they aid the classifier or estimator’s 

structure (Wu, 2007). 

(6) 

       (7) 

 

 is the kernel 

technique (Sánchez, 2003). The positivity 

restrictions of must be 

achieved by the dual variables in Equation (6). 
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from the solution given by Equation (6) subject to 

Equation (7) are utilised in the model hyperplane to 

calculate the optimal weight vector, w. expressed in 

Equation (8). 

          (8) 

As a result, Equation (9) can then be employed to 

express the SVM classifier or estimator on the 

model regression. 

                     (9) 

 used in the Equation (9) is described by 

(Fadel et al., 2016) as the kernel function. Here, the 

polynomial kernel function was utilised because it 

has the potency to effectively recognise the dynamic 

pattern in the training data. Equation (10) provides 

the mathematical definition for the polynomial 

kernel function. 

                     (10) 

2.3.2 Least Squares Support Vector Machine 

To provide an alternative to the classical support 

vector machine formulation, (Suykens and 

Vandewalle, 1999) introduced the LS-SVM. The 

LS-SVM model is constructed based on a given 

learning dataset, M, , an input dataset, 

, and an output value,  Here,  

is a vector space with M-dimensions and  is a 

single vector space. The LS-SVM model is 

formulated with Equation (11) in feature space as: 

                                (11) 

To overcome the maximisation challenges presented 

in Equation (12), a non-linear approach of mapping 

function is employed to map the model parameters 

to a feature space with higher dimension, along with 

an adjustable weight vector (w), a transpose 

operation (T), and a scalar cutoff point (b). Also, to 

attain the objective, Wang and Hu (2005) indicated 

that the equality conditions described in Equation 

(13) should be satisfied.  

    (12) 

 (13) 

the error variable  and the regularisation variable 

 which control the balance between minimising 

the fitting function and achieving flatness, are both 

important in this context. Equation (14) which is the 

Lagrangian function L is employed to compute 

Equation (12) while adhering to the requirements 

provided in Equation (13). 

    (14) 

The  values represent the Lagrange multipliers, 

while the partial derivative of L subject to the terms, 

presented in Equation (15) was computed to meet 

the optimality criterion stated in Equation (13).  

      

(15) 

By removing the e and w variables, the linear 

Karush-Kuhn-Tucker requirement (Equation (16)) 

is obtained.  

                 (16) 

where ,  and 

 while  is an M × M 

identity matrix with the kernel parameter (Ω) 

described in Equation (17). 

                (17) 

The kernel function used was the linear kernel 

function in this research, Equation (18).                               

                        (18) 

The output of α and b can be determined using 

Equation (15). As a result, the LS-SVM’s predictive 

outcomes are given in Equation (19). 

                      (19) 

In order to run the LS-SVM effectively, the 

parameter γ in Equation (12) must be tuned to yield 

the optimum result and this was achieved through 

iterative process. 

 

2.3.3 Relevance Vector Machine 

 

The RVM is described as a probabilistic sparse 

kernel technique that uses a defined distribution for 

parameter weights which are influenced by a 
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combination of hyperparameters (Tipping, 2001). 

The theory underlying RVM is based on linear 

regression principles (Zio and Di Maio, 2012). As 

expressed in Equation (20), the RVM regression 

model is formulated to be: 

        (20) 

the noise factor in the dataset is represented by . 

When using a linear model, function f (x) is 

converted into a distribution based on a defined 

function , as shown in Equation (21). 

         (21) 

where  represents the 

weight vector used for detecting boundaries. The 

Equation (21) can be modified into vector form 

(Equation (22)). 

   (22) 

where  represents the variance in the dataset, the 

design matrix, , has dimension , 

and is formed by the Tth row vector as defined in 

Equation (23). ɛ is the noise component with a mean, 

zero. 

         (23) 

By utilising the formulation given in (Equation 

(24)), it becomes possible to represent the 

probability of the learning data set as: 

 

                                                              (24) 

During the training stage of the relevance support 

machine, weight parameter (w) is bounded by 

applying a Gaussian defined function with zero 

mean on it, as shown in Equation (25) (Kong et al., 

2019). 

        (25) 

where  is employed to 

describe the reciprocal variance of weight, wt. 

Bayes’s principle can be utilised to express the 

posterior distribution of all uncertain variables as 

shown in Equation (26): 

 

     (26) 

here, p(y) can be described in Equation (27) as: 

           

                                                                         (27) 

Since the normalisation of the integral in Equation 

(27) cannot be directly computed,  

which represents the posterior in Equation (26), 

cannot be solved immediately. Instead, Equation 

(28) is employed to solve the . 

(28) 

The application of Bayes’ rule results in the 

expression of the posterior function over the 

parameter weights, which is represented in Equation 

(29). 

 (29) 

In Equation (30) and (31), n and Σ represent the 

average and covariance, respectively. 

   (30) 

   (31) 

where . 

 

Equation (32) expresses the probabilistic model over 

the learning targets, which is derived by computing 

the parameter weights to determine the probability 

of the hyperparameters (Yu et al., 2004).  

         (32) 

In Equation (33), C represents the covariance 

matrix. 

       (33) 

The logarithmic probability function of the learning 

targets is represented by Equation (34): 

 (34) 

hence, the variable weights, w, is provided by the 
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function of the prediction value, 𝑦𝑛𝑒𝑤, can be 

derived using Equation (35), which is written as: 

                                                                                         

                                                                            (35) 

where  in Equation (36) and  

in Equation (37) represent the average and 

corresponding variance of the predictive variables. 

             (36) 

          (37) 

2.3.4 Procedure for Developing SVM, LS-SVM    

         and RVM Models 

 

The abrasive wear prediction model for the SVM 

was constructed using the first order of polynomial 

kernel. The hyper-parameters, C as well as ɛ, were 

tuned using the conventional iterative trial-and-error 

approach to enhance the model’s performance 

(Tseng et al., 2016).  

 

Equation (12) used the simplex search methodology 

to fine-tune the regularisation parameter (γ) for the 

LS-SVM (Ziggah et al., 2022) to achieve optimal 

values.  

 

The optimum value for the Gaussian kernel width 

variable or kernel bandwidth (σ) was iteratively 

obtained for the relevance vector machine model, 

and this also plays a crucial role in determining the 

model’s performance in this current research.  

 

2.3.5 Backpropagation Neural Network 

 

BPNN is a feed forward neural network with three 

connected layers. BPNN, with the three connected 

layers comprising of an input layer or unit, layer of 

hidden neurons, and output unit was utilised. The 

model architecture for a back propagation neural 

network is shown in Fig. 2, wherein the input unit 

receives external inputs or information and transfers 

them into the network for processing. After 

receiving the input(s), each neuron within a hidden 

unit undergoes a computational non-linear 

activation process to transform the inputs (Xu et al., 

2015). The two commonly applied transfer functions 

for this purpose are the hyperbolic tangent and the 

logarithmic function.  The response or output unit, 

at the extreme end of the architecture, features a 

linear neuron and receives the processed 

information from the hidden unit, which is then 

transmitted to an external receptor (Dorofki et al., 

2012). 

 

Fig. 2 BPNN Architecture 

The momentum coefficient used during the training 

of a neural network can significantly impact its 

convergence speed and stability. A high momentum 

coefficient can expedite convergence but could also 

result in instability if set too high. Conversely, a low 

momentum coefficient can lead to sluggish training 

and difficulties avoiding local minima (Fukuoka et 

al., 1998). For the wear prediction of excavator 

bucket teeth, a 0.03 learning rate and 0.8 momentum 

coefficient were employed during the 5000-epoch 

training process in this study. Insights into the 

mathematical concept of BPNN development have 

been provided in literature (Yegnanarayana, 2009). 

It has been demonstrated that one layer of hidden 

neurons is capable for a BPNN to function as a 

universal approximator of intricate problems 

(Ziggah et al., 2016). Hence, this research utilised 

one layer of hidden neurons. The feedback from the 

hidden unit, denoted as Equation (38), is 

subsequently transferred to the output unit. 

                    (38) 

where g ( ) represents the transfer function 

implemented by the hidden unit, bi denotes the bias 

term, and  is the weight values. Using Equation 

(39), the predictor-response operation is performed 

using linear activation equation in the output unit to 

generate the final results, .  

                                                 (39) 
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2.3.6 Radial Basis Neural Network  

 

RBFNN has three units as well: an input unit, a unit 

with hidden neurons, and an output unit. The 

structure contains various components such as the 

vector transformation of input data 

 radial basis 

functions , parameter 

weights as , and as the 

final output. In this network, the input layer sends 

external data to the hidden units, without any weight 

computations. The hidden unit is comprised of 

neurons that use a radial basis as activation function. 

Here, the function is responsible for quasi-linear 

processing activity within the unit (Shin and Park, 

2000). 

 

Gaussian radial basis function has proved to be the 

most efficient approximation used in RBFNN 

(Fasshauer and McCourt, 2012), therefore it was 

applied in this study. Each neuron figures out the 

Euclidean interval between the input objects and the 

focal point of the Gaussian distribution. To 

successfully apply the RBFNN, it is crucial to 

identify appropriate focal points or centres for the 

Gaussian function. The Gaussian distribution 

function is defined by two different parameters: the 

centre ( ) and the width parameter ( ). The 

output  is given in Equation (40). 

       (40) 

where the calculated Euclidean distance between 

 and  is represented by . The 

hidden neuron outputs are first of all weighted and 

summed to create inputs for the output or response 

layer. The output unit applies a linear transformation 

function to the input, leading to the final result  

of the RBFNN as shown in Equation (41). 

         (41) 

where a represents the bias term, is the weight 

utilised to describe the connection between the 

hidden unit and the final unit, and m refers to the 

count of neurons employed in the hidden unit. Fig. 3 

illustrates a RBFNN architecture. 

 

Fig. 3 RBFNN Architecture 

 

During the RBFNN learning process, the parameters 

that are adjusted include the centres, width 

parameters, and weights. It should be emphasized 

that the training process is focused on minimising 

the errors between the observed data  and the 

predicted results , (Equation (42)). 

Minimise (MSE)   (42) 

 

here, k refers to the number of observed points and 

MSE refers to mean square error. 

 

2.3.6 Generalised Regression Neural Network 

 

This neural network employs a single pass learning 

technique and features four different units: pattern 

unit, input unit, output unit, and the summation unit 

(Specht, 1991). This structure is shown in Fig. 4. 

The input unit takes external data and forwards it to 

the pattern unit. The pattern neurons utilise a 

Gaussian function for transferring information 

subject to a spreading index (Dong-xiao et al., 

2008). The D-summation neurons within the 

summation unit calculate the unweighted outcomes, 

whereas S-summation neurons compute the 

weighted outcomes of the pattern neurons. The 

predicted results  are obtained by multiplying 

the S-summation outputs by the inverse of D-

summation outputs (Tasdemir et al., 2013). This is 

presented in Equation (43). 

            (43) 
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here, the input vector m represents the element 

count,  refers to the parameter used for spreading, 

and  and  define the kth element of the vector.  

Fig. 4 GRNN Architecture 

 

2.3.7. Procedure for Developing BPNN, RBFNN  

          and GRNN 

 

The development of backpropagation neural 

network model involved selecting the learning 

algorithm, activation functions, and number of 

hidden neurons and units. Here, a BPNN with an 

input unit, an output unit, and one hidden unit were 

used. Through a series of iterations, the suitable 

count of neurons for the hidden unit was achieved, 

and the function for activation implemented in the 

hidden unit was the hyperbolic tangent, while in the 

output unit a linear function was employed for 

activation processes (Karlik and Olgac, 2011). The 

BPNN training was achieved by implementing the 

Levenberg-Marquardt trainer.  

The performance of RBFNN depends on the 

optimum count of neurons found in the hidden unit, 

and the width parameter for developing the model. 

Hence, the optimal RBFNN model was constructed 

by determining the optimum count of hidden 

neurons and the width parameter iteratively.  

 

The GRNN's performance is regulated by the width 

parameter, which was also achieved through 

iterative fine-tuning.   

2.4 Performance Metrics 

 

In this study, artificial intelligence models, namely 

LS-SVM, RVM, SVM, BPNN, RBFNN, and 

GRNN models, were evaluated and compared for 

their suitability. To determine the effectiveness of 

the various techniques constructed, the research 

used six statistical indicators, including mean square 

error (MSE), root-mean-square error (RMSE), 

correlation coefficient (R), coefficient of 

determination (R2), mean absolute error (MAE), and 

Nash-Sutcliffe Efficiency (NSE). The mathematical 

expressions for these indicators are presented in 

Equation (44) through (49). 

 

   (44) 

 

   (45) 

 

  (46) 

  (47) 

    (48) 

 

   (49) 

 

where  is the mean of the observations,  is 

the mean of the predicted outcomes, and m 

represents the sum of observations.  and  are 

the predicted wear values and observed wear values, 

respectively. In order for a model to be considered a 

good predictor, it is expected to produce relatively 

low values for MSE and RMSE. When the values of 

RMSE and MSE are low, it can be inferred that the 

model has a low residual error. R, R2 and NSE are 

used to assess the linear relationships between 

predicted and observed bucket teeth wear values, 

with a value close to one indicating a highly 

significant relationship. 

 

2.5 Model Selection  

 

The Bayesian Information Criterion (BIC) was 

employed to identify the best wear prediction model 

among the candidate predictors (Schwarz, 1978). 
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The BIC factors in the size of the test data, response 

values, number of model parameters, and actual 

values. The candidate model or technique with the 

lowest BIC score is considered the most suitable for 

accurate wear prediction. Equation (50) provides the 

mathematical formulation of the BIC. 

          (50) 

where  denotes the response values, m denotes 

the number of model samples,  defines the 

observed values, and  denotes the number of 

model features or parameters. 

 

3 Results and Discussion 

3.1 Developed Vector Machine Models 

The study involved developing three different 

vector machine learning models: SVM, LS-SVM, 

and RVM for bucket teeth wear prediction. The 

development of the SVM method based on the 

values of ɛ and C yielding the performance of the 

model, and this was achieved with optimal values 

of 0.000000001 and 65, respectively. The LS-SVM 

model was also developed based on γ value, which 

was obtained to be 63 998.7101. Finally, the RVM 

model was developed by adjusting the kernel 

bandwidth, resulting in an optimal value of 1.0744. 

Table 3 presents the results of testing evaluation 

metrics for each of the three vector machine 

models used in the study.

Table 3 Results of Testing Evaluation Metrics for the Vector Machine Models 

Models R R2 MAE RMSE MSE NSE 

LS-SVM 0.999900 0.999800 0.131220 0.160394 0.025726 0.999794 

RVM 0.999576 0.999152 1.058132 1.161269 1.348546 0.989218 

SVM 0.999884 0.999768 0.135159 0.172130 0.029629 0.999763 

3.1.1 Comparison of LS-SVM, RVM and SVM 

models 

 

The error metrics determined the extent to which the 

response values of the models diverge from the 

actual observations. Although the results (Table 3) 

imply that there are no significant differences among 

the three vector machine methods, it is essential to 

choose a model with high accuracy and precision for 

a robust analysis of bucket teeth wear. In terms of 

accuracy, the LS-SVM technique exhibited the 

lowest MAE, RMSE, and MSE values of 0.131220, 

0.160394 and 0.160394, respectively. Again, LS-

SVM exhibited superior performance on the testing 

dataset, achieving the highest values of R 

(0.999900), R² (0.999800), and NSE (0.999794) 

compared to RVM and SVM. The results from Table 

3 suggest that the LS-SVM has excellent ability to 

capture patterns effectively from the learning data 

samples and adapt effectively to the testing dataset. 

Consequently, it was chosen as the most appropriate 

technique for predicting wear of hydraulic excavator 

bucket teeth. Additionally, the LS-SVM technique's 

strength can be attributed to its inherent flexibility to 

implement the linear Karush–Kuhn–Tucker 

requirement, which provides a robust computational 

capability for handling non-linearity challenges in 

datasets (Zhang and Zhang, 2016). 

 

3.2 Developed Artificial Neural Networks    

 

The BPNN model was achieved by using a 

combination of hyperbolic tangent in the hidden unit 

and a linear function for activation processes in the 

output unit or layer, along with implementing the 

Levenberg-Marquardt trainer. The optimal BPNN 

structure was [4-24-1], which means that it had four 

input variables in the input unit, twenty-four hidden 

neurons, and one response in the output unit.  

 

For the RBFNN model, the study findings indicate 

that the width parameter of 0.6 attained the best 

results. The structure of the optimal RBFNN model 

was [4-25-1], which also indicates four inputs, 25 

hidden neurons, and one response. 

 

Through a series of iterations, the optimal value for 

the width parameter was identified, and in this study, 

a value of 0.10 was found to be the most effective 

for the GRNN model since it resulted in the least 

amount of errors and also avoided overfitting. 

 

3.2.1 Comparison of LS-SVM model and Reference 

Neural Networks   
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This section involves comparing the LS-SVM 

vector machine model with reference ANN 

techniques such as BPNN, RBFNN, and GRNN to 

determine how well it predicts the wear of excavator 

bucket teeth, which has been studied in previous 

sections. 

Table 4 summarises the statistical test results that 

evaluated the performance of each method using the 

testing dataset. 

 

 

Table 4 Evaluation Metrics for Predictive Models on Test Dataset 

Model 
Evaluation Metrics 

MSE RMSE MAE R R2 NSE 

LS-SVM 0.025726 0.160394 0.131220 0.999900 0.999800 0.999794 

BPNN 0.166901 0.408535 0.334227 0.999376 0.998657 0.998666 

RBFNN 0.217623 0.466500 0.327321 0.999144 0.998289 0.998260 

GRNN 0.064539 0.254046 0.207838 0.999746 0.999492 0.999484 

In this comparative analysis, the error indicators 

MSE, RMSE and MAE, were utilised to measure the 

predictability of the models and to determine the 

extent of deviation between the response values and 

the observed values. The model accuracy was 

considered to be excellent if the MSE, RMSE and 

MAE values approached zero. Here, LS-SVM 

technique exhibited the lowest values of MSE, 

RMSE and MAE, representing 0.025726, 0.160394 

and 0.131220, respectively, indicating its superior 

predictive performance compared to the other 

models. The R value, representing the percentage of 

prediction accuracy, was also utilised to evaluate the 

effectiveness of the models. The LS-SVM model 

outperformed all other models with the highest R 

value (0.999900), followed by GRNN with an R 

value (0.999746). The remaining models had R 

values below 0.9997, as shown in Table 4. The R2 

and NSE values serve as useful metrics for 

evaluating the agreement between predicted and 

observed data, with R2 ranging from zero to one and 

NSE ranging from negative infinity to one. Higher 

values for these metrics indicate a better match 

between predicted wear values and observed wear 

values. The results of the R2 and NSE analysis 

presented in Table 4 suggest that the LS-SVM 

method outperformed the other methods. This is 

evident from the remarkably high R2 and NSE 

values of 0.999800 and 0.999794, respectively, 

indicating a better fit for abrasive wear prediction. 

Thus, these findings strongly support the assessment 

that the LS-SVM method is the most appropriate AI 

technique for predicting bucket teeth wear compared 

to the ANN methods. The results presented in Table 

4 are visually displayed in Figs. 5 through 10, which 

demonstrate that LS-SVM is superior to the applied 

ANN models. 

 
Fig. 5 Mean Square Error Results for the Applied 

Models 

 

 
Fig. 6 Root Mean Square Error Results for the 

Applied Models 

 

 
Fig. 7 Mean Absolute Error Results for the 

Applied Models 
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Fig. 8 Correlation Coefficient Results for the 

Applied Models 

 

 
Fig. 9 Coefficient of Determination Results for 

the Applied Models 

 

 
Fig. 10 Nash-Sutcliffe Efficiency Results for the   

Applied Models 

 

3.3 Selection of Best Performing Model 

To select the most effective model from the 

investigated methods, the Bayesian Information 

Criterion (BIC) was adopted. The model or 

technique with the lowest BIC value is deemed the 

best candidate. According to the BIC results shown 

in Table 5, it is evident that the LS-SVM approach 

outperforms the other methods in predicting the 

abrasive wear of excavator bucket teeth in the study 

area. The LS-SVM model, having the lowest BIC 

value of -300.5774 among the considered methods 

(Table 5), supports this assessment, making it the 

preferred technique over RVM, SVM, BPNN, 

RBFNN, and GRNN methods. This comparison is 

further visualized in Fig. 11. 

 

Table 5 Calculated BIC Values for the Applied  

              Methods 

Models BIC Value 

LS-SVM -300.5774 

SVM -257.6058 

RVM -162.5752 

BPNN -137.8974 

RBFNN -114.8107 

GRNN -220.5581 
 

 
Fig. 11 BIC Results of the Applied Methods 

 

4 Conclusions 
 

This research examined the effectiveness of three 

different vector machine schemes (LS-SVM, RVM, 

and SVM) for predicting excavator bucket teeth 

wear. The effectiveness of the techniques was 

assessed using six different statistical metrics 

including MAE, MSE, RMSE, R, R2, and NSE. The 

results of the statistical measures showed that the 

LS-SVM technique was superior to both the RVM 

and SVM methods in terms of robustness and 

prediction accuracy. To determine the predictability 

of the LS-SVM technique, the study employed other 

reference methods, including BPNN, RBFNN, and 

GRNN, to the same dataset to ascertain their 

performance comparatively. The LS-SVM's 

superior performance is demonstrated by its lowest 

values of MSE (0.025726 mm), RMSE (0.160394 

mm), and MAE (0.131220 mm). In contrast, the 

alternative methods, including RVM, SVM, BPNN, 

RBFNN, and GRNN, exhibited MSE, RMSE, and 

MAE values ranging from 0.029629 to 1.348546, 

0.254046 to 1.161269, and 0.207838 to 1.058132, 

respectively. Furthermore, LS-SVM achieved the 

highest values for R (0.999900), R2 (0.999800), and 

NSE (0.999794) compared to the other techniques. 

The BIC results further confirmed the superior 

performance of the LS-SVM technique, as it had the 

lowest calculated BIC value of -300.5774. In 

comparison, the prospective methods, including 

RVM, SVM, BPNN, RBFNN, and GRNN, 

exhibited BIC values ranging from -257.6058 to -

114.8107. The research findings suggest that LS-

SVM could serve as a valuable tool for the mining 

industries, where excavating and loading remain 

crucial. The LS-SVM method’s robust calibration 

efficiency and adaptation capabilities make it a 

potent predictive tool. 
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